[go: up one dir, main page]

JPS63134052A - Plasma treating device for sheet material - Google Patents

Plasma treating device for sheet material

Info

Publication number
JPS63134052A
JPS63134052A JP28116586A JP28116586A JPS63134052A JP S63134052 A JPS63134052 A JP S63134052A JP 28116586 A JP28116586 A JP 28116586A JP 28116586 A JP28116586 A JP 28116586A JP S63134052 A JPS63134052 A JP S63134052A
Authority
JP
Japan
Prior art keywords
electrode
discharge
discharge electrode
rod
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28116586A
Other languages
Japanese (ja)
Other versions
JPH0475778B2 (en
Inventor
Motoyasu Koyama
小山 元靖
Hideaki Teraoka
寺岡 英朗
Takao Akagi
赤木 孝夫
Shinji Yamaguchi
新司 山口
Takashi Sakamoto
隆志 坂本
Akira Nanba
難波 明
Isao Okagaki
岡垣 勲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP28116586A priority Critical patent/JPS63134052A/en
Publication of JPS63134052A publication Critical patent/JPS63134052A/en
Publication of JPH0475778B2 publication Critical patent/JPH0475778B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PURPOSE:To enable a long continuous run, to increase the input power, and to increase the throughput of the title device by arranging plural rod electrodes constituting a second discharge electrode in parallel with each other on the peripheral surface of a virtual cylinder covering the surface of a drum-shaped first electrode. CONSTITUTION:The drum-shaped first discharge electrode 2 on the peripheral surface of which a sheet material A travels and the second discharge electrode 3 opposed to the electrode 2 are provided in a vacuum vessel 1. Plural rod electrodes constituting the second discharge electrode 3 are arranged in parallel with each other on the peripheral surface of the virtual cylinder covering the peripheral surface of the electrode 2, both ends of the electrode 3 are collected by a retaining member to form a basket-shaped structure, and both electrodes are retained in the vacuum vessel through an insulating material. As a result, local light emission and the generation of instantaneous abnormal electric discharge are reduced, discharge is stabilized, a long continuous run is made possible, the input power is increased, and the plasma treating device for a sheet material having a large throughput per device can be obtained.

Description

【発明の詳細な説明】 °〔産業上の利用分野〕 この発明は、シート状物のプラズマ処理装置、詳しくは
、ドラム形状の第1の放電電極と、この第1の放電電極
に対向する第2の放電電極とを真空容器内に設け、該真
空容器内をプラズマ雰囲気に維持し、第1の放電電極の
外周面に沿わせたシート状物に該第1および第2の放電
電極間で低温プラズマ処理する装置に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a plasma processing apparatus for a sheet-like material, and more specifically, a drum-shaped first discharge electrode and a first discharge electrode opposite to the first discharge electrode. A second discharge electrode is provided in a vacuum container, the inside of the vacuum container is maintained in a plasma atmosphere, and a sheet-like material is placed along the outer peripheral surface of the first discharge electrode between the first and second discharge electrodes. The present invention relates to an apparatus for low-temperature plasma processing.

〔従来の技術〕[Conventional technology]

近年、プラズマ処理は、7tとえばプラスチックフィル
ム、布帛などのシート状物の化学的、物理的、力学的、
光学的もしくは電気的性質または表面構造を改善する処
理方法として注目されている。
In recent years, plasma treatment has been used to chemically, physically, and mechanically treat sheet materials such as plastic films and fabrics.
It is attracting attention as a treatment method for improving optical or electrical properties or surface structure.

つ1す、プラズマ処理によって、シート状物の接着性、
摩擦特性、風合、光沢もしくは染色堅牢度を向上させ、
または帯電防止1表面硬化、粗面化。
1. Adhesive properties of sheet materials can be improved by plasma treatment.
Improve friction properties, texture, gloss or color fastness,
Or antistatic 1 surface hardening and roughening.

プロラギング防止もしくは染色物の濃色化を図り得るこ
とが知られている。
It is known that it can prevent pro-ragging or deepen the color of dyed products.

ところで、ドラム形状の放電電極と、このドラム形状の
放電電極に対向する複数の棒状電極とを真空容器内に設
け、シート状物を該ドラム形状の放1!電極の外周面に
沿わせ、前記複数の棒状電極とドラム形状の放[11!
極との間でプラズマ放電を行なわせてシート状物に低温
プラズマ処理を行なう装fは例えば特開昭57−187
37.57−195750゜57−195751. 6
1−228028号公報等で公知である。
By the way, a drum-shaped discharge electrode and a plurality of rod-shaped electrodes facing the drum-shaped discharge electrode are provided in a vacuum container, and a sheet-like material is placed in the drum-shaped discharge electrode 1! Along the outer peripheral surface of the electrode, the plurality of rod-shaped electrodes and the drum-shaped electrode [11!
A device for performing low-temperature plasma treatment on a sheet-like material by causing plasma discharge between the poles is disclosed in, for example, Japanese Patent Application Laid-Open No. 57-187.
37.57-195750゜57-195751. 6
It is publicly known from Publication No. 1-228028 and the like.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし従来のこの種プラズマ処理にあっては。 However, in conventional plasma processing of this type.

