JPS6313022A - Antidazzle mirror - Google Patents
Antidazzle mirrorInfo
- Publication number
- JPS6313022A JPS6313022A JP15631686A JP15631686A JPS6313022A JP S6313022 A JPS6313022 A JP S6313022A JP 15631686 A JP15631686 A JP 15631686A JP 15631686 A JP15631686 A JP 15631686A JP S6313022 A JPS6313022 A JP S6313022A
- Authority
- JP
- Japan
- Prior art keywords
- mirror
- material layer
- electrochromic material
- electrode
- transmittance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 claims abstract description 32
- 239000000758 substrate Substances 0.000 claims abstract description 23
- 238000002834 transmittance Methods 0.000 claims abstract description 20
- 239000003792 electrolyte Substances 0.000 abstract description 8
- 229920000327 poly(triphenylamine) polymer Polymers 0.000 abstract description 8
- 230000000694 effects Effects 0.000 abstract description 6
- 229910052763 palladium Inorganic materials 0.000 abstract description 3
- 238000002310 reflectometry Methods 0.000 abstract 2
- 239000010408 film Substances 0.000 description 11
- 239000004973 liquid crystal related substance Substances 0.000 description 10
- 229920000642 polymer Polymers 0.000 description 9
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 7
- 229920000547 conjugated polymer Polymers 0.000 description 6
- 230000000379 polymerizing effect Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 5
- 238000004040 coloring Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000000178 monomer Substances 0.000 description 4
- 239000003566 sealing material Substances 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 229920006332 epoxy adhesive Polymers 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- -1 polyparaphenylene Polymers 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 229910000314 transition metal oxide Inorganic materials 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 1
- 229910021630 Antimony pentafluoride Inorganic materials 0.000 description 1
- 238000003747 Grignard reaction Methods 0.000 description 1
- 229910013075 LiBF Inorganic materials 0.000 description 1
- 229910013872 LiPF Inorganic materials 0.000 description 1
- 101150058243 Lipf gene Proteins 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- VBVBHWZYQGJZLR-UHFFFAOYSA-I antimony pentafluoride Chemical compound F[Sb](F)(F)(F)F VBVBHWZYQGJZLR-UHFFFAOYSA-I 0.000 description 1
- YBGKQGSCGDNZIB-UHFFFAOYSA-N arsenic pentafluoride Chemical compound F[As](F)(F)(F)F YBGKQGSCGDNZIB-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910001914 chlorine tetroxide Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- ZMXDDKWLCZADIW-UHFFFAOYSA-N dimethylformamide Substances CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 125000002573 ethenylidene group Chemical group [*]=C=C([H])[H] 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 1
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 description 1
- 229910001486 lithium perchlorate Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- NDLPOXTZKUMGOV-UHFFFAOYSA-N oxo(oxoferriooxy)iron hydrate Chemical compound O.O=[Fe]O[Fe]=O NDLPOXTZKUMGOV-UHFFFAOYSA-N 0.000 description 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-M perchlorate Chemical compound [O-]Cl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-M 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/15—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect
- G02F1/153—Constructional details
- G02F1/155—Electrodes
- G02F2001/1552—Inner electrode, e.g. the electrochromic layer being sandwiched between the inner electrode and the support substrate
Landscapes
- Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は、反射若しくは透過率可変防眩ミラーに関す
るものである。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an anti-glare mirror with variable reflection or transmittance.
(従来の技術)
従来の防眩インサイドミラー(液晶式)としては、例え
ば第3〜5図に示すようなものがある。(Prior Art) Examples of conventional anti-glare inside mirrors (liquid crystal type) include those shown in FIGS. 3 to 5.
