[go: up one dir, main page]

JPS63129987A - Enzymatic reaction process - Google Patents

Enzymatic reaction process

Info

Publication number
JPS63129987A
JPS63129987A JP27589686A JP27589686A JPS63129987A JP S63129987 A JPS63129987 A JP S63129987A JP 27589686 A JP27589686 A JP 27589686A JP 27589686 A JP27589686 A JP 27589686A JP S63129987 A JPS63129987 A JP S63129987A
Authority
JP
Japan
Prior art keywords
membrane
water
enzyme
substrate
immobilized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27589686A
Other languages
Japanese (ja)
Inventor
Hiroko Sahashi
佐橋 裕子
Takeshi Hibino
健 日比野
Takeshi Okada
猛 岡田
Hirotoshi Ishizuka
浩敏 石塚
Masaaki Ito
雅章 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Electric Industrial Co Ltd filed Critical Nitto Electric Industrial Co Ltd
Priority to JP27589686A priority Critical patent/JPS63129987A/en
Publication of JPS63129987A publication Critical patent/JPS63129987A/en
Pending legal-status Critical Current

Links

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:To suppress the deposition of a water-insoluble substrate on or in a membrane, by contacting the substrate with a water-insoluble carrier having immobilized enzyme in water to convert the substrate to a solubilized substrate and passing a filtrate containing the solubilized substrate through an ultrafiltration membrane having immobilized enzyme. CONSTITUTION:Water-insoluble substrate is mixed and contacted with a water- insoluble carrier having immobilized enzyme in water and the produced solubilized substrate is filtered. The filtrate containing the solubilized substrate is passed through a ultrafiltration membrane having immobilized enzyme to effect enzymatic reaction. The water-insoluble carrier is preferably polymer particles having an average particle diameter of 0.03-2Xm and dispersed in water. The filtration of the solubilized substrate is preferably carried out by using a precision filter membrane such as polypropylene membrane, polysulfone membrane, etc. The ultrafiltration membrane is preferably polysulfone membrane, polyamide membrane, polyimide membrane, etc.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は酵素反応方法に関するものであり、詳しくは、
酵素固定した限外濾過膜を用いて水不溶性基質から反応
生成物を得るための酵素反応方法に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to an enzyme reaction method, and in detail,
This invention relates to an enzyme reaction method for obtaining a reaction product from a water-insoluble substrate using an enzyme-immobilized ultrafiltration membrane.

〈従来の技術〉 酵素反応を利用した工業的な規梗での実施は医薬品、食
品などの製造において一部行われているが、そのほとん
どは水溶液中で酵素と基質を反応させて生成物を得るも
のであり、反応後における生成物と酵素の分離、反応後
の活性な酵素の回収など非常に困難な問題が多く存在し
ている。
<Prior art> Although some industrial processes using enzymatic reactions are carried out in the production of pharmaceuticals and foods, most of them involve reacting enzymes and substrates in aqueous solutions to produce products. However, there are many difficult problems such as separation of the enzyme from the product after the reaction and recovery of the active enzyme after the reaction.

このような問題を解決するために、担体結合法や架橋法
、包括法等の手法によって酵素を固定した、所謂固定化
酵素の開発や利用が近年試みられている。
In order to solve these problems, attempts have been made in recent years to develop and utilize so-called immobilized enzymes in which enzymes are immobilized by methods such as carrier binding, crosslinking, and entrapping methods.

しかし、上記手法による固定化酵素は通常、基?7溶液
との混合による接触にて酵素反応させるので、酵素反応
終了後の固定化酵素の回収は溶液状態で反応させる従来
法よりも容易となるが、分離操作を別工程として反応後
に行う必要がある。
However, immobilized enzymes using the above method are usually based on Since the enzymatic reaction is carried out through contact with the 7 solution, recovery of the immobilized enzyme after the enzymatic reaction is easier than in the conventional method of reacting in a solution state, but the separation operation must be performed as a separate step after the reaction. be.

そこで、本発明者らは酵素反応を行うと同時に、反応生
成物と基質の分離を行える機能を有する固定化酵素とし
て、限外濾過膜のような選択性透過膜に酵素を固定した
酵素固定膜を既に提案している(特願昭60−2254
35号公報)。
Therefore, the present inventors developed an enzyme-immobilized membrane in which an enzyme is immobilized on a selectively permeable membrane such as an ultrafiltration membrane as an immobilized enzyme that has the function of performing an enzyme reaction and separating the reaction product and substrate at the same time. has already been proposed (patent application No. 60-2254)
Publication No. 35).

〈発明が解決しようとする問題点〉 ところが、このように膜を利用した酵素固定Diは酵素
反応と反応生成物の分離が同時に行え、且つ連続操作に
よる反応が可能であるという利点を有する反面、上記反
応等は適度な加圧条件下で原液を選択性透過膜に供給す
ることによって行うので、水不溶性基質が原液中に存在
する場合、経時的に該透過膜の膜面、膜中に基質が付着
して透過液量の減少や反応効率の低下を起こす場合があ
った。
<Problems to be Solved by the Invention> However, while enzyme-immobilized Di using a membrane in this way has the advantage that the enzyme reaction and separation of the reaction products can be performed simultaneously, and the reaction can be performed in continuous operation, The above reactions are carried out by supplying the stock solution to the selectively permeable membrane under moderately pressurized conditions, so if a water-insoluble substrate is present in the stock solution, the surface of the permeable membrane and the substrate inside the membrane will change over time. In some cases, the amount of permeated liquid may be reduced or the reaction efficiency may be reduced.

〈問題点を解決するための手段〉 本発明者らは、上記問題点を解決すべく鋭意検討を重ね
た結果、水不溶性基質を、酵素固定した限外濾過膜にて
酵素反応させるに際し、水不溶性基質を酵素固定した水
不溶性担体と水中にて接触させて該基質を可溶化廿しめ
たのち、可溶分を濾過する前工程を行い、得られた濾液
を前記限外)[づ過膜へ供給することによって、限外濾
過膜に基質が付着して透過液量が経時的に減少すること
もなく、また長時間に亘って酵素活性および反応効率を
高く維持できることを見い出し、本発明に至ったもので
ある。
<Means for Solving the Problems> As a result of intensive studies to solve the above problems, the present inventors have found that when a water-insoluble substrate is subjected to an enzymatic reaction using an enzyme-immobilized ultrafiltration membrane, water After the insoluble substrate is brought into contact with the enzyme-immobilized water-insoluble carrier in water to solubilize the substrate, a preliminary step of filtering the soluble content is performed, and the obtained filtrate is filtered through the above-mentioned limit) [filter membrane]. We have discovered that by supplying ultrafiltration membranes to ultrafiltration membranes, the amount of permeate does not decrease over time due to substrate attachment to the ultrafiltration membrane, and enzyme activity and reaction efficiency can be maintained at high levels over a long period of time. This is what we have come to.