ドラム形状の第1の放電電極ばかりでなく、該第1の放
電電極に対向する第2の棒状の放電電極も。
Not only the drum-shaped first discharge electrode but also the second rod-shaped discharge electrode facing the first discharge electrode.

真空容器の一側壁を貫通して片端で支持する構造となっ
ているものである。即ち、本発明の対象とする第2の棒
状の放電電極についてみれば、(1)該棒状電極を、真
空容器を貫通させ、しかも該貫通部での外気のシールを
、電気的絶縁材料で作られfcO’Jング等で行なって
いるが、該棒状電極への入力を大きくしてゆくと、前記
シール部分に局所的な発光、瞬時的な異常アーク放電が
発生し、放電が不安定となシ、連続運転が不可能となる
ために大きな電力を与えることが出来ない、(2)ま之
工業化設備として必要な、たとえば長さ2mにも達する
棒状電極では、かなシ重いものとなり、これを片端で支
持しようとするとその直径は大なるものとなり、それに
従い碍子も大きなものとしなければならず装置全体が大
きくなシ高価なものとなる。(81’!た棒状電極よシ
の入力電力を増やすためにピッチを小さ゛<シ、棒状物
の本数を増そうとしても、前述の構麺上あまシ増やすこ
とが出来ない。
It has a structure that penetrates one side wall of the vacuum container and supports it at one end. That is, regarding the second rod-shaped discharge electrode that is the object of the present invention, (1) the rod-shaped electrode is made to penetrate the vacuum container, and the seal from the outside air at the penetration part is made of an electrically insulating material. However, as the input to the rod-shaped electrode increases, localized light emission and instantaneous abnormal arc discharge occur in the seal area, making the discharge unstable. (2) The rod-shaped electrodes required for industrial equipment, for example, up to 2 meters in length, are extremely heavy and cannot be operated continuously. If it were to be supported at one end, its diameter would be large, and the insulator would have to be correspondingly large, making the entire device large and expensive. (81'! In order to increase the input power of the rod-shaped electrodes, the pitch should be reduced.) Even if we try to increase the number of rod-shaped electrodes, we cannot increase the number due to the aforementioned structure.

(4)さらに、棒状電極を片端で保持している定め。(4) Furthermore, the rod-shaped electrode is held at one end.

保持されていない側の端部が経時的に垂れ下がり。The unretained end sag over time.

製品に品質むらを生じることがある等の欠点があるもの
である。
It has drawbacks such as uneven quality of the product.

この発明は、上記従来の問題に鑑みてなされたもので、
局所的な発光、瞬時的な異常アーク放電の発生が少なく
、放電が安定し、長期連続運転が可能で入力電力を増大
させ、装置油fcシの処理能力の大きいシート状物のプ
ラズマ処理装置を提供することを目的とする。
This invention was made in view of the above-mentioned conventional problems.
Plasma processing equipment for sheet materials with less occurrence of localized light emission and instantaneous abnormal arc discharge, stable discharge, long-term continuous operation, increased input power, and large processing capacity for equipment oil fc. The purpose is to provide.

〔問題点を解決するための手段〕[Means for solving problems]

′ 上記目的を達成するために、この発明のシート状物
のプラズマ処理装置は外周面にシート状物を沿わせるド
ラム形状の第1の放電電極と、この第1の放電電極に対
向する第2の放電電極とを真空容器の内部に設けたシー
ト状物のプラズマ処理装置において、上記第2の放電電
極を、それを構成する複数本の棒電極が平いに平行に、
かつ第1のドラム状電極の周面をおおう仮想円筒周面上
に並ぶように、その両端で保持部材によりまとめて保持
したかご型構造に構成し、絶縁材を介し℃真空容器内に
保持し次点を基本とし、さらにまた該かご型第21!極
を冷却媒体が通過する冷却手段を具備させたものである
' In order to achieve the above object, the sheet material plasma processing apparatus of the present invention includes a drum-shaped first discharge electrode along which the sheet material is placed along the outer peripheral surface, and a second discharge electrode opposite to the first discharge electrode. In a plasma processing apparatus for a sheet-like material in which a discharge electrode is provided inside a vacuum container, the second discharge electrode is arranged such that a plurality of rod electrodes constituting the second discharge electrode are arranged flat in parallel;
The first drum-shaped electrode has a cage-shaped structure in which its ends are held together by holding members so as to line up on the circumferential surface of a virtual cylinder that covers the circumferential surface of the first drum-shaped electrode, and the electrodes are held in a vacuum container at ℃ via an insulating material. Based on the runner-up, we also won the 21st place in the basket type! It is equipped with a cooling means through which a cooling medium passes through the poles.