ここで、12は光センサ−,13はスイッチ、14はミ
ラーハウジング、15はステー、16は液晶防眩ミラー
、17は回路基板、18はピボットである。この液晶防
眩ミラーは、第5図に詳細に示すように透明電極5を備
えた透明基板1と反射電極19を備えた基板20を電極
が対向するように平行に配置し周辺をシール材8でシー
ルし、得られた空間に液晶21を封入して成るもので、
透明電極5と反射電極19との間に電界を加えることに
より液晶の状態を変化させ、その効果により光の透過率
が変わることを利用し、反射電極の反射率を制御するも
のである。Here, 12 is an optical sensor, 13 is a switch, 14 is a mirror housing, 15 is a stay, 16 is a liquid crystal anti-glare mirror, 17 is a circuit board, and 18 is a pivot. As shown in detail in FIG. 5, this liquid crystal anti-glare mirror has a transparent substrate 1 provided with a transparent electrode 5 and a substrate 20 provided with a reflective electrode 19 arranged in parallel so that the electrodes face each other, and the surrounding area is surrounded by a sealing material 8. The liquid crystal 21 is sealed in the space obtained.
The state of the liquid crystal is changed by applying an electric field between the transparent electrode 5 and the reflective electrode 19, and the reflectance of the reflective electrode is controlled by utilizing the fact that the light transmittance changes due to this effect.
(発明が解決しようとする問題点)
しかしながら、このような従来の防眩ミラーにあっては
、第6,7図に自動車のインサイドミラー22について
示すように、ミラー22の部分が不退明で死角23とな
っており、この分前力の視界が若干悪くなるという問題
点があった。(Problems to be Solved by the Invention) However, in such conventional anti-glare mirrors, the portion of the mirror 22 is unretractable, as shown in FIGS. 6 and 7 for the inside mirror 22 of an automobile. There was a problem that the blind spot was 23, and the visibility of the front force was slightly worsened by this amount.
(問題点を解決するための手段)
この発明は、防眩ミラーを反射率及び透過率可変ミラー
にすることにより、上記問題点を解決したものである。(Means for Solving the Problems) The present invention solves the above problems by using a variable reflectance and transmittance mirror as an anti-glare mirror.
即ちこの発明の防眩ミラーは一対の透明基板と、該透明
基板間に保持され、印加電圧により光透過率の変わる光
透過率可変物質と、該光透過率可変物質に電圧を印加す
る透明電極と、光を半透過する多孔質層を有する防眩ミ
ラーとしたものである。以下、本発明を更に詳細に説明
する。尚、以下の説明において光透過早可変物質として
はエレクトロクロミック物質としている。すなわち、一
対の透明基板の第1の基板上に第1のエレクトロクロミ
ック物質層及び該第1のエレクトロクロミック物質層と
接触する光を反射する多孔質層を備え、第2の基板上に
導電性透明電極及び該導電性透明電極と接触する第2の
エレクトロクコミック物質層を備え、それぞれのエレク
トロクロミック物質層が対向するようにスペーサを介し
て重ね合わせ、周辺を接着剤により固定して得られた空
間に電界質を封入して成る防眩ミラーにおいて、第1の
エレクトロクロミック物質層として共役系高分子膜を用
い、第2のエレクトロクロミック物質層として遷移金属
酸化物被膜を用いている。That is, the anti-glare mirror of the present invention includes a pair of transparent substrates, a variable light transmittance material held between the transparent substrates and whose light transmittance changes depending on an applied voltage, and a transparent electrode for applying a voltage to the variable light transmittance material. This is an anti-glare mirror having a porous layer that semi-transmits light. The present invention will be explained in more detail below. In the following description, an electrochromic material is used as the light transmission rate variable material. That is, a first electrochromic material layer and a porous layer that reflects light that comes into contact with the first electrochromic material layer are provided on the first substrate of a pair of transparent substrates, and a conductive material layer is provided on the second substrate. It is obtained by comprising a transparent electrode and a second electrochromic material layer in contact with the conductive transparent electrode, overlapping each electrochromic material layer with a spacer in between so as to face each other, and fixing the periphery with an adhesive. In an anti-glare mirror in which an electrolyte is sealed in a space, a conjugated polymer film is used as the first electrochromic material layer, and a transition metal oxide film is used as the second electrochromic material layer.