即ち、本発明の酵素反応方法は、水不溶性基質を、酵素
固定した水不溶性担体と水中にて混合、接触させて可溶
化基質に変換せしめ、得られた可溶化基質を濾過する工
程と、前記工程による可溶化基質を含む濾液を酵素固定
した限外濾過膜に通液して酵素反応を行なう工程を含む
ことを特徴とするものである。
That is, the enzyme reaction method of the present invention includes the steps of mixing and contacting a water-insoluble substrate with an enzyme-immobilized water-insoluble carrier in water to convert it into a solubilized substrate, and filtering the obtained solubilized substrate; This method is characterized by including a step of passing the filtrate containing the solubilized substrate from the step through an enzyme-immobilized ultrafiltration membrane to perform an enzyme reaction.

本発明において酵素を固定するための水不溶性担体は、
水不溶性基質との酵素反応終了後に、可溶化された基質
と固定化された酵素との分離を濾過操作によって簡単に
行うためのものであり、実質的に水不溶性のものである
。このような担体としては、例えば共存結合法に用いる
ポリアクリルアミド誘導体、多孔性ガラス、イミドカル
ボナート誘導体、カルボキシメチルセルロース、ブロモ
アセチルセルロースなど、イオン結合法に用いるイオン
交換基を有する物質など、物理吸着法に用いる活性炭、
アルミナ、シリカゲル、ケイ藻土など、包括法に用いる
ポリアクリルアミドゲル、に−カラギーナン、セルロー
ス誘導体などが利用できるが、酵素を固定できるもので
あれば特に限定されるものでなく、また、形状もフィル
ム状、粒状、粉末状、繊維状、フロック状など任意に選
択することができる。
In the present invention, the water-insoluble carrier for immobilizing the enzyme is
After the enzyme reaction with the water-insoluble substrate is completed, the solubilized substrate and the immobilized enzyme can be easily separated by a filtration operation, and are substantially water-insoluble. Such carriers include, for example, polyacrylamide derivatives used in the coexistence bonding method, porous glass, imidocarbonate derivatives, carboxymethyl cellulose, bromoacetyl cellulose, and other substances with ion exchange groups used in the ion bonding method. activated carbon used for
Alumina, silica gel, diatomaceous earth, polyacrylamide gel used in the entrapment method, carrageenan, cellulose derivatives, etc. can be used, but there are no particular limitations as long as they can immobilize the enzyme, and the shape can also be a film. It can be arbitrarily selected from shapes such as shape, granule, powder, fiber, and flock.

上記水不溶性担体のうち、酵素反応させる水不溶性基質
との親和性が高く、固定化する酵素量を多くできるとい
う点から、水分散型高分子粒子を用いることが好ましい
。このような水分散型高分子粒子はポリ (メタ)アク
リル酸エステル、ポリスチレン、ポリ酢酸ビニルおよび
そのけん化物の如き高分子を水中に乳化、分散して微粒
子状態にするか、スチレンおよびその誘導体、(メタ)
アクリル酸エステルおよびその誘4体、(メタ)アクリ
ル酸、(メタ)アクリロニトリル、(メタ)アクリルア
ミド、酢酸ビニルおよびそのけん化物の如き単品体の一
種以上を乳化重合することによって得ることができる。
Among the above-mentioned water-insoluble carriers, it is preferable to use water-dispersed polymer particles because they have a high affinity with the water-insoluble substrate to be subjected to the enzyme reaction and can increase the amount of enzyme to be immobilized. Such water-dispersible polymer particles can be made by emulsifying and dispersing polymers such as poly(meth)acrylic acid ester, polystyrene, polyvinyl acetate, and their saponified products in water to form fine particles, or by emulsifying and dispersing polymers such as poly(meth)acrylic acid ester, polystyrene, polyvinyl acetate, and their saponified products in water, or by emulsifying and dispersing polymers such as styrene and its derivatives, (meta)
It can be obtained by emulsion polymerization of one or more single substances such as acrylic esters and derivatives thereof, (meth)acrylic acid, (meth)acrylonitrile, (meth)acrylamide, vinyl acetate, and saponified products thereof.

このような水分散型高分子粒子は非常に微細な状態で水
中に分散しているが、その好ましい平均粒径は0.03
〜2μm、さらに好ましくはo、 t −iμmの範囲
である。0.03μm未満の粒径では該粒子を担体とす
る固定化酵素を酵素反応に使用すると、反応終了後の固
定化酵素の濾別回収が困難になることがあり、2μmを
超える粒径では単位体積当りの粒子表面積が小さくなり
、酵素の固定化量が少なくなると共に、水分散性が悪く
なり酵素反応を有効に行い難くなる。
Such water-dispersible polymer particles are dispersed in water in a very fine state, and the preferred average particle size is 0.03.
~2μm, more preferably o,t-iμm. If the particle size is less than 0.03 μm, if the immobilized enzyme is used as a carrier for an enzyme reaction, it may be difficult to collect the immobilized enzyme by filtration after the reaction is completed, and if the particle size is more than 2 μm, the unit The particle surface area per volume decreases, the amount of enzyme immobilized decreases, and water dispersibility deteriorates, making it difficult to carry out enzyme reactions effectively.