〔作 用〕[For production]

この発明によれば、複数の棒電極を保持部材によりまと
めて保持したかご型構造の電極とし、真空容器内に保持
したものであるから、(1)棒電極が真空容器を貫通す
る構造がなくなり、従って該貫通部での局所的な発光、
瞬時的な異常アーク放電の発生による放電が不安定にな
ることがなく、大きな電力を与えての連続運転が可能と
なる、(2)複数の棒電極をその両端で保持している構
造であるので、棒電極の直径を小さなものとすることが
出来、それに伴ない装置製作費を軽減することが出来る
。(8)棒電極のピッチを小さく出来、棒電極の数を画
期的に多くすることが出来、従って棒電極からの入力電
力を画期的に増大させることが出来る。(4)棒電極を
、その両端で保持部材で固定しているため、経時的に位
置が変化することがなく。
According to this invention, a plurality of rod electrodes are held together by a holding member and are held in a vacuum container, so that (1) there is no longer a structure in which the rod electrodes penetrate the vacuum container; , so local light emission at the penetration part,
(2) It has a structure in which multiple rod electrodes are held at both ends, which prevents the discharge from becoming unstable due to the occurrence of instantaneous abnormal arc discharges, and enables continuous operation with large electric power. Therefore, the diameter of the rod electrode can be made small, and the cost of manufacturing the device can be reduced accordingly. (8) The pitch of the rod electrodes can be reduced, the number of rod electrodes can be dramatically increased, and the input power from the rod electrodes can therefore be dramatically increased. (4) Since the rod electrode is fixed with holding members at both ends, its position does not change over time.

製品に品質むらを生じることが無い、さらにまた、該か
ご型構造の放電電極か、それを構成する棒電極を冷媒を
用いて冷却する構造とすることにより、(5)該棒電極
の表面温度を一定に、しかも均一に保つことが出来るの
で、局部的な温度上昇のない、即ち、処理されるシート
状物を異常に加熱し、その品質を賢質させることがなく
、長時間安定して低温プラズマ処理を行なうことが出来
るものであるO 〔実施例〕 以下、この発明の実施例を図面にしたがって説明する。
(5) The surface temperature of the rod electrode can be reduced by using a structure in which the cage-shaped discharge electrode or the rod electrode that constitutes the cage-shaped discharge electrode is cooled using a refrigerant. It is possible to keep the temperature constant and uniform, so there is no local temperature rise, that is, the sheet material being processed is not heated abnormally and its quality is not deteriorated, and it is stable for a long time. O that can perform low-temperature plasma processing [Examples] Examples of the present invention will be described below with reference to the drawings.

この発明の実施例を示す第1図において、真空容器1内
には、ドラム形状のドラム電極(第1の放電電極)2と
、このドラム電極2に対向する多数の棒電極3□、3□
、・・・・・・ 3nからなるかご型電極(第2の放電
電極)3とが、平行に設置されている。これら両放電電
極2,3間には、交流電源4から、トランス5ならびに
上記面放電電極2,3を接続する電気回路6を介して電
圧が付加されている。
In FIG. 1 showing an embodiment of the present invention, a vacuum container 1 includes a drum-shaped drum electrode (first discharge electrode) 2, and a number of rod electrodes 3□, 3□ facing the drum electrode 2.
,...3n cage electrodes (second discharge electrodes) 3 are installed in parallel. A voltage is applied between these discharge electrodes 2 and 3 from an AC power source 4 via a transformer 5 and an electric circuit 6 that connects the surface discharge electrodes 2 and 3.

上記真空容器1は、ステンレス製で、プラズマ処理ガス
が封入されたガス容器7とその導入管8ならびに、真空
容器1内を真空にするための真空排気装置9とその排気
管10により、内部が極く低圧のプラズマ処理ガスで充
填された状態に保たれている。この真空容″?51内の
、前記面放電電極の左右には、巻出機11および巻取機
13がそれぞれ設置されている。Aはシート状物で、巻
出機11から、ガイドロール12にガイドされ、回転駆
動されているドラム電極2の外周面に沿って、巻取機1
3に巻き取られる。つまシ、巻出機11のシート状物A
は、プラズマ雰囲気に保持された真空容器1内のドラム
電極2上で連続的に低温プラズマ処理されて、巻取機1
3に巻き取られる。
The vacuum container 1 is made of stainless steel and has an internal structure including a gas container 7 filled with plasma processing gas, an inlet pipe 8 thereof, and a vacuum exhaust device 9 and its exhaust pipe 10 for evacuating the inside of the vacuum container 1. It is kept filled with extremely low pressure plasma processing gas. An unwinding machine 11 and a winding machine 13 are installed on the left and right sides of the surface discharge electrode in this vacuum volume "?51," respectively. The winding machine 1
It is wound up in 3. Sheet-like material A of pickle and unwinding machine 11
is continuously subjected to low-temperature plasma treatment on a drum electrode 2 in a vacuum container 1 maintained in a plasma atmosphere, and then transferred to a winder 1.
It is wound up in 3.