この発明に用いる上記第1のエレクトロクロミ7り物質
としての共役系高分子材料としてはポリトリフェニルア
ミン、ポリパラフェニレン、ポリ(N−メチルピロール
)、ポリアニリン等が挙げられる。これらの共役系高分
子材料は成膜した時点では、還元状態で無色透明若しく
は着色強度が低く、酸化することにより二重結合や不対
電子によるπ電子の遷移吸収エネルギーが変化し、その
結果可視光の吸収スペクトルが変化すると言われている
。Examples of the conjugated polymer material as the first electrochromic substance used in this invention include polytriphenylamine, polyparaphenylene, poly(N-methylpyrrole), polyaniline, and the like. At the time of film formation, these conjugated polymer materials are colorless and transparent in a reduced state or have low coloring strength, and when oxidized, the transition absorption energy of π electrons due to double bonds and unpaired electrons changes, resulting in visible It is said that the absorption spectrum of light changes.
特に、4.4’、4”−トリフェニルアミン構造または
その誘導体構造を繰り返し単位として有する重合体被膜
は、還元状態でほぼ完全に無色透明になり、しかも駆動
電圧が低く、適当な材料と言える。In particular, a polymer coating having a 4,4',4''-triphenylamine structure or its derivative structure as a repeating unit is a suitable material because it becomes almost completely colorless and transparent in a reduced state and has a low driving voltage. .
この重合体被膜の成膜方法としては、以下の方法がある
。As a method for forming this polymer film, there are the following methods.
(イ)次式
(式中のx、y、zは水素原子、ハロゲン原子、アルキ
ル基、アルコキシ基、水酸基、アシル基、アリル基、ビ
ニル基またはビニリデン基を示す)で表わされる4、4
’、4’−)リフェニルアミンまたはその誘導体を、電
極上に成膜し、ヨウ素や五フッ化アンチモン、五フッ化
ヒ素、酸化第二鉄などの酸化剤と反応させることにより
、重合し、電極上に固定する。(a) 4, 4 represented by the following formula (in the formula, x, y, and z represent a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, a hydroxyl group, an acyl group, an allyl group, a vinyl group, or a vinylidene group)
',4'-) Riphenylamine or its derivative is formed into a film on an electrode and polymerized by reacting with an oxidizing agent such as iodine, antimony pentafluoride, arsenic pentafluoride, or ferric oxide, Fix it on the electrode.
(ロ)前記モノマーを重合することにより、溶媒に可溶
なポリマーを合成し、このポリマーを電極上に成膜し、
(イ)と同様の酸化剤と反応させることにより架橋反応
を行なわせ、電極上に固定する。(b) Synthesize a polymer soluble in a solvent by polymerizing the monomer, and form a film of this polymer on an electrode,
A crosslinking reaction is performed by reacting with the same oxidizing agent as in (a), and it is fixed on the electrode.
(ハ)前記モノマー、あるいはこれらモノマーから合成
した、溶媒に可溶なポリマーを電界液に溶解し、電界重
合により電極上に重合する。(c) The monomers or a solvent-soluble polymer synthesized from these monomers are dissolved in an electrolyte and polymerized on the electrode by electropolymerization.
(ニ)前記モノマーのx、y、zとして、アリル基やビ
ニル基等の不飽和炭素を持つ誘導体を合成し、この誘導
体を電極上に成膜し、加熱または紫外線照射などにより
、重合反応を起こさせ、電極上に固定する。(d) As x, y, and z of the monomers, a derivative having unsaturated carbon such as an allyl group or a vinyl group is synthesized, this derivative is formed into a film on an electrode, and a polymerization reaction is caused by heating or ultraviolet irradiation. Raise it up and fix it on the electrode.
また、第2のエレクトロクロミック物質としての遷移金
属酸化物としては、例えばWO,、Nb、O,。Examples of the transition metal oxide as the second electrochromic substance include WO, Nb, and O.
CrzOi+ TazOs+ Ti1t、 FezO+
+ AgO等が挙げられる。CrzOi+ TazOs+ Tilt, FezO+
+AgO etc. are mentioned.