上記水不溶性担体に固定化する酵素は、水不溶性基質を
分解して可溶化基質とする作用を有するものであり、エ
ンド型加水分解酵素が好適に用いられる。これらの酵素
としては、例えばα−アミラーゼ、セルラーゼ、ペクチ
ナーゼ、ムラミダーゼの如き多IJ!類加水分解酵素、
パパイン、ブロメライン、ペプシン、トリプシン、キモ
トリプシンの如き蛋白質加水分解酵素、その他リパーゼ
、ヌクレアーゼなどが挙げられる。これらの酵素の固定
化量は担体の形状や、大きさ、また酵素活性等により適
宜決定することができるが、通常担体1g当り1〜20
0nw程度にすることが好ましい。
The enzyme to be immobilized on the water-insoluble carrier has the function of decomposing a water-insoluble substrate to make it a solubilized substrate, and an endo-type hydrolase is preferably used. These enzymes include multiple IJ enzymes such as α-amylase, cellulase, pectinase, and muramidase. hydrolytic enzymes,
Examples include protein hydrolases such as papain, bromelain, pepsin, trypsin, and chymotrypsin, as well as other lipases and nucleases. The amount of these enzymes immobilized can be appropriately determined depending on the shape and size of the carrier, enzyme activity, etc., but is usually 1 to 20 per gram of carrier.
It is preferable to set it to about 0 nw.

なお、担体として水分散型高分子粒子を使用する場合は
、担体1g当り10〜lOO■の範囲に設定することが
反応効率の面より望ましいものである。
In addition, when water-dispersed polymer particles are used as a carrier, it is preferable to set the amount in the range of 10 to 100.2 cm per 1 g of carrier from the viewpoint of reaction efficiency.

水不溶性担体に上記酵素を固定化する方法としては公知
の固定化方法を用いることができるが、長期間に亘って
固定化する酵素の活性を維持さげるためには、カルボキ
シル基、アミノ基、ヒドロキシル基、水酸基の如き官能
基を有する担体、例えば(メタ)アクリル酸共重合体、
スチレンと上記官能基含有モノマーとの共重合体、酢酸
ビニルと上記官能基含有上ツマ−との共重合体およびそ
のけん化物に、ε−アミノカプロン酸、ヘキサメチレン
ジアミン、ヒドロキシルアミン、アジピン酸、ポリエヂ
レンイミンの如き水溶性の化合物をスペーサーとして共
有結合させ、該化合物に共有結合にて酵素を結合するこ
とが好ましい。また、水分散型高分子粒子への酵素の固
定化方法については、特公昭60−12033号公報に
記載の方法を採用することができる。
Known immobilization methods can be used to immobilize the above enzyme on a water-insoluble carrier, but in order to maintain and reduce the activity of the enzyme to be immobilized over a long period of time, it is necessary to a carrier having a functional group such as a group or a hydroxyl group, such as a (meth)acrylic acid copolymer,
A copolymer of styrene and the above functional group-containing monomer, a copolymer of vinyl acetate and the above functional group-containing monomer, and a saponified product thereof, ε-aminocaproic acid, hexamethylene diamine, hydroxylamine, adipic acid, polyester, etc. Preferably, a water-soluble compound such as edylenimine is covalently bonded as a spacer, and the enzyme is covalently bonded to the compound. Furthermore, as for the method of immobilizing enzymes on water-dispersed polymer particles, the method described in Japanese Patent Publication No. 12033/1988 can be adopted.

本発明の反応方法では上記酵素固定した水不溶性担体と
、デンプン、高分子蛋白質、脂質の如き水不溶性基質と
を、水中にて混合、接触させて酵素反応を行うが、通常
30〜60℃の温度で1〜3時間反応させ、反応終了後
に可溶化された基質を濾過し、濾液を後述する酵素固定
した限外濾過膜へ原液として供給する。この濾過手段と
しては少なくとも担体に固定された固定化酵素を透過さ
せないものであれば、その材質や孔径に制限はないが、
可溶化基質のみを濾液中に得る場合や、水分散型高分子
粒子のような微粒子を担体とした固定化酵素を用いる場
合には精密濾過膜を使用することが好ましい。
In the reaction method of the present invention, the enzyme-immobilized water-insoluble carrier and a water-insoluble substrate such as starch, high-molecular protein, or lipid are mixed in water and brought into contact to carry out the enzymatic reaction. The reaction is carried out at a temperature of 1 to 3 hours, and after the completion of the reaction, the solubilized substrate is filtered, and the filtrate is supplied as a stock solution to an enzyme-immobilized ultrafiltration membrane, which will be described later. There are no restrictions on the material or pore size of this filtration means, as long as it does not allow at least the immobilized enzyme immobilized on the carrier to pass through.
It is preferable to use a microfiltration membrane when only the solubilized substrate is obtained in the filtrate or when using an immobilized enzyme using fine particles such as water-dispersed polymer particles as a carrier.

このような精密濾過膜としては孔径が0.05〜2μm
、特に0.1〜1μmの孔径を有するものが濾別性能の
点で好ましく、また耐熱性の点からポリプロピレン膜、
ポリスルホン膜、ポリテトラフルオロエチレン膜を用い
ることが好ましい。
Such a precision filtration membrane has a pore diameter of 0.05 to 2 μm.
In particular, those having a pore size of 0.1 to 1 μm are preferable from the viewpoint of filtration performance, and from the viewpoint of heat resistance, polypropylene membranes,
It is preferable to use a polysulfone membrane or a polytetrafluoroethylene membrane.

本発明において水不溶性基質は上述のように可溶化され
たのち、可溶化基質が濾過される。可溶化基質を含有す
る濾液は酵素を固定化した限外濾過膜に原液として供給
され、酵素反応を受けたのち、透過液中に目的とする最
終生成物を得ることができる。
In the present invention, the water-insoluble substrate is solubilized as described above, and then the solubilized substrate is filtered. The filtrate containing the solubilized substrate is supplied as a stock solution to an ultrafiltration membrane on which an enzyme is immobilized, and after undergoing an enzyme reaction, the desired final product can be obtained in the permeate.

本発明において用いる限外濾過膜は、緻密層と多孔質層
とからなる異方性膜であり、酵素を多孔質層内に固定す
るものである。可溶性基質を含む原液(前工程による濾
液)は多孔質層側から限外濾過膜に供給、通液され、酵
素反応を受けたのち選択分離性を有する緻密層を経て最
終生成物のみが透過液として取り出されるものである。
The ultrafiltration membrane used in the present invention is an anisotropic membrane consisting of a dense layer and a porous layer, and the enzyme is fixed within the porous layer. The stock solution containing the soluble substrate (filtrate from the previous step) is supplied to the ultrafiltration membrane from the porous layer side, passed through it, subjected to an enzymatic reaction, and then passed through a dense layer with selective separation, where only the final product is filtered out as the permeated liquid. It is extracted as follows.