第2図においてドラム電極2の円筒部2cは、平板状の
絶縁部材14を介して、回転軸15に固定されている。
In FIG. 2, the cylindrical portion 2c of the drum electrode 2 is fixed to a rotating shaft 15 via a flat insulating member 14. As shown in FIG.

ドラム電極2の内部空間2dは、絶縁部材14、ゴムリ
ング16,17などによって、真空容器1の内部空間1
aおよび大気から完全に密閉されている。
The internal space 2d of the drum electrode 2 is connected to the internal space 1 of the vacuum container 1 by an insulating member 14, rubber rings 16, 17, etc.
a and completely sealed from the atmosphere.

上記回転軸15は、真空容器1の外部に設けられたモー
タ(図示せず)により駆動され、その真空容器1を貫通
する貫通部15a1ならびに、左端部15bにおいて、
それぞれ軸受部18および19のベアリング181Lお
よび19&を介して、真空容器1に軸支されている。つ
まり、回転軸15は、ドラム電極2を貫通し、このドラ
ム電極2の両側壁部を構成する絶縁部材14.14から
突出し、この両側の突出している部分において軸支され
ている018bはメカニカルシールで、上記軸受部18
に設けられ、真空容器1の内部空間1aを大気に対して
シールしている。
The rotating shaft 15 is driven by a motor (not shown) provided outside the vacuum container 1, and has a penetrating portion 15a1 that penetrates the vacuum container 1 and a left end portion 15b.
It is pivotally supported in the vacuum container 1 via bearings 181L and 19& of bearing parts 18 and 19, respectively. In other words, the rotating shaft 15 passes through the drum electrode 2 and protrudes from the insulating members 14 and 14 forming both side walls of the drum electrode 2, and the mechanical seal 018b is pivotally supported at the protruding parts on both sides. Then, the bearing portion 18
The internal space 1a of the vacuum container 1 is sealed from the atmosphere.

回転軸15には、長孔15gが設けられ、この長孔15
g内にパイプ15hが挿入され、パイプishの内側お
よび外側に冷却媒体の流通する冷却通路20,21が設
けられている。22は短管(配管材料)で、たとえばゴ
ムなどの絶縁体からなり、上記冷却通路20.21を水
ジャケット2aに連通させている。
The rotating shaft 15 is provided with a long hole 15g.
A pipe 15h is inserted into the pipe ish, and cooling passages 20 and 21 through which a cooling medium flows are provided inside and outside the pipe ish. A short pipe (piping material) 22 is made of an insulator such as rubber, and communicates the cooling passage 20.21 with the water jacket 2a.

なお、この実施例では、スリップリング23が真空容器
1内に設けられ、このスリップリング23が導線24を
介してドラム電極2の側面部2eの一部に接続されてい
る。
In this embodiment, a slip ring 23 is provided inside the vacuum vessel 1, and this slip ring 23 is connected to a part of the side surface 2e of the drum electrode 2 via a conductive wire 24.

上記電気回路6の一方は、真全容器1を電気回路6から
絶縁する導入端子6aを介して真空容器l内に挿入され
、棒電極30.32.・・・・・・、3nからなるかご
型電極3に接続されている。つまり、真空容器1は電気
回路6から電気的に絶縁され、また、アースされた接地
状態に保たれている。なお、電気回路6および面放電電
極2.3は非接地状態に保たれて、真空容器1と厳格に
絶縁されている。
One of the electric circuits 6 is inserted into the vacuum vessel l via an introduction terminal 6a that insulates the true vessel 1 from the electric circuit 6, and rod electrodes 30, 32. . . . is connected to a squirrel cage electrode 3 consisting of 3n. That is, the vacuum container 1 is electrically insulated from the electric circuit 6 and is maintained in a grounded state. Note that the electric circuit 6 and the surface discharge electrodes 2.3 are kept ungrounded and strictly insulated from the vacuum vessel 1.