この発明の防眩ミラーは、一対の透明基板間に設ケられ
る第1のエレクトロクロミック物質層が共役系高分子膜
、第2のエレクトロクロミック物質層が遷移金属酸化物
膜で構成され、第1のエレクトロクロミック物質層の上
に多孔性反射層が形成される以外は、従来のミラーと同
様に作製することができる。In the anti-glare mirror of the present invention, the first electrochromic material layer provided between a pair of transparent substrates is composed of a conjugated polymer film, the second electrochromic material layer is composed of a transition metal oxide film, and the first It can be fabricated in the same manner as a conventional mirror, except that a porous reflective layer is formed on top of the electrochromic material layer.
第1図はこのようにして作製された、この発明の第1の
例の防眩ミラーを示す図で、5がITO(Indium
−Tin−Oxide)等の透明電極、1がガラス基板
等の透明基板、8がエポキシ系接着剤等のシール材、2
がポリトリフェニルアミン等の第1のエレクトロクコミ
ック物質層、3がパラジウム(Pd)薄膜等の多孔質反
射層、4が間1等の第2のエレクトロクロミック物質層
、6が1モル/ll LiClO4のプロピレンカーボ
ネート(PC)溶液である。FIG. 1 is a diagram showing an anti-glare mirror of the first example of the present invention manufactured in this manner, in which 5 is an ITO (Indium
1 is a transparent substrate such as a glass substrate, 8 is a sealing material such as an epoxy adhesive, 2
is a first electrochromic material layer such as polytriphenylamine, 3 is a porous reflective layer such as a palladium (Pd) thin film, 4 is a second electrochromic material layer such as 1, and 6 is 1 mol/l. A solution of LiClO4 in propylene carbonate (PC).
また第2図は、第2の例の防眩ミラーで、このミラーで
は図示するように更に第3電極9および第4電極10を
設け、夫々電源11を介して第1のエレクトロクロミン
ク物質層2および第2のエレクトロクロミック物質N4
に接続し別々に着消色させるようにしたもので、このよ
うにすると透過率のみを独立に変えることが可能である
。FIG. 2 shows a second example of an anti-glare mirror, in which a third electrode 9 and a fourth electrode 10 are further provided as shown in the figure, and the first electrochromic material layer is connected to the first electrochromic material layer via a power source 11, respectively. 2 and the second electrochromic substance N4
The light transmittance is connected to the light source and colored and erased separately.In this way, only the transmittance can be changed independently.
この発明においては上記多孔性反射層としては電気化学
的に安定であり、鏡面の得られるものであればどのよう
な材料でも使用可能であり、例えば白金(Pt)、パラ
ジウム(Pd)、金(^U)等がある。″また電界質と
しては、LiCl0a+ LiBF、、 LiPF、。In this invention, any material can be used as the porous reflective layer as long as it is electrochemically stable and can provide a mirror surface, such as platinum (Pt), palladium (Pd), gold ( ^U) etc. ``Also, as an electrolyte, LiCl0a+ LiBF, LiPF, etc.
XClO4,KBF41KPF0等のアルカリ金属塩を
溶解したアセトニトリル、プロピレンカーボネート、N
。Acetonitrile, propylene carbonate, N
.
N′−ジメチルフォルムアミド、水等の通常の溶媒ある
いは混合溶媒が用いられる。Common solvents or mixed solvents such as N'-dimethylformamide and water are used.
(実施例) 以下、この発明を実施例により説明する。(Example) This invention will be explained below with reference to Examples.
去mユ
次に示す方法により第1図に示すエレクトロクロミック
素子を作製した。EXAMPLE 1 The electrochromic device shown in FIG. 1 was prepared by the method shown below.