このような限外濾過膜における緻密層の分画分子量は1
000〜toooooo、好ましくは5000〜500
00の範囲で、多孔質層の孔径を0.1〜1100II
、好ましくは0.5〜5011mの範囲に調整すること
が分画性や透過流束の維持の点から好ましいものである
The molecular weight cutoff of the dense layer in such an ultrafiltration membrane is 1
000-toooooo, preferably 5000-500
The pore diameter of the porous layer is in the range of 0.1 to 1100 II.
, preferably adjusted to a range of 0.5 to 5011 m from the viewpoint of maintaining fractionation and permeation flux.

なお、本発明における分画分子量は、異なった分子量の
デキストランを用いて1.0 kg/ cJ、25℃の
条件下で透過液中のデキストランを示差屈折計にて定量
し、デキストラン阻止率が90%のときの分画分子量の
値である。
In addition, the molecular weight cutoff in the present invention is determined by quantifying dextran in the permeate using a differential refractometer under the conditions of 1.0 kg/cJ and 25°C using dextrans with different molecular weights, and the dextran rejection rate is 90. It is the value of the molecular weight cut-off in %.

限外濾過膜の膜材質としては、分画分子量の厳格さ、耐
熱性、機械的強度などの総合的な見地からポリスルホン
、ポリアミド、ポリイミドが好適であり、その形状は平
板状、管状、中空糸状など酵素反応装置に応して形状は
任意に選択することができる。好ましくは、有効膜面積
を大きくし、固定化された酵素と基質との接触を多くす
るために中空糸状膜とすることが望ましい。
Polysulfone, polyamide, and polyimide are suitable as membrane materials for ultrafiltration membranes from comprehensive viewpoints such as strict molecular weight cutoff, heat resistance, and mechanical strength, and their shapes can be flat, tubular, or hollow fiber. The shape can be arbitrarily selected depending on the enzyme reaction device. Preferably, a hollow fiber membrane is used in order to increase the effective membrane area and increase the contact between the immobilized enzyme and the substrate.

上記限外濾過膜に固定する酵素としては、担体の種tr
4や目的とする最終生成物に応じて選択され、効率よく
水不溶性基質から最終生成物を得るためには、例えばエ
キソ型加水分解酵素または異性化酵素、転移酵素などを
使用することが好ましい。
As the enzyme immobilized on the ultrafiltration membrane, the carrier species tr
4 and the desired final product, and in order to efficiently obtain the final product from a water-insoluble substrate, it is preferable to use, for example, exo-type hydrolase, isomerase, transferase, or the like.

具体的にはβ−アミラーゼ、グルコアミラーゼ、β−グ
ルコシダーゼ、β−ガラクトシダーゼ、インへルターゼ
、メリビアーゼの如き糖加水分解酵素、グルコースイソ
メラーゼの如き異性化酵素、トランスアミラーゼの如き
転移酵素が挙げられ、その他制限酵素なども固定するこ
とができる。なお、前記水不溶性担体に固定化された酵
素と同種のものを用いてよい。また、これらの酵素の固
定化量は有効膜面積および固定化方法により調節可能で
あって、使用する酵素や基質によっても異なるが、Jl
!2 lc++I当り酵素蛋白量で0.1〜3.5■と
することが反応効率の面から望ましいものである。
Specific examples include glycohydrolase such as β-amylase, glucoamylase, β-glucosidase, β-galactosidase, inherutase, melibiase, isomerase such as glucose isomerase, transferase such as transamylase, and others. Restriction enzymes and the like can also be immobilized. Note that enzymes of the same type as those immobilized on the water-insoluble carrier may be used. Furthermore, the amount of these enzymes immobilized can be adjusted by the effective membrane area and the immobilization method, and varies depending on the enzyme and substrate used.
! From the viewpoint of reaction efficiency, it is desirable that the amount of enzyme protein be 0.1 to 3.5 cm per 2 lc++I.

限外濾過膜への酵素の固定化方法としては、酵素活性を
安定に維持し、さらに酵素反応の効率を高めるという点
から、官能基を有する水溶性高分子、例えばポリビニル
アルコール−ポリビニルアミン共重合体、ポリエチレン
イミン、ポリビニルアルコール、ポリアクリル酸などを
スペーサーとして介在させた共有結合法が好ましく、例
えば特願昭60−225435号公報に記載された方法
を採用することができる。
As a method for immobilizing enzymes on ultrafiltration membranes, water-soluble polymers having functional groups, such as polyvinyl alcohol-polyvinylamine copolymers, are used to stably maintain enzyme activity and further increase the efficiency of enzyme reactions. A covalent bonding method using a spacer such as coalescence, polyethyleneimine, polyvinyl alcohol, or polyacrylic acid is preferred, and for example, the method described in Japanese Patent Application No. 60-225435 can be employed.

本発明は上記したような2段階の工程を経る酵素反応方
法によって目的とする最終生成物を透過液中に得ること
ができるが、原液を限外濾過膜へ供給する際に水不溶性
基質が充分に可溶化されていない場合は、水不溶性担体
に酵素固定した固定化酵素による酵素反応をさらに行い
、充分に可溶化したのちに酵素固定した限外濾過膜へ濾
液を供給するなど、上記2段階工程のみに限らず本発明
では多段階工程での酵素反応をも含むものである。
In the present invention, the desired final product can be obtained in the permeate through the two-step enzymatic reaction method described above. If the enzyme is not solubilized by the enzyme, the enzyme is immobilized on a water-insoluble carrier, and the enzyme reaction is further carried out, and after sufficient solubilization, the filtrate is supplied to the ultrafiltration membrane on which the enzyme is immobilized. The present invention is not limited to only one step, but also includes an enzymatic reaction in a multi-step process.