この実施例によれば、ドラム電極2の側面部が絶縁部材
14でおおわれているから、上記側面部2eへの不必要
なプラズマ放電が防止される。1な、これによシ、ドラ
ム電極20両側面部2e近傍における昇温を防止し得る
から、シート状物を全面に亙って均一にプラズマ処理し
得る。
According to this embodiment, since the side surface of the drum electrode 2 is covered with the insulating member 14, unnecessary plasma discharge to the side surface 2e is prevented. 1. This prevents the temperature from rising in the vicinity of both side surfaces 2e of the drum electrode 20, so that the entire surface of the sheet-like material can be uniformly plasma-treated.

tfc、絶縁体からなる短管22を介して1水ジヤケツ
ト2aが冷却通路20.21に連通しているから、ドラ
ム電極2から冷却媒体を通して回転軸15へ流れる電流
が小さくなるので、回転軸15をドラム電極2から、よ
り厳格に絶縁し得・るO また、ドラム電極2の内部空間2dは、ドラム電極2が
大気中で組立てられるので、大気で満たされており、プ
ラズマ雰囲気でないから、この内部空間2dでの局部的
な発光が減退し、プラズマ放電が安定化する。
Since the water jacket 2a is connected to the cooling passage 20.21 via the short pipe 22 made of TFC and an insulator, the current flowing from the drum electrode 2 to the rotating shaft 15 through the cooling medium becomes small. In addition, since the drum electrode 2 is assembled in the atmosphere, the internal space 2d of the drum electrode 2 is filled with the atmosphere and is not a plasma atmosphere. Local light emission in the internal space 2d is reduced, and plasma discharge is stabilized.

上記ドラム電極2(第1の放電電極)に対向する多数の
棒電極31.3□、・・・・・・、3nは、その両端3
aが一対の支持部材25に固定され、この支持部材25
が碍子28を介して真空容器に支持されている。この多
数の棒電極31 h 32 *・・・・・・、3nから
なるかご型構造の放電電極3(第2の放電電極)につい
てざらに説明したのが第3図で、かご型電極3は多数の
棒電極3□、3□、・・・・・・、3nがほぼ等ピッチ
となるように支持部材251.25□で固定され、該支
持部材25..25□を支持ブラケット26□、26□
で前記碍子28を介して真空容器lに保持するようにな
している。
A large number of rod electrodes 31.3□, . . . , 3n facing the drum electrode 2 (first discharge electrode) have both ends 3
a is fixed to a pair of support members 25, and this support member 25
is supported by the vacuum container via an insulator 28. FIG. 3 provides a rough explanation of the discharge electrode 3 (second discharge electrode) having a cage-shaped structure consisting of a large number of rod electrodes 31 h 32 *..., 3n. A large number of rod electrodes 3□, 3□, . . . , 3n are fixed by support members 251. .. Support brackets 25□ and 26□, 26□
It is held in the vacuum container l via the insulator 28.

上記棒電極31,3□、・・・・・・、3nのピッチは
、等ピッチにあるのがよシ好ましいが、製作費も加味す
ると、実用上少なくとも50%以上についてのピッチの
ばらつきが、棒電極の平均外径の3倍以下であることが
好ましい。
It is preferable that the pitches of the rod electrodes 31, 3□, . It is preferably three times or less the average outer diameter of the rod electrode.

棒電極30.3□、・・・・・・、anf:仮想円筒周
面上に並ばせ固定する前記支持部材25□、25□は、
製作上、取り付は作業上あるいは保守作業上等の都合で
2分割あるいけそれ以上に分割できるようにすることも
熱論可能である。
Rod electrodes 30.3□, ......, anf: The support members 25□, 25□ arranged and fixed on the virtual cylindrical peripheral surface are:
It is also possible to make it possible to divide the assembly into two or more parts for reasons such as manufacturing or maintenance work.

第1図および第3図の27□および27□は、それぞれ
冷媒の供給口並びに排出口を示す。即ち1図例はおいて
は、かご型電極3全体が冷却媒体で冷却可能とした図を
示すもので、棒電極30,3□、・・・・・・・・・、
3nを、その内部に冷却媒体が通過する冷媒通路を設け
ると共に支持部材25を該棒電極31゜3□、・・・・
・・、3nへの冷媒の供給並びに排出を行なわせる冷媒
通路を設けたものとしている。またこの冷媒の供給口2
78.272は、それぞれ30mm以上の絶縁材料から
なる絶縁短管(図示せず)を介して冷媒の給・排液管へ
つなが゛るようにすれば、この絶縁短管の介在によシ1
局所的な発光、瞬時的な異常アーク放電の発生を該絶縁
短筆を介在させない場合に比べて大きく減少させること
ができる。
27□ and 27□ in FIGS. 1 and 3 indicate a refrigerant supply port and a refrigerant discharge port, respectively. In other words, Figure 1 shows a diagram in which the entire squirrel cage electrode 3 can be cooled with a cooling medium, and the rod electrodes 30, 3 □, . . .
3n is provided with a coolant passage through which a cooling medium passes, and the supporting member 25 is attached to the rod electrode 31°3□, . . .
..., 3n is provided with a refrigerant passage for supplying and discharging refrigerant. Also, this refrigerant supply port 2
78.272 can be connected to the refrigerant supply and drain pipes through insulating short pipes (not shown) each made of an insulating material with a thickness of 30 mm or more.
The occurrence of local light emission and instantaneous abnormal arc discharge can be greatly reduced compared to the case where the insulating short brush is not used.