(イ)第1のエレクトロクロミンク物質層2として、4
.4′−ジクロロトリフェニルアミンからグリニャル反
応を用いて重合することにより得られた平均分子量が約
2,000のポリマーを15g/ lの濃度でクロロホ
ルムに溶解させた溶液を透明基板1の表面にスピンコー
ド (1,500rpm、 60秒)し、その後脱気し
た容器に入れ、次いでその容器の中をI2蒸気で満たし
、100℃で3時間加熱することによりポリトリフェニ
ルアミンの薄膜を得た。(a) As the first electrochromic material layer 2, 4
.. A solution in which a polymer having an average molecular weight of about 2,000 obtained by polymerizing 4'-dichlorotriphenylamine using a Grignard reaction was dissolved in chloroform at a concentration of 15 g/l was spun onto the surface of the transparent substrate 1. code (1,500 rpm, 60 seconds), then placed in a deaerated container, then the container was filled with I2 vapor and heated at 100° C. for 3 hours to obtain a thin film of polytriphenylamine.
(0)このようにして得たポリトリフェニルアミンの薄
膜の上に多孔質反射層3としてPdを500人の厚さで
蒸着により(基板加熱80℃、真空度5×10−sトル
(torr)、蒸着速度10八八ec)成膜した。(0) On the polytriphenylamine thin film thus obtained, Pd was deposited as a porous reflective layer 3 to a thickness of 500 mm (substrate heating 80°C, vacuum level 5 x 10-s torr). ), the deposition rate was 1088 ec).
(ハ)第2のエレクトロクロミンク物質層4として、透
明基板1上の通期電極5の上にWO,を4,000人の
厚さで蒸着により(基板加熱80℃、真空度5 X 1
0− ’ torr、蒸着速度10人/5ec)成膜し
た。(c) As the second electrochromic material layer 4, WO was vapor-deposited on the electrode 5 on the transparent substrate 1 to a thickness of 4,000 mm (substrate heating 80°C, vacuum degree 5 x 1).
The film was formed at a deposition rate of 10 persons/5 ec).
(ニ) (El)の基板のポリトリフェニルアミン側
に直径40μmのガラス玉をスペーサ7として約15個
/c1m2の割合で散布した。(d) Glass beads having a diameter of 40 μm were scattered as spacers 7 on the polytriphenylamine side of the substrate (El) at a rate of about 15 beads/cm 2 .
(ネ)(ハ)の基板の誓0.側の周辺に、電界質溶液の
注入口の部分を除いて、エポキシ系接着剤をスクリーン
印刷によるシール材8として塗布した。(N) (C) Board oath 0. An epoxy adhesive was applied as a sealing material 8 by screen printing around the sides, except for the area where the electrolyte solution was injected.
(へ) (ニ)及び(ネ)の基板をエレクトロクロミン
ク物質層が向かい合うように重ね合わせ、加圧しながら
接着剤を硬化させた。(f) The substrates of (d) and (f) were placed one on top of the other so that the electrochromic material layers faced each other, and the adhesive was cured while applying pressure.
()) (へ)で作製したセルの注入口(図示せず)
より電界質6として水分を添加した1moJ/j!Li
ClO4のプロピレンカーボネート溶液を液晶の注入法
に準じて注入した後、注入口をエポキシ系接着剤にて封
入し、約3%の水分を含む電界質層19を形成した。()) Inlet of the cell prepared in (f) (not shown)
1 moJ/j with water added as electrolyte 6! Li
After a propylene carbonate solution of ClO4 was injected according to a liquid crystal injection method, the injection port was sealed with an epoxy adhesive to form an electrolyte layer 19 containing about 3% water.
4.4′−ジクロロトリフェニルアミンをもとに得られ
た共役系高分子膜は、成膜した時点で還元状態でしかも
無色透明である為、成膜した時点で酸化状態でしかも無
色透明である一〇、と組合わせた場合、組み立てた時点
でハーフミラ−となる。4. The conjugated polymer film obtained based on 4'-dichlorotriphenylamine is in a reduced state and colorless and transparent when it is formed; therefore, it is in an oxidized state and is colorless and transparent when it is formed. When combined with item 10, it becomes a half mirror when assembled.
このミラーの酸化還元反応を調べるため、WOi側を対
向電極としてサイクリックボルタモダラムを印加電圧の
掃引速度を10mV/secで測定した結果を第8図に
示す。この場合の作用電極ポリトリフェニルアミン(1
02cm”)、対向電極WO,(102cm2)、電界
液1 mo j! / I LiCIO4/PC+ 3
%820である。In order to examine the redox reaction of this mirror, FIG. 8 shows the results of measurements made using a cyclic voltamodrum with the WOi side as the counter electrode at an applied voltage sweep rate of 10 mV/sec. The working electrode in this case is polytriphenylamine (1
02cm”), counter electrode WO, (102cm2), electrolyte 1 mo j! / I LiCIO4/PC+ 3
%820.
この素子は良好なエレクトロクコミック特性を示し、酸
化反応においてはほぼ1.3V[vs WO:+)で濃
紺に変色して反射率及び透過率が低下し、逆に還元する
とほぼ0.3 V (vs WOi)で無色にもどった
。This element exhibits good electrocomic properties; in an oxidation reaction, the color changes to dark blue and the reflectance and transmittance decrease at approximately 1.3 V [vs WO:+], and on the other hand, when reduced, it changes to approximately 0.3 V. (vs WOi) it returned to colorless.
またこのミラーのポリトリフェニルアミン側から見た場
合の注入電荷量と着色度(j!og(1/反射率〕ある
いはAog(1/透過率〕)との関係は、反射の場合と
透過の場合、それぞれ第9図と第10図に示したとおり
であり、反射率及び透過率可変ミラーとなることがわか
る。Also, the relationship between the amount of injected charge and the degree of coloring (j!og (1/reflectance) or Aog (1/transmittance)) when viewed from the polytriphenylamine side of this mirror is for reflection and transmission. The cases are as shown in FIGS. 9 and 10, respectively, and it can be seen that the reflectance and transmittance variable mirrors are obtained.
つまり、高反射状態においては、透過率も8%程度ある
為ミラーの後の景色も判別がつき、夜間においては反射
率を下げて後続車のヘッドライトに対して防眩効果も得
られるわけである。In other words, in a highly reflective state, the transmittance is about 8%, so the scenery behind the mirror can be distinguished, and at night, the reflectance is lowered to provide an anti-glare effect against the headlights of following cars. be.
更に、注入電荷量と着色度が比例する為、共役系高分子
膜の膜厚を変化させれば、それに応じて着色時の反射率
を変化させることがわかる。また、注入電荷量を制御す
ることにより、任意の反射率あるいは透過率を得ること
ができることもわかる。Furthermore, since the amount of charge injected is proportional to the degree of coloring, it can be seen that by changing the thickness of the conjugated polymer film, the reflectance during coloring can be changed accordingly. It can also be seen that by controlling the amount of charge injected, any desired reflectance or transmittance can be obtained.
叉旌開1
実施例1において4,4′−ジクロロトリフェニルアミ
ンを重合させて得られたポリマーの代りに、4.4′−
ジブロム−4#−メチルトリフェニルアミンを重合させ
て得られたポリマー(平均分子量約3.000)を用い
たところ、実施例1と同様のミラーが得られた。4.4'-Dichlorotriphenylamine was used instead of the polymer obtained by polymerizing 4,4'-dichlorotriphenylamine in Example 1.
A mirror similar to that of Example 1 was obtained by using a polymer obtained by polymerizing dibrome-4#-methyltriphenylamine (average molecular weight approximately 3.000).
ス崖拠ユ
実施例1において4,4′−ジクロロトIJ フェニル
アミンを重合させて得られたポリマーの代りに、4.4
′−ジブロム−4#−メトキシトリフェニルアミンを重
合させて得られたポリマー(平均分子量約5.000)
を用いたところ、同様のミラーが得られた。In Example 1, instead of the polymer obtained by polymerizing 4,4'-dichloroto IJ phenylamine, 4.4
Polymer obtained by polymerizing '-dibromo-4#-methoxytriphenylamine (average molecular weight approximately 5.000)
A similar mirror was obtained using
実1鉗1
実施例1において、Pd0代りにptを電子ビーム蒸着
して得られた多孔質反射層を用いたところ、同様のミラ
ーが得られた。なお、以上の実施例において、第2のエ
レクトロクロミック物質層側からの観察結果も第1のエ
レクトロクロミック物質層側からのものと同様であった
。Example 1 In Example 1, a similar mirror was obtained by using a porous reflective layer obtained by electron beam evaporation of PT instead of Pd0. In the above examples, the observation results from the second electrochromic material layer side were also the same as those from the first electrochromic material layer side.
尚、以上の説明において光可変物質はエレクトロクロミ
ック物質を例にあげて説明したが、液晶を用いても同様
の効果が得られる。In the above description, an electrochromic material was used as an example of the optically variable material, but the same effect can be obtained by using a liquid crystal.
上記の如く、この発明のミラーは十分実用性のあるもの
と思われた。As mentioned above, the mirror of this invention was considered to be sufficiently practical.
(発明の効果)
以上説明してきたように、この発明の防眩ミラーは、半
透過でしかも反射率及び透過率が可変なミラーとしたた
め、インサイドミラーによる死角を解消でき、また、夜
間においては自動防眩ミラーとしての役割りを果たすこ
ともできるという効果が得られる。(Effects of the Invention) As explained above, the anti-glare mirror of the present invention is a semi-transmissive mirror with variable reflectance and transmittance, so it can eliminate the blind spot caused by inside mirrors, and it can be used automatically at night. The effect is that it can also function as an anti-glare mirror.
第1図および第2図は夫々この発明のエレクトロクロミ
ック防眩ミラーの断面図、
第3図は従来の防眩インサイドミラーの斜視図、第4図
は第3図の防眩ミラーの断面図、第5図は液晶素子の断
面図、
第6図および第7図は自動車に設置したインサイドミラ
ーによる死角の説明図、
第8図は第1図の素子の電気化学的特性を示すサイクリ
ックポルタモグラム線図、
第9図は第1図の素子の探射率と印加電荷量との関係を
示す線図、
第10図は第1図の素子の透過率と印加電荷量との関係
を示す線図である。
1・・・透明基板
2・・・第1のエレクトロクロミック物質層3・・・多
孔質反射層
4・・・第2のエレクトロクロミック物質層5・・・透
明電極 6・・・電界質7・・・スペーサ
8・・・シール材9・・・第3電極 1
0・・・第4を極11・・・電源 12・
・・光センサ−13・・・スイッチ 14・・
・ミラーハウジング15・・・ステー 16
・・・液晶防眩ミラー17・・・回路基板 1
8・・・ピボット19・・・反射電極 20・
・・基板21・・・液晶 22・・・イン
サイドミラー23・・・死角
特許出願人 日産自動車株式会社
第1図
第2図
第3図
第4図
2−f
第5図
第6図
第7図
第9図1 and 2 are respectively sectional views of the electrochromic anti-glare mirror of the present invention, FIG. 3 is a perspective view of a conventional anti-glare inside mirror, and FIG. 4 is a sectional view of the anti-glare mirror of FIG. Figure 5 is a cross-sectional view of a liquid crystal element, Figures 6 and 7 are illustrations of blind spots caused by an inside mirror installed in a car, and Figure 8 is a cyclic portameter showing the electrochemical characteristics of the element in Figure 1. gram diagram, Figure 9 is a diagram showing the relationship between the transmissivity of the element in Figure 1 and the amount of applied charge, Figure 10 is a diagram showing the relationship between the transmittance of the element in Figure 1 and the amount of applied charge. It is a line diagram. 1... Transparent substrate 2... First electrochromic material layer 3... Porous reflective layer 4... Second electrochromic material layer 5... Transparent electrode 6... Electrolyte 7. ··Spacer
8...Sealing material 9...Third electrode 1
0...4th pole 11...power supply 12.
...Light sensor-13...Switch 14...
・Mirror housing 15...stay 16
...Liquid crystal anti-glare mirror 17...Circuit board 1
8... Pivot 19... Reflective electrode 20.
...Substrate 21...Liquid crystal 22...Inside mirror 23...Blind spot patent applicant Nissan Motor Co., Ltd.Figure 1Figure 2Figure 3Figure 4Figure 4 2-f Figure 5Figure 6Figure 7 Figure 9
Claims (1)
電圧により光透過率の変わる光透過率可変物質と、該光
透過率可変物質に電圧を印加する透明電極と、光を半透
過する多孔質層を有する防眩ミラー。1. A pair of transparent substrates, a variable light transmittance material held between the transparent substrates whose light transmittance changes depending on an applied voltage, a transparent electrode that applies voltage to the variable light transmittance material, and a transparent electrode that semi-transmits light. Anti-glare mirror with a porous layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15631686A JPS6313022A (en) | 1986-07-04 | 1986-07-04 | Antidazzle mirror |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15631686A JPS6313022A (en) | 1986-07-04 | 1986-07-04 | Antidazzle mirror |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6313022A true JPS6313022A (en) | 1988-01-20 |
Family
ID=15625135
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15631686A Pending JPS6313022A (en) | 1986-07-04 | 1986-07-04 | Antidazzle mirror |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6313022A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000506629A (en) * | 1996-03-15 | 2000-05-30 | エコール ポリテクニーク フェデラル ドゥ ローザンヌ | Electrochromic or photoelectrochromic devices |
JP2017111207A (en) * | 2015-12-14 | 2017-06-22 | 株式会社リコー | Electrochromic device and method of manufacturing the same |
-
1986
- 1986-07-04 JP JP15631686A patent/JPS6313022A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000506629A (en) * | 1996-03-15 | 2000-05-30 | エコール ポリテクニーク フェデラル ドゥ ローザンヌ | Electrochromic or photoelectrochromic devices |
JP2007072473A (en) * | 1996-03-15 | 2007-03-22 | Ecole Polytechnique Federale De Lausanne | Electrochromic or photoelectrochromic equipment |
JP2017111207A (en) * | 2015-12-14 | 2017-06-22 | 株式会社リコー | Electrochromic device and method of manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6237247A (en) | Nonglaring mirror | |
US5729379A (en) | Electrochromic devices | |
US4671619A (en) | Electro-optic device | |
US5989717A (en) | Electrochromic devices with improved processability and methods of preparing the same | |
US6178034B1 (en) | Electrochromic devices | |
JP3942764B2 (en) | Electrochromic devices based on poly- (3,4-dioxy-thiophene) derivatives | |
JP3752010B2 (en) | Light control element | |
US6327070B1 (en) | Electrochromic assembly based on poly(3,4-ethylenedioxythiophene) derivatives in combination with a lithium niobate counterelectrode | |
US6246505B1 (en) | Photochromic devices | |
US4832467A (en) | Electrochromic variable color tone nonglaring mirror | |
JP4759139B2 (en) | Devices based on poly- (3,4-dioxythiophene) derivatives that are electrochromically switched by protons | |
JP2000002897A (en) | Electrochromic assembly based on poly(3,4-ethylene dioxythiophene) derivative in electrochromic layer and ion storage layer | |
JPH1138454A (en) | Electrochromic mirror | |
US6285486B1 (en) | Electrochromic mirror and electrochromic devices | |
US6532098B1 (en) | Electrochromic element | |
US20030161025A1 (en) | Electrochromic device | |
JPS6313022A (en) | Antidazzle mirror | |
JP2003149686A (en) | Semi-transmissive variable transmittance element | |
JP5526887B2 (en) | Electrochromic display device | |
JP4227716B2 (en) | Electrochromic element | |
US6538792B1 (en) | Electrochromic device | |
WO1996013754A1 (en) | Electrochromic devices and methods of preparation | |
Cui et al. | All‐solid‐state complementary electrochromic windows based on the oxymethylene‐linked polyoxyethylene complexed with LiClO4 | |
JP2001188261A (en) | Electrochromic element | |
Kamimori et al. | Electrochromic devices for transmissive and reflective light control |