〈発明の効果〉 以上のように、本発明の酵素反応方法は水不溶性基質を
、酵素固定した水不溶性担体と混合、接触させて酵素反
応を行い、該基質を可溶化せしめたのち濾過し、得られ
た濾液を酵素固定した限外濾過膜へ供給してさらに酵素
反応を行うものであるので、水不溶性基質を直接、酵素
固定した限外濾過膜へ供給して酵素反応を行う場合に比
べ、基質の膜面や膜内への付着が非常に少なくなり、透
過液流¥の低下を防止でき、且つ酵素活性の維持、反応
効率の低下が抑制できるものである。従って、長時間に
亘って効率よく水不溶性基質から反応生成物を得ること
ができるのである。
<Effects of the Invention> As described above, the enzyme reaction method of the present invention performs an enzyme reaction by mixing and contacting a water-insoluble substrate with an enzyme-immobilized water-insoluble carrier, solubilizing the substrate, and then filtering it. The resulting filtrate is supplied to an enzyme-immobilized ultrafiltration membrane for further enzymatic reaction, compared to the case where a water-insoluble substrate is directly supplied to an enzyme-immobilized ultrafiltration membrane for enzymatic reaction. , the adhesion of the substrate to the membrane surface and inside the membrane is extremely reduced, the permeate flow can be prevented from decreasing, the enzyme activity can be maintained, and the decrease in reaction efficiency can be suppressed. Therefore, a reaction product can be efficiently obtained from a water-insoluble substrate over a long period of time.

〈実施例〉 以下に本発明の実施例を示し、さらに詳しく説明するが
、本発明の技術的思想を逸脱しない範囲で種々の応用が
可能である。
<Examples> Examples of the present invention will be shown below and explained in more detail, but various applications are possible without departing from the technical idea of the present invention.

実施例1 (aI 和腫型高分子粒子の調製およびM七至N定化ア
クリル酸3g、スチレン50g1アクリロニトリル20
g、ジビニルヘンゼン2gからなる単噴体混合物を乳化
共重合し、平均粒径0.38μmの水分散型高分子粒子
の水分散液を得た。
Example 1 (aI Preparation of Wama-type polymer particles and M7 to N-densified acrylic acid 3 g, styrene 50 g 1 acrylonitrile 20
A monomer mixture consisting of 1 g and 2 g of divinylhenzene was emulsion copolymerized to obtain an aqueous dispersion of water-dispersible polymer particles with an average particle size of 0.38 μm.

得られた分散液(固形分重量7g)に、1−シクロへキ
シル−3−(モルホリノエチル)カルボジイミド0.5
gを加え、p !15.0に調整後、α−アミラーゼ5
00mgをさらに添加して攪拌しながら、5℃にて24
時間反応させてα−アミラーゼを固定化し固定化酵素を
得た。
0.5 of 1-cyclohexyl-3-(morpholinoethyl)carbodiimide was added to the obtained dispersion (solid content weight 7 g).
Add g, p! After adjusting to 15.0, α-amylase 5
00 mg was further added and the mixture was heated at 5°C for 24 hours with stirring.
The α-amylase was immobilized by a time reaction to obtain an immobilized enzyme.

固定化酵素のα−アミラーゼの固定化量は水分散型高分
子粒子1g当り52n+gであった。
The amount of α-amylase immobilized was 52n+g per gram of water-dispersed polymer particles.

(b)限外濾過膜への酵素の固定囮 ポリスルホン製限外濾過nり用中空糸状膜(日東電工■
製、NTU−3250)の小型モジュール(2φX20
CIB、57本人り、膜面積275cJ)の多孔質層側
から、0.1重量%のポリエチレンイミン水溶液を0.
3 kg / cal加圧下、1時間通液し、ポリエチ
レンイミンを多孔質層内に物理吸着させた。次に、0.
1重量%のグルタルアルデヒド溶液(p H7,0りん
酸緩衝液)を0.3 kg / crA加圧下、40℃
で4時間通液し、吸着されているポリエチレンイミンを
架橋した。さらに、室温下で逆洗浄し未架橋のポリエチ
レンイミンを除去後、再び多孔質層側から2.5重量%
のグルタルアルデヒド溶液(p I−17,0りん酸緩
衝液)を0.3 kg / cIIl加圧下、40℃で
4時間通液し、ポリエチレンイミンのアミノ基を活性化
した。そののち、0.3kg/cnl加圧下にて1.0
■/m+のグルコアミラーゼ溶液(pi(6,0酢酸緩
衝液)を4℃で18時間通液し、共有結合による酵素の
固定化を行った。
(b) Immobilization of enzyme on ultrafiltration membrane Decoy polysulfone hollow fiber membrane for ultrafiltration (Nitto Denko ■
NTU-3250) small module (2φX20
0.1% by weight polyethyleneimine aqueous solution was poured into the porous layer side of CIB, 57 pieces, membrane area 275cJ).
The solution was passed under a pressure of 3 kg/cal for 1 hour to physically adsorb polyethyleneimine into the porous layer. Next, 0.
A 1% by weight glutaraldehyde solution (pH 7,0 phosphate buffer) was added at 0.3 kg/crA at 40°C.
The solution was passed for 4 hours to crosslink the adsorbed polyethyleneimine. Furthermore, after backwashing at room temperature to remove uncrosslinked polyethyleneimine, 2.5% by weight was added from the porous layer side again.
A glutaraldehyde solution (p I-17,0 phosphate buffer) was passed under a pressure of 0.3 kg/cIIl at 40°C for 4 hours to activate the amino groups of polyethyleneimine. After that, 1.0 under 0.3 kg/cnl pressure
■/m+ glucoamylase solution (pi (6,0 acetate buffer)) was passed at 4°C for 18 hours to immobilize the enzyme by covalent bonding.

グルコアミラーゼの固定化量は限外f!、過膜1 c+
+1当り1.1■であった。
The amount of immobilized glucoamylase is extremely f! , permembrane 1 c+
It was 1.1■ per +1.

(C)酵量叉応。(C) Fermentation amount change.

5重量%バレイショデンプン溶液(50mM酢酸緩衝液
p H5,0)に上記で得たα−アミラーゼを固定した
水分散型高分子粒子を5重量%となるように添加して反
応槽中、50℃にて酵素反応を行った。
The water-dispersed polymer particles having immobilized α-amylase obtained above were added to a 5% by weight potato starch solution (50mM acetate buffer pH 5.0) to give a concentration of 5% by weight, and the mixture was heated at 50°C in a reaction tank. The enzymatic reaction was carried out at

反応液は0.5 kg / cnlの加圧下、循環流量
500m1/分にて精密濾過膜(日東電工側製、膜材質
ポリテトラフルオロエチレン、0.5μm平膜)へ送り
、循環しながら濾過した。上記濾過の際、精密濾過膜を
透過できないα−アミラーゼを固定した水分散型高分子
粒子と可溶化されていないバレイショデンプンは回収さ
れ、反応槽へ戻し、反応槽へはりザーバーから基質とし
ての5iJ’fM%ハレ・イショデンプン溶液を補給し
、?/1stを一定に保ち、連続的に酵素反応を行った
The reaction solution was sent to a precision filtration membrane (manufactured by Nitto Denko, membrane material: polytetrafluoroethylene, 0.5 μm flat membrane) under a pressure of 0.5 kg/cnl at a circulating flow rate of 500 m1/min, and filtered while being circulated. . During the above filtration, water-dispersed polymer particles with immobilized α-amylase that cannot pass through the microfiltration membrane and unsolubilized potato starch are recovered and returned to the reaction tank. 'fM% Hare Isho starch solution supplemented? /1st was kept constant and the enzyme reaction was performed continuously.