第4図並びて第5図は、冷却手段を備えたかご型電極3
の、よシ詳しい実施例図で、第4図は該かご型電極3の
正面図、第5図は同側面図である。
Figures 4 and 5 show a squirrel cage electrode 3 equipped with a cooling means.
FIG. 4 is a front view of the squirrel cage electrode 3, and FIG. 5 is a side view thereof.

この実施例においては、冷媒通路31a 、 32a、
・・・・・・、3naを設けた各棒電極31,3□、・
・・・・・j 3nはその冷媒通路が、同じく冷媒通路
25□a、25□aを設けた支持部材の該冷媒通路に続
くように、かご型に溶接固定されているが、並列になら
んだ前記各棒電極の冷媒通路を屓次直列に結ぶように、
支持部材の冷媒通路を仕切板29で仕切っている。
In this embodiment, refrigerant passages 31a, 32a,
......, each rod electrode 31, 3□, with 3na provided.
...j 3n is welded and fixed in a cage shape so that its refrigerant passage follows the refrigerant passage of the support member provided with the refrigerant passages 25□a and 25□a, but they are not arranged in parallel. In such a way that the refrigerant passages of each rod electrode are connected in series,
A refrigerant passage in the support member is partitioned by a partition plate 29.

第6図並びに第7図は、冷却手段を備えたかご型電極3
の他の実施例図で、第6図は該かご型電極の正面図、第
7図は同側面図である。この実施例においては、前記実
施例の場合での仕切板29を外した例で、この例におい
ては、一方の支持部材の冷媒通路が、各棒電極の冷媒通
路の共通の入口側冷却路となり、他方の支持部材の冷媒
通路が各棒電極の冷媒通路の共通の出口側冷却路となる
ものである。
6 and 7 show a squirrel cage electrode 3 equipped with a cooling means.
FIG. 6 is a front view of the squirrel cage electrode, and FIG. 7 is a side view of the same. In this example, the partition plate 29 in the previous example is removed, and in this example, the refrigerant passage of one support member serves as a common inlet side cooling path for the refrigerant passage of each rod electrode. , the refrigerant passage of the other support member serves as a common exit side cooling passage of the refrigerant passages of the respective rod electrodes.

第8図は、冷却手段を備えたかど型電極3の、更に他の
実施例図で、第7図に対応する。支持部材25と各棒電
極3工との結合部分の部分拡大断面図である。この実施
例においては、棒電極の冷媒通路3xaにオリフィス3
0を配し、このオリアイスによ)支持部材25□の一方
から各棒状電極へ送られる冷媒を各棒電極に対してよシ
均一に分配して給供するようになし比例である。
FIG. 8 is a diagram of yet another embodiment of the corner-shaped electrode 3 provided with cooling means, and corresponds to FIG. 7. FIG. 6 is a partially enlarged cross-sectional view of a connecting portion between the support member 25 and each of the three rod electrodes. In this embodiment, an orifice 3 is provided in the refrigerant passage 3xa of the rod electrode.
0, and the refrigerant sent from one side of the support member 25□ to each rod-shaped electrode is distributed and supplied to each rod electrode in a proportional manner.

即ち、この発明においては、ドラム形状の第1の放電電
極に対向する複数の棒電極からなる第2の放電電極を、
前述実施例で説明した如く、該複数の棒電極を支持部材
にまとめて保持した構造となしたので、棒電極が真空容
器を貫通する構造がなくなシ、従って該貫通構造の場合
での放電が不安定になる欠点が根本的に解決でき、しか
4棒電極をその直径を小さなものとすることが出来、か
つそのピッチを小さく出、来、そのような径の小さい棒
電極をピッチ小さく数多く、ドラム形状の第1放電電極
のまわシに配置することが出来るので。
That is, in this invention, the second discharge electrode consisting of a plurality of rod electrodes facing the drum-shaped first discharge electrode,
As explained in the previous embodiment, since the structure is such that the plurality of rod electrodes are held together by the support member, there is no structure in which the rod electrodes penetrate the vacuum container, and therefore the discharge in the case of the penetrating structure is eliminated. The disadvantage of instability can be fundamentally solved, and the diameter of the four-rod electrode can be made small, and the pitch can be made small. , because it can be placed around the drum-shaped first discharge electrode.