可溶化基質を含む′rJi液は0.3kg/cJの加圧
下、循環流星500ml/分にて50℃で1iif記で
得たIり艮外濾過)1タヘ供給、通液し固定化グルコア
ミラーゼと酵素反応を行った。
The 'rJi solution containing the solubilized substrate was supplied to the tube obtained by 1iif filtration at 50° C. under a pressure of 0.3 kg/cJ with a circulation rate of 500 ml/min, and the solution was passed through the tube to obtain immobilized glucoamylase. An enzymatic reaction was performed.

透過液中のグルコースrおよび透j局液流〒を測定し、
結果を第1図(alおよび(b)に示した。
measuring glucose r and permeate local fluid flow in the permeate;
The results are shown in FIG. 1 (al and (b)).

比較例1 実施例1と同様の酵素反応を、水分散型高分子粒子に固
定したα−アミラーゼによる酵素反応(可溶化反応)お
よび精密濾過膜による濾過の上程を行わず、グルコアミ
ラーゼを固定化した限外;jU過膜へ直接、5重量%バ
レイショデンブン溶液(50mM酢酸緩衝液p H5,
0)を原液として供給し、酵素反応を行った。
Comparative Example 1 The same enzymatic reaction as in Example 1 was carried out by immobilizing glucoamylase without performing the enzymatic reaction (solubilization reaction) using α-amylase immobilized on water-dispersed polymer particles and the filtration process using a microfiltration membrane. 5% by weight potato starch solution (50mM acetate buffer pH 5,
0) was supplied as a stock solution and an enzyme reaction was performed.

透過液中のグルコース量および透過液流星を7!l11
定し、結果を第1図(alおよび(b))に示した。
The amount of glucose in the permeate and the permeate meteor are 7! l11
The results are shown in Figure 1 (al and (b)).

実施例2 2重尾%大豆カゼイン溶液(pLI7.0りん酸緩衝液
)の酵素分解反応を行った。
Example 2 An enzymatic decomposition reaction of a double-tailed % soybean casein solution (pLI7.0 phosphate buffer) was carried out.

アクリル酸、スチレン、ジビニルベンゼンをエタノール
存在下にて乳化共重合して得た水分散型高分子粒7− 
(平均粒径0.7μm)に実施例1と同様の操作にてプ
ロテアーゼを固定化して固定化酵素を得た。(プロテア
ーゼの固定化量は水分散型高分子粒子1g当り28■で
あった) 一方、限外濾過膜([]東電工01製、膜材質ポリアミ
ド、分画分子150000)にプロテアーゼを実施例1
と同様の方法にて固定化した。(プロテアーゼの固定化
量は限外濾過膜1d当り1.5■であった) 2重量%大豆カゼイン溶液に上記プロテアーゼを固定し
た水分散型高分子粒子を6重量%となるように添加し、
40℃にて酵素反応を行い、精密濾過膜(日東電工(掬
製、膜材質ポリプロピレン、孔径1μrn平膜)を用い
て濾過した。なお、濾過時の操作条件は実施例1と同様
にして行った。
Water-dispersible polymer particles obtained by emulsion copolymerization of acrylic acid, styrene, and divinylbenzene in the presence of ethanol 7-
(average particle size: 0.7 μm) in the same manner as in Example 1 to obtain an immobilized enzyme. (The amount of protease immobilized was 28 μ per 1 g of water-dispersed polymer particles.) On the other hand, protease was applied to an ultrafiltration membrane (manufactured by Tokyo Denko 01, membrane material polyamide, molecular fraction 150,000) in Example 1.
It was fixed using the same method as above. (The amount of protease immobilized was 1.5 μ per 1 d of ultrafiltration membrane.) The water-dispersed polymer particles on which the protease was immobilized were added to a 2 wt % soybean casein solution at a concentration of 6 wt %.
Enzyme reaction was carried out at 40°C, and the mixture was filtered using a microfiltration membrane (manufactured by Nitto Denko, made by Kiki, membrane material: polypropylene, flat membrane with pore size of 1 μrn). The operating conditions during filtration were the same as in Example 1. Ta.

濾液を0.5 kg / cnlの加圧下、循環’In
”;1700 m17分にて40℃で上記限外濾過膜へ
供給、通液し固定化プロテアーゼと酵素反応を行った。
The filtrate was circulated under a pressure of 0.5 kg/cnl.
The solution was supplied to the above ultrafiltration membrane at 1700 ml for 17 minutes at 40°C, and the solution was passed through the membrane to perform an enzymatic reaction with the immobilized protease.

i3i過液に5重量%トリクロル酢酸を加えて高分子量
タンパク質のみ沈澱させ、ML’dの非タンパク性分解
質量を280nmの吸光度にて測定した。
5% by weight trichloroacetic acid was added to the i3i filtrate to precipitate only high molecular weight proteins, and the non-protein decomposed mass of ML'd was measured at absorbance at 280 nm.

その結果、透過液はトリクロル酢酸で沈澱は生じず、ま
たケルプール法による窒素晴から算出して基質の72%
が分解物として存在しており、高分子蛋白質が効率よく
分解されたことが判明した。
As a result, the permeate was trichloroacetic acid, and no precipitate occurred, and 72% of the substrate was calculated from nitrogen removal using the Kelpool method.
was present as a decomposition product, indicating that the high-molecular protein was efficiently decomposed.

また、酵素反応は20日間に亘って安定に行われ、透過
液流■も1.0mlとほとんど低下は認められなかった
Furthermore, the enzyme reaction was carried out stably over 20 days, and the permeate flow (2) was 1.0 ml, with almost no decrease observed.

実施例3 1重量%カルボキシメチルセルロースナトリウム水溶液
(pH4,5酢酸緩衝液)の酵素分解反応を行った。
Example 3 An enzymatic decomposition reaction of a 1% by weight aqueous sodium carboxymethylcellulose solution (pH 4,5 acetate buffer) was carried out.

メチルメタクリレート、アクリル酸、ジエチレングリコ
ールを乳化共重合して得た水分散型高分子粒子(平均粒
径0.2μm)に実施例1と同様の操作にてセルラーゼ
を固定化して固定化酵素を得た。(セルラーゼの固定化
量は水分散型高分子粒子1g当り71■であった) 一方、限外濾過膜(日東電工■製、膜材質ポリスルホン
、分画分子量20000)にグルコアミラーゼを実施例
1と同様の方法にて固定化した。
Cellulase was immobilized on water-dispersed polymer particles (average particle size 0.2 μm) obtained by emulsion copolymerization of methyl methacrylate, acrylic acid, and diethylene glycol in the same manner as in Example 1 to obtain an immobilized enzyme. . (The amount of cellulase immobilized was 71 μ per 1 g of water-dispersed polymer particles.) On the other hand, glucoamylase was added to an ultrafiltration membrane (manufactured by Nitto Denko, membrane material polysulfone, molecular weight cut off 20,000) in Example 1. It was fixed using the same method.

(グルコアミラーゼの固定化量は限外濾過膜1 cal
当り1.1隊であった) 1重量%カルボキシメチルセルロースナトリウム水溶液
に上記セルラーゼを固定した水分散型高分子粒子を5重
量%となるように添加し、40’Cにて酵素反応を行い
、精密濾過膜(アミコン製、膜材質ポリスルホン、孔径
0.1μm平膜)を用いて濾過した。なお、濾過時の操
作条件は実施例1と同様にして行った。
(The amount of glucoamylase immobilized is 1 cal of ultrafiltration membrane.
The water-dispersed polymer particles on which cellulase was immobilized were added to a 1% by weight aqueous sodium carboxymethyl cellulose solution to give a concentration of 5% by weight, and an enzymatic reaction was carried out at 40°C. Filtration was performed using a filtration membrane (manufactured by Amicon, membrane material polysulfone, flat membrane with pore size of 0.1 μm). Note that the operating conditions during filtration were the same as in Example 1.

?!、液を0.7 kg/+I11ノ加圧下、循環流f
f1500mlZ分にて60℃で上記限外濾過膜へ供給
、通液し固定化グルコアミラーゼと酵素反応を行った。
? ! , under a pressure of 0.7 kg/+I11, circulating flow f
The solution was supplied to the ultrafiltration membrane at 60° C. at a rate of 1500 ml and passed through it to perform an enzymatic reaction with the immobilized glucoamylase.

透過液中のグルコース量を測定した結果、基質であるカ
ルボキシメチルセルロースナトリウムはほぼ完全に分解
されており、酵素反応は30日間に亘って安定に行われ
、透過液流間の低下もほとんど認められなかった。
As a result of measuring the amount of glucose in the permeate, it was found that the substrate sodium carboxymethyl cellulose was almost completely decomposed, the enzyme reaction was stable for 30 days, and there was almost no decrease in the flow rate of the permeate. Ta.

実施例4 オリーブ油乳化液(オリーブ油75m1と2重足%ポリ
ビニルアルコール225m1を乳化したものと、p I
(6,0の0.1Mりん酸緩衝液とを5:4で)昆合し
たもの)の酵素分解反応を行った。
Example 4 Olive oil emulsion (emulsified 75 ml of olive oil and 225 ml of double % polyvinyl alcohol) and p I
(6,0 mixed with 0.1M phosphate buffer at a ratio of 5:4) was subjected to an enzymatic decomposition reaction.

スチレン、メチルメタクリレート、アクリル酸、スチレ
ンスルホン酸ナトリウムを乳化共重合して得た水分散型
高分子粒子(平均粒径0.1/rm)に実施例1と同様
の操作にてリパーゼを固定化して固定化酵素を得た。(
リパーゼの固定化量は水分散型高分子粒子1g当り88
■であった)一方、限外濾過膜(日東電工0@製、nり
材質ポリイミド、分画分子量20000)にリパーゼを
実施例1と同様の方法にて固定化した。(リパーゼの固
定化量は限外濾過膜1 ct当り1.0■であった)オ
リーブ油乳化液に上記リパーゼを固定した水分散型高分
子粒子を7重量%となるように添加し、37℃にて酵素
反応を行い、精密濾過膜(日東電工■製、膜材質ポリテ
トラフルオロエチレン、孔径0.1μm平膜)を用いて
濾過した。なお、濾過時の操作条件は実施例1と同様に
して行った。
Lipase was immobilized on water-dispersed polymer particles (average particle size 0.1/rm) obtained by emulsion copolymerization of styrene, methyl methacrylate, acrylic acid, and sodium styrene sulfonate in the same manner as in Example 1. An immobilized enzyme was obtained. (
The amount of lipase immobilized is 88% per gram of water-dispersed polymer particles.
(2) On the other hand, lipase was immobilized on an ultrafiltration membrane (manufactured by Nitto Denko 0@, polyimide material, molecular weight cut off 20,000) in the same manner as in Example 1. (The amount of lipase immobilized was 1.0 μ per 1 ct of ultrafiltration membrane.) The water-dispersed polymer particles with the above lipase immobilized were added to the olive oil emulsion at a concentration of 7% by weight, and the mixture was heated at 37°C. The enzyme reaction was carried out using a precision filtration membrane (manufactured by Nitto Denko ■, membrane material: polytetrafluoroethylene, flat membrane with pore size of 0.1 μm). Note that the operating conditions during filtration were the same as in Example 1.

〃ε液をQ、 4 kg / calの加圧下、循環流
flft600mlZ分にて40℃で上記限外濾過膜へ
供給、通液し固定化リパーゼと酵素反応を行った。
The ε solution was supplied to the above ultrafiltration membrane at 40° C. under a pressure of 4 kg/cal and a circulating flow of 600 ml Z, and the solution was passed through the membrane to perform an enzymatic reaction with the immobilized lipase.

透過液中の酸価を測定し、基質であるオリーブ油の加水
分解率を次式より求めた。
The acid value in the permeate was measured, and the hydrolysis rate of the substrate olive oil was determined from the following equation.

加水分解率(%)−(酸価/けん化価)X100その結
果、加水分解率は32%であり、酵素反応により脂肪酸
が効率よく得られることが判明した。
Hydrolysis rate (%) - (acid value/saponification value) x 100 As a result, the hydrolysis rate was 32%, indicating that fatty acids could be efficiently obtained by the enzymatic reaction.

また酵素反応は20日間に亘って安定に行われ、透過液
流量の低下もほとんど認められなかった。
Furthermore, the enzyme reaction was carried out stably over 20 days, and almost no decrease in the flow rate of the permeate was observed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)およびfb)は実施例1と比較例1にて得
られた透過液中のグルコース量および酵素反応中の透過
液流量を示す。 なお、図中における操作時間は限外濾過膜へ濾液を供給
して酵素反応を行った時間である。
FIGS. 1(a) and fb) show the amount of glucose in the permeate obtained in Example 1 and Comparative Example 1 and the flow rate of the permeate during the enzyme reaction. Note that the operation time in the figure is the time during which the filtrate was supplied to the ultrafiltration membrane and the enzyme reaction was performed.

Claims (6)

【特許請求の範囲】[Claims] (1)水不溶性基質を、酵素固定した水不溶性担体と水
中にて混合、接触させて可溶化基質に変換せしめ、得ら
れた可溶化基質を濾過する工程と、前記工程による可溶
化基質を含む濾液を酵素固定した限外濾過膜に通液して
酵素反応を行なう工程を含むことを特徴とする酵素反応
方法。
(1) A step of mixing and contacting a water-insoluble substrate with an enzyme-immobilized water-insoluble carrier in water to convert it into a solubilized substrate, and filtering the obtained solubilized substrate, and the solubilized substrate obtained by the above step. An enzyme reaction method comprising the step of passing a filtrate through an enzyme-immobilized ultrafiltration membrane to carry out an enzyme reaction.
(2)水不溶性担体が水分散型高分子粒子である特許請
求の範囲第1項記載の酵素反応方法。
(2) The enzyme reaction method according to claim 1, wherein the water-insoluble carrier is a water-dispersed polymer particle.
(3)水分散型高分子粒子が平均粒径0.03〜2μm
である特許請求の範囲第2項記載の酵素反応方法。
(3) Water-dispersed polymer particles have an average particle size of 0.03 to 2 μm
The enzyme reaction method according to claim 2.
(4)可溶化基質の濾過工程を精密濾過膜にて行なう特
許請求の範囲第1項記載の酵素反応方法。
(4) The enzyme reaction method according to claim 1, wherein the step of filtering the solubilized substrate is carried out using a microfiltration membrane.
(5)精密濾過膜がポリプロピレン膜、ポリスルホン膜
またはポリテトラフルオロエチレン膜である特許請求の
範囲第4項記載の酵素反応方法。
(5) The enzyme reaction method according to claim 4, wherein the microfiltration membrane is a polypropylene membrane, a polysulfone membrane, or a polytetrafluoroethylene membrane.
(6)限外濾過膜がポリスルホン膜、ポリアミド膜また
はポリイミド膜である特許請求の範囲第1項記載の酵素
反応方法。
(6) The enzyme reaction method according to claim 1, wherein the ultrafiltration membrane is a polysulfone membrane, a polyamide membrane, or a polyimide membrane.
JP27589686A 1986-11-18 1986-11-18 Enzymatic reaction process Pending JPS63129987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27589686A JPS63129987A (en) 1986-11-18 1986-11-18 Enzymatic reaction process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27589686A JPS63129987A (en) 1986-11-18 1986-11-18 Enzymatic reaction process

Publications (1)

Publication Number Publication Date
JPS63129987A true JPS63129987A (en) 1988-06-02

Family

ID=17561947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27589686A Pending JPS63129987A (en) 1986-11-18 1986-11-18 Enzymatic reaction process

Country Status (1)

Country Link
JP (1) JPS63129987A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7176017B2 (en) 2001-07-13 2007-02-13 Co2 Solution Inc. Triphasic bioreactor and process for gas effluent treatment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7176017B2 (en) 2001-07-13 2007-02-13 Co2 Solution Inc. Triphasic bioreactor and process for gas effluent treatment
US7579185B2 (en) 2001-07-13 2009-08-25 Co2 Solution Inc. Triphasic process for gas effluent treatment

Similar Documents

Publication Publication Date Title
US3802997A (en) Method of stabilizing enzymes
EP0223389B1 (en) Enzyme-immobilized membrane and process for producing the same
EP0713420B1 (en) Cartridge filter with insoluble enzyme particulates contained thereon
US4033817A (en) Pressure-driven enzyme-coupled membranes
Gemeiner et al. Biochemical engineering of biocatalysts immobilized on cellulosic materials
JPS5978687A (en) Immobilized enzyme combination
US3849253A (en) Process of immobilizing enzymes
US4206259A (en) Support matrices for immobilized enzymes
US5306632A (en) Porous acrylonitrile polymer substrate for bonding ligands and separating biologically active substances
JPS63129987A (en) Enzymatic reaction process
WO2011051145A1 (en) Enzyme-functionalized supports
JPS5826316B2 (en) Continuous reaction method using enzymes or microorganisms
CA1229808A (en) Preparation of hydrophobic cotton cloth
PL102119B1 (en) A PROCESS OF PRODUCING THE BASE FOR IMMOBILIZING ENZYMES
Burnett Immobilized Enzymes
JPH02182192A (en) Method for enzymic reaction
JPH01141587A (en) Method for enzymic reaction using immobilized enzyme membrane
Epton Chemical and biochemical reactions in the gel phase
JPH02219575A (en) Production of membrane for immobilizing enzyme
JPS62296876A (en) Immobilized enzyme membrane
Thakar Studies of penicillin acylase immobilization using membranes for the production of 6-aminopenicillanic acid (6-APA)
JPH02245190A (en) Enzymatic reaction
Epton Department of Physical Sciences, The Polytechnic, Wolverhampton,(England)
JPH0611327B2 (en) Multi-layered hollow fiber having a physiologically active substance fixed thereto and a method for treating a liquid using the hollow fiber
JPS59109173A (en) Preparation of immobilized biocatalyst