大きな入力電力を与えて効率よくプラズマ処理を行なう
ことが可能となるもので、さらにまた、該かご型電極を
冷媒を用いてその表面温度を一定かつ均一に保つように
することによって、よシ長時間安定した連続処理が可能
となるものでおり、この発明により、工業的なプラズマ
処理装置としての実用性が大きく向上するものである。
This makes it possible to perform plasma processing efficiently by applying large input power, and furthermore, by using a refrigerant to maintain the surface temperature of the cage-shaped electrode at a constant and uniform temperature, it can be extended to a longer period of time. This enables time-stable continuous processing, and the present invention greatly improves the practicality of an industrial plasma processing apparatus.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明によれば、大きな電力を
消費するシート状物のプラズマ処理装置における電力の
浪費を防止し得るとともに、異常なアーク放電を防止し
放電が安定するので、上記処理装置が入力電力を増大さ
せ装置当たυの処理能力の大きい、即ち、工業的な処理
能力を得るとともに、これの連続運転が可能になる。
As explained above, according to the present invention, it is possible to prevent power wastage in a plasma processing apparatus for sheet-shaped materials that consumes a large amount of power, and also prevent abnormal arc discharge and stabilize discharge, so that the processing apparatus By increasing the input power, a large throughput of υ per device is obtained, that is, an industrial throughput is obtained, and continuous operation of the system becomes possible.

なおこれまでの説明は、第1図に示されるパッチ装置に
ついて例示したが、この発明が1.第1図での巻出機1
1および巻取機13を、ドラム電極2およびかご型電極
3が配される真空容器1内に配さす、図示していないが
、真空容器1の先後に設けた予備真空の前後に配した連
続装置についても適用されることは熱論である。
Although the explanation so far has been given with respect to the patch device shown in FIG. 1, this invention has the following advantages: 1. Unwinder 1 in Figure 1
1 and a winder 13 are arranged in a vacuum container 1 in which a drum electrode 2 and a squirrel cage electrode 3 are arranged. It is a hot theory that this also applies to equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの説明の実施例を示す概略構成図、第2図は
第1図の縦断面図、第3図はかご型電極の斜視図、第4
図は冷却手段を具備したかご型電極の部分的に切断した
正面図、第5図は同じく部分的に切断した側面図、第6
図は別の冷却手段を具備したかご型電極の部分的に切断
した正面図、第7図は同じく部分的に切断した側面図、
第8図はさらに別の冷却手段を示すかご型電極の部分断
面図である。 1・・・真空容器、1a・・・内部空間、2・・・第1
の放電電極(ドラム電極)、2a・・・冷却通路(水ジ
ャケット)、2b・・・側壁部、2C・・・円筒部、2
d・・・内部空間、26・・・側面部、3・・・第2の
放電電極(棒電極)、3a・・・冷媒通路、6・・・電
気回路、7・・・ガス供給源(ガス容器)、14・・・
絶縁部材、15・・・回転軸、15L、15b・・・突
出部(貫通部、左端部)、20.21・・・冷却通路、
22・・・配管材料(短管)、25・・・支持部材、2
5a・・・冷媒通路、26・・・冷媒給排口、27・・
・支持用ブラケット、28・・・碍子、29・・・冷媒
通路仕切板、30・・・冷媒万リフイス1 A・・・ン
ート秋物
FIG. 1 is a schematic configuration diagram showing an example of this explanation, FIG. 2 is a longitudinal sectional view of FIG. 1, FIG. 3 is a perspective view of a squirrel cage electrode, and FIG.
The figures are a partially cut-away front view of a squirrel cage electrode equipped with a cooling means, FIG. 5 is a partially cut-away side view, and FIG.
The figure is a partially cut-away front view of a squirrel cage electrode equipped with another cooling means, and FIG. 7 is a partially cut-away side view,
FIG. 8 is a partial sectional view of the squirrel cage electrode showing yet another cooling means. 1... Vacuum container, 1a... Internal space, 2... First
discharge electrode (drum electrode), 2a...cooling passage (water jacket), 2b...side wall part, 2C...cylindrical part, 2
d...inner space, 26...side surface, 3...second discharge electrode (rod electrode), 3a...refrigerant passage, 6...electric circuit, 7...gas supply source ( gas container), 14...
Insulating member, 15...Rotating shaft, 15L, 15b...Protrusion part (penetrating part, left end part), 20.21...Cooling passage,
22... Piping material (short pipe), 25... Supporting member, 2
5a... Refrigerant passage, 26... Refrigerant supply/discharge port, 27...
・Support bracket, 28... Insulator, 29... Refrigerant passage partition plate, 30... Refrigerant chair 1 A... Nto autumn item

Claims (1)

【特許請求の範囲】 1、外周面にシート状物を沿わせるドラム形状の第1の
放電電極と、この第1の放電電極に対向する第2の放電
電極とを真空容器の内部に設けたシート状物のプラズマ
処理装置において、上記第2の放電電極を、それを構成
する複数本の棒電極が互いに平行に、かつ第1のドラム
状電極の周面をおおう仮想円筒周面上に並ぶように、そ
の両端で保持部材によりまとめて保持したかご型構造に
構成し、絶縁材を介して真空容器内に保持したことを特
徴とするシート状物のプラズマ処理装置 2、かご型構造を構成する棒電極が、その内部に冷却媒
体の通過する冷媒通路を有し、支持部材が前記棒電極の
冷媒通路を順次直列に結ぶ冷却路を構成していることを
特徴とする特許請求の範囲第1項記載のシート状物のプ
ラズマ処理装置 3、かご型構造を構成する棒電極が、その内部に冷却媒
体の通過する冷媒通路を有し、支持部材が前記棒電極の
冷媒通路の各入口側並びに各出口側をそれぞれ並列に結
ぶ冷却路を構成していることを特徴とする特許請求の範
囲第1項記載のシート状物のプラズマ処理装置
[Claims] 1. A drum-shaped first discharge electrode having a sheet-like material along its outer peripheral surface, and a second discharge electrode facing the first discharge electrode are provided inside a vacuum container. In the plasma processing apparatus for a sheet-like material, the second discharge electrode is arranged such that a plurality of rod electrodes constituting the second discharge electrode are arranged parallel to each other and on a virtual cylindrical circumferential surface that covers the circumferential surface of the first drum-shaped electrode. A plasma processing apparatus 2 for a sheet-like material having a cage-shaped structure, which is held together by holding members at both ends thereof and held in a vacuum container via an insulating material, as shown in FIG. The rod electrode has a refrigerant passage therein through which a cooling medium passes, and the support member constitutes a cooling path that sequentially connects the refrigerant passages of the rod electrode in series. In the plasma processing apparatus 3 for sheet-like material according to item 1, the rod electrodes constituting the cage structure have a refrigerant passage therein through which a cooling medium passes, and the support member is provided on each inlet side of the refrigerant passage of the rod electrode. and a cooling path connecting each outlet side in parallel.
JP28116586A 1986-11-25 1986-11-25 Plasma treating device for sheet material Granted JPS63134052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28116586A JPS63134052A (en) 1986-11-25 1986-11-25 Plasma treating device for sheet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28116586A JPS63134052A (en) 1986-11-25 1986-11-25 Plasma treating device for sheet material

Publications (2)

Publication Number Publication Date
JPS63134052A true JPS63134052A (en) 1988-06-06
JPH0475778B2 JPH0475778B2 (en) 1992-12-01

Family

ID=17635256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28116586A Granted JPS63134052A (en) 1986-11-25 1986-11-25 Plasma treating device for sheet material

Country Status (1)

Country Link
JP (1) JPS63134052A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351437A (en) * 2005-06-17 2006-12-28 National Institute Of Advanced Industrial & Technology Surface treatment apparatus and surface treatment method
JP2009102744A (en) * 2009-01-23 2009-05-14 Mitsubishi Heavy Ind Ltd Plasma cvd device, and electrode for plasma cvd device
JP2009123513A (en) * 2007-11-14 2009-06-04 Emd:Kk Plasma processing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351437A (en) * 2005-06-17 2006-12-28 National Institute Of Advanced Industrial & Technology Surface treatment apparatus and surface treatment method
JP2009123513A (en) * 2007-11-14 2009-06-04 Emd:Kk Plasma processing device
JP2009102744A (en) * 2009-01-23 2009-05-14 Mitsubishi Heavy Ind Ltd Plasma cvd device, and electrode for plasma cvd device

Also Published As

Publication number Publication date
JPH0475778B2 (en) 1992-12-01

Similar Documents

Publication Publication Date Title
JP5324596B2 (en) Winding type vacuum processing equipment
US5554255A (en) Method of and apparatus for a direct voltage arc discharge enhanced reactive treatment of objects
US20070163499A1 (en) Plasma treatment apparatus and method
US4803332A (en) Apparatus for plasma treatment of a sheet-like structure
JP3204801B2 (en) Vacuum glow discharge processing apparatus and processing method
JPS62136596A (en) Continuous electrolytic treatment device for metallic web
JPS63134052A (en) Plasma treating device for sheet material
WO2015055828A1 (en) Roller device for vacuum deposition arrangement, vacuum deposition arrangement with roller and method for operating a roller
JPS6411055B2 (en)
JPS5818997B2 (en) Power supply device for metal strip
US3761670A (en) Method and apparatus for treating work members by the application of high frequency energy
JPH0443102B2 (en)
JP5465912B2 (en) Film production method
JPH0475777B2 (en)
JPH043771B2 (en)
US2384982A (en) Heat treatment of the insulating coverings of electric wires and cables
JPH0527455B2 (en)
JPS636030A (en) Plasma processing equipment for sheet materials
JPH0759647B2 (en) Method for homogenizing low-temperature plasma
KR100368052B1 (en) Continous polymerizing apparatus using plasma
JPH01165630A (en) Discharge treatment method
JPS63125671A (en) Uniformizing method for low-temperature plasma
SU1067061A1 (en) Apparatus for heating product in electrolyte
JPH052605Y2 (en)
JPS62297456A (en) Apparatus for pretreating strip

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees