JPS6312404B2 - - Google Patents
Info
- Publication number
- JPS6312404B2 JPS6312404B2 JP56181611A JP18161181A JPS6312404B2 JP S6312404 B2 JPS6312404 B2 JP S6312404B2 JP 56181611 A JP56181611 A JP 56181611A JP 18161181 A JP18161181 A JP 18161181A JP S6312404 B2 JPS6312404 B2 JP S6312404B2
- Authority
- JP
- Japan
- Prior art keywords
- frequency
- counter
- frequency division
- division ratio
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K23/00—Pulse counters comprising counting chains; Frequency dividers comprising counting chains
- H03K23/64—Pulse counters comprising counting chains; Frequency dividers comprising counting chains with a base or radix other than a power of two
- H03K23/66—Pulse counters comprising counting chains; Frequency dividers comprising counting chains with a base or radix other than a power of two with a variable counting base, e.g. by presetting or by adding or suppressing pulses
- H03K23/667—Pulse counters comprising counting chains; Frequency dividers comprising counting chains with a base or radix other than a power of two with a variable counting base, e.g. by presetting or by adding or suppressing pulses by switching the base during a counting cycle
Landscapes
- Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
Description
【発明の詳細な説明】
本発明は分周回路、特に高周波の信号を直接任
意の半整数(正の整数を2で割つた数を半整数と
称す)分周比で分周できるパルス・スワロー分周
回路に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a frequency dividing circuit, particularly a pulse swallow circuit that can directly divide a high frequency signal by an arbitrary half-integer (a number obtained by dividing a positive integer by 2 is called a half-integer) frequency division ratio. Regarding frequency dividing circuits.
従来から高周波の信号を任意の整数分周比で分
周できる分周器として、パルス・スワロー分周回
路が知られている。第1図に、この分周器の基本
ブロツク図を示す。前置可変分周器1は、入力端
子からの入力信号100を、制御信号200の論
理レベルの“1”又は“0”に対応してそれぞれ
P又はP+1のいずれか一方の分周比で分周する
分周器である。この出力は、分周比Bで分周動作
をするプログラマブルカウンタ2及び整数Aを計
数するプログラマブルカウンタ3に加えられる。
カウンタ3の出力は制御信号200として用いら
れ、カウンタ2の出力はこの分周回路の出力とな
ると共にカウンタ2自身およびカウンタ3をリセ
ツトするために用いられている。但し、P,A及
びBは正の整数であつて、BAである。 A pulse swallow frequency divider circuit has been known as a frequency divider that can divide a high frequency signal by an arbitrary integer frequency division ratio. FIG. 1 shows a basic block diagram of this frequency divider. The variable pre-frequency divider 1 divides the input signal 100 from the input terminal by a frequency division ratio of either P or P+1 corresponding to the logic level of the control signal 200 of “1” or “0”. It is a frequency divider that cycles. This output is applied to a programmable counter 2 that performs a frequency division operation at a frequency division ratio B and a programmable counter 3 that counts an integer A.
The output of the counter 3 is used as a control signal 200, and the output of the counter 2 becomes the output of this frequency divider circuit and is also used to reset the counter 2 itself and the counter 3. However, P, A and B are positive integers and are BA.
最初、制御信号200を“0”と仮定する。カ
ウンタ3は入力信号100の(P+1)分周信号
をA個数えると停止して制御信号200を“0”
から“1”に反転させ、分周器1の分周比を(P
+1)からPに切り替える。カウンタ2は(P+
1)分周信号をA個数えた後、このP分周信号を
数えて総数B個になると出力パルスを出して回路
を最初の状態に戻す。この結果、入力信号を
N=(P+1)A+P(B−A)=PB+A ……(1)
個数えて1個の出力を出す分周回路となる。ここ
でA及びBを可変としたとき、上記Nで与えられ
る全体の分周比が連続した整数値をとるためには
A=0〜P−1,BP−1とすればよく、この
下限分周比NminはAmin=0,Bmin=P−1か
ら
Nmin=PBmin+Amin=P(P−1) ……(2)
となる。以上の説明から、パルス・スワロー分周
回路を用いると、P(P−1)以上の連続した任
意の整数分周比が得られることが分る。 Initially, it is assumed that the control signal 200 is "0". When the counter 3 counts A number of (P+1) frequency-divided signals of the input signal 100, it stops and sets the control signal 200 to "0".
to “1”, and the division ratio of frequency divider 1 is set to (P
+1) to P. Counter 2 is (P+
1) After counting A frequency-divided signals, count the P frequency-divided signals and when the total number reaches B, output pulses to return the circuit to the initial state. As a result, it becomes a frequency dividing circuit that counts the input signals as follows: N=(P+1)A+P(B-A)=PB+A...(1) and outputs one output. Here, when A and B are made variable, in order for the overall frequency division ratio given by N above to take continuous integer values, it is sufficient to set A = 0 to P-1, BP-1, and this lower limit Since Amin=0 and Bmin=P-1, the circumferential ratio Nmin becomes Nmin=PBmin+Amin=P(P-1)...(2). From the above explanation, it can be seen that by using the pulse swallow frequency divider circuit, any continuous integer frequency division ratio of P (P-1) or more can be obtained.
上述のパルス・スワロー分周回路は、しばしば
PLL回路のプログラマブルカウンタとして周波
数シンセサイザに用いられる。第2図は周波数シ
ンセサイザの基本的構成を示すブロツク図で、出
力信号を発生する電圧制御発振器(VCO)8の
周波数をプログラマブルカウンタ4で分周し、周
波数安定度の高い基準周波数発生器5の出力と位
相比較器6で位相を比較して誤差出力信号を検出
し、低域ろ波器7を経てVCO8に帰還すること
によりPLL回路を形成し周波数を制御している。 The pulse swallow divider circuit described above is often
Used in frequency synthesizers as a programmable counter in PLL circuits. Figure 2 is a block diagram showing the basic configuration of a frequency synthesizer, in which the frequency of a voltage controlled oscillator (VCO) 8 that generates an output signal is divided by a programmable counter 4, and a reference frequency generator 5 with high frequency stability is generated. An error output signal is detected by comparing the output and phase with a phase comparator 6, and is fed back to the VCO 8 via a low-pass filter 7, thereby forming a PLL circuit and controlling the frequency.
このような周波数シンセサイザにおいて出力周
波数を△Fのステツプで変化させる場合、従来の
パルス・スワロー分周回路によれば、その分周比
が整数分の1に限られるので基準周波数rはr=
△Fとなり、△Fのステツプが小さい場合でも△
Fより高い基準周波数を選ぶことができず、設計
上種々の制約が存在する。いま基準周波数を2倍
の周波数に選定しr=2△Fとすることができる
とこれ等の制約が大幅に緩和され設計上次のよう
な効果がある。即ち、(i)分周比が約半分となるの
でPLL回路のループ利得が容易に約2倍となり、
位相雑音が低く抑えられる。(ii)基準周波数が2倍
となるので低域ろ波器からの基準信号成分の漏れ
が減り、従つて残留変調によるスプリアスを低減
することができる。あるいは低域ろ波器の設計を
簡単にすることができる。(iii)周波数ステツプ△F
が著しく低い場合にはループの帯域を拡げられる
ために、ループ利得の増加と相まつて応答特性の
改善ができる。 When changing the output frequency of such a frequency synthesizer in steps of △F, according to the conventional pulse swallow frequency divider circuit, the frequency division ratio is limited to 1/integer, so the reference frequency r is r=
△F, even if the step of △F is small, △
A reference frequency higher than F cannot be selected, and there are various design constraints. If the reference frequency can now be selected to be twice as high as r=2ΔF, these constraints will be greatly relaxed, and the following effects will be achieved in terms of design. In other words, (i) the frequency division ratio becomes about half, so the loop gain of the PLL circuit easily doubles,
Phase noise can be kept low. (ii) Since the reference frequency is doubled, leakage of the reference signal component from the low-pass filter is reduced, and therefore spurious noise due to residual modulation can be reduced. Alternatively, the design of the low-pass filter can be simplified. (iii) Frequency step △F
When is extremely low, the loop band can be expanded, so that the loop gain can be increased and the response characteristics can be improved.
本発明の目的は、r=2△Fとして周波数シン
セサイザ設計上の制約を緩和し、上述の諸効果を
得ることのできる分周回路、即ち、連続した任意
の半整数分周比が得られるパルス・スロワー分周
回路を提供することである。 The object of the present invention is to provide a frequency divider circuit that can obtain the above-mentioned effects by relaxing the constraints on frequency synthesizer design by setting r=2△F, that is, a pulse pulse that can obtain a continuous arbitrary half-integer frequency division ratio. - To provide a thrower frequency divider circuit.
本発明のパルス・スロワー分周回路は、制御信
号により一対の分周比P(Pは正の整数)とP−
0.5若しくはPとP+0.5の内のいずれか一方の分
周比が選択されて分周動作をする第1のカウンタ
と、前記第1のカウンタに縦続接続されB(Bは
正の整数)の分周比で分周動作をする第2のカウ
ンタと、前記第1のカウンタに縦続接続され前記
分周比Bに等しいかBよりも小さい正の整数Aを
計数できる第3のカウンタとを備え、前記第2の
カウンタが前記第1のカウンタの予め選択された
いずれか一方の分周比による分周出力を前記A個
計数し他の一方の分周比による分周出力を残りの
B−A個計数して分周動作をするように、前記第
1のカウンタの分周比を前記第2及び第3のカウ
ンタの情報によつて制御することによつて構成さ
れる。 The pulse thrower frequency divider circuit of the present invention has a pair of frequency division ratios P (P is a positive integer) and P-
A first counter that performs a frequency division operation by selecting one of the frequency division ratios of 0.5 or P and P+0.5, and a counter that is cascade-connected to the first counter and has a frequency division ratio of B (B is a positive integer). a second counter that performs a frequency division operation using a frequency division ratio; and a third counter that is cascade-connected to the first counter and is capable of counting a positive integer A that is equal to or smaller than the frequency division ratio B. , the second counter counts the A number of frequency-divided outputs of the first counter according to one of the preselected frequency division ratios, and counts the frequency-divided outputs according to the other frequency division ratio to the remaining B- The frequency division ratio of the first counter is controlled by the information of the second and third counters so that the frequency dividing operation is performed by counting A number of counters.
以下、本発明につき図面を参照して詳細に説明
する。 Hereinafter, the present invention will be explained in detail with reference to the drawings.
第3図は本発明の一実施例のブロツク図で、9
は前置可変分周器、2及び3はプログラマブルカ
ウンタ、100は入力信号、200は制御信号で
ある。前置可変分周器9は、入力端子からの入力
信号100を制御信号200の論理レベル“1”
又は“0”に対応して一対の分周比PとP−0.5
のそれぞれが選択されて分周動作をする第1のカ
ウンタ、プログラマブルカウンタ2は第1のカウ
ンタに縦続接続され正の整数Bの分周比で分周動
作をする第2のカウンタ、プログラマブルカウン
タ3は第1のカウンタに縦続接続されBに等しい
かBより小さい正の整数Aを計数できる第3のカ
ウンタである。プログラマブルカウンタ2は前置
可変分周器9の出力をB個計数すると出力パルス
を発生し、これによりプログラマブルカウンタ2
及び3をリセツトして次の計数を開始させると共
に、制御信号200を“1”から“0”に変え前
置可変分周器9が分周比(P−0.5)による分周
動作を行なうよう制御する。プログラマブルカウ
ンタ3はA個のパルスを計数すると制御信号20
0を“0”から“1”に変え前置可変分周器9が
分周比Pの分周動作を行なうよう制御している。 FIG. 3 is a block diagram of an embodiment of the present invention.
2 and 3 are programmable counters, 100 is an input signal, and 200 is a control signal. The variable prefrequency divider 9 converts the input signal 100 from the input terminal to the logic level “1” of the control signal 200.
Or a pair of frequency division ratios P and P-0.5 corresponding to “0”
A first counter, programmable counter 2, which performs a frequency division operation by selecting each of them; a second counter, programmable counter 3, which is cascade-connected to the first counter and performs a frequency division operation at a frequency division ratio of a positive integer B; is a third counter that is cascaded to the first counter and is capable of counting positive integers A that are equal to or less than B. When the programmable counter 2 counts B outputs of the prefix variable divider 9, it generates an output pulse.
and 3 to start the next count, and change the control signal 200 from "1" to "0" so that the variable prefrequency divider 9 performs frequency division operation using the frequency division ratio (P-0.5). Control. When the programmable counter 3 counts A pulses, it outputs a control signal 20.
0 is changed from "0" to "1", and the variable prefrequency divider 9 is controlled to perform a frequency division operation with a frequency division ratio P.
以上の説明から明らかな如く、本実施例の回路
によれば、プログラマブルカウンタ2は先ず(P
−0.5)の分周比による分周出力をA個計数し、
次いでPの分周比による分周出力を残りの(B−
A)個計数して分周動作を行なつており
NT=(P−0.5)A+P(B−A)
=PB−0.5A ……(3)
で分周するパルス・スワロー分周回路が得られ
る。但し、BAである。こゝでA,Bを変えた
とき(3)式で与えられる分周比が連続した任意の半
整数となる条件はA=0〜2(P−1),B2
(P−1){但しB=2(P−1)のときはA=0
〜2(P−1)}であり、下限分周比はBmin=2
(P−1),Amax=2(P−1)から
NTmin=PBmin−0.5Amax
=(P−1)(2P−1) ……(4)
となつて、(P−1)(2P−1)以上の連続した
半整数分周比が得られることとなる。 As is clear from the above explanation, according to the circuit of this embodiment, the programmable counter 2 first
-0.5), count A divided outputs with a division ratio of
Next, the frequency divided output by the frequency division ratio of P is divided into the remaining (B-
A) A pulse swallow frequency divider circuit that divides the frequency by counting and dividing the frequency by N T = (P-0.5) A + P (B-A) = PB-0.5A ...(3) is obtained. It will be done. However, it is BA. Here, when A and B are changed, the conditions for the frequency division ratio given by equation (3) to be any continuous half-integer are A = 0 to 2 (P-1), B2
(P-1) {However, when B=2(P-1), A=0
~2(P-1)}, and the lower limit frequency division ratio is Bmin=2
(P-1), Amax=2(P-1), N T min=PBmin-0.5Amax =(P-1)(2P-1) ...(4), and (P-1)(2P −1) or more continuous half-integer frequency division ratios can be obtained.
第4図は本発明に用いる前置可変分周器の一実
施例を示すブロツク図で、10は排他的論理和回
路、11,12及び13は入力信号の立上りで動
作するT型フリツプフロツプ回路、14は論理和
回路であつて、入力信号100を制御信号200
が“0”のとき分周比3.5で分周し、制御信号2
00が“1”のとき分周比4で分周するP=4の
前置可変分周器9′である。 FIG. 4 is a block diagram showing an embodiment of the variable prefrequency divider used in the present invention, in which 10 is an exclusive OR circuit, 11, 12, and 13 are T-type flip-flop circuits that operate at the rising edge of the input signal; 14 is an OR circuit which converts the input signal 100 into a control signal 200.
When is “0”, the frequency is divided by a division ratio of 3.5, and the control signal 2
This is a variable prefrequency divider 9' with P=4 that divides the frequency at a frequency division ratio of 4 when 00 is "1".
第5図は第4図の動作を説明するタイムチヤー
トで、上から信号入力100、フリツプフロツプ
回路(以下FFと略す)11の入力T1、FF11の
出力Q1、FF12の出力Q2(分周出力)、FF12の
コンプリメンタリ出力2、制御信号200、FF
13の入力T3、FF13の出力Q3の信号波形を示
している。図のT1からQ3までの実線で示した波
形は3.5分の1の分周パルスを偶数個計数した時
点で制御信号200を“0”から“1”に変更し
た場合の波形を、破線は奇数個の場合の波形を示
している。いずれの場合も制御信号200の
“0”又は“1”に対応して出力信号Q2が入力信
号の3.5分の1又は4分の1に分周されているこ
とが分る。図の波形はフリツプフロツプの入出力
間の時間遅れを無視して表示しているので、FF
13の出力Q3は実際には図より約△tの時間遅
れがあり、排他的論理和回路10の出力では図の
T1に示すような波形が得られる。又、制御信号
200は分周出力Q2と同時に切替わるよう示し
てあるが、必ずしも同時である必要はない。即
ち、切替信号200が切替わる時点が、図示の
t0,t1,t2,t3よりもそれぞれT0未満の時間だけ
遅くなつても、他の波形に何の変化もなく同じ動
作が行われる。なお、第5図のタイムチヤートは
入力信号100のデユーテイー比が50%の場合を
示しているが、50%からずれた場合にはQ2の出
力の間隔が図示の状態から若干ずれる。デユーテ
イー比が50%より小さくなりパルス幅が△T短か
くなると、実線の場合時刻t0から始まつて3.5T0
−△T,3.5T0+△T,4T0,……破線の場合
3.5T0−△T,4T0,3.5T0+△T,……となつ
て、3.5T0が交互に±△Tだけ変化するので、全
体の分周比NTに0.5の端数がある場合には、分周
出力の間隔もNTT0±△Tとなつて±△Tだけ変
化することになるが、この1/2周波数による僅か
な位相変調分はろ波器等で容易に除去することが
でき分周器として本質的な問題を生ずるものでは
ない。 FIG. 5 is a time chart explaining the operation of FIG. 4, from the top: signal input 100, input T 1 of flip-flop circuit (hereinafter abbreviated as FF) 11, output Q 1 of FF 11, output Q 2 of FF 12 (divided output), FF12 complementary output 2 , control signal 200, FF
The signal waveforms of the input T 3 of the FF 13 and the output Q 3 of the FF 13 are shown. The waveform shown by the solid line from T 1 to Q 3 in the figure is the waveform when the control signal 200 is changed from "0" to "1" at the point when an even number of pulses divided by 1/3.5 is counted, and the waveform shown by the broken line is the waveform shown by the solid line from T 1 to Q 3. shows the waveform for an odd number of cases. It can be seen that in either case, the output signal Q 2 is frequency-divided to 1/3.5 or 1/4 of the input signal, corresponding to "0" or "1" of the control signal 200. The waveform in the figure is displayed ignoring the time delay between input and output of the flip-flop, so the FF
The output Q 3 of 13 actually has a time delay of about △t from the figure, and the output of the exclusive OR circuit 10 has a time delay of about △t compared to the figure.
A waveform as shown in T 1 is obtained. Further, although the control signal 200 is shown to be switched at the same time as the frequency divided output Q2 , it is not necessarily necessary to switch at the same time. That is, the time point at which the switching signal 200 switches is as shown in the figure.
Even if the waveforms are delayed by a time less than T 0 than t 0 , t 1 , t 2 , and t 3 , the same operation is performed without any change in other waveforms. Note that the time chart in FIG. 5 shows the case where the duty ratio of the input signal 100 is 50%, but if it deviates from 50%, the interval between the outputs of Q2 will deviate slightly from the state shown in the figure. When the duty ratio becomes smaller than 50% and the pulse width becomes shorter by △T, the solid line starts from time t 0 and becomes 3.5T 0.
−△T, 3.5T 0 +△T, 4T 0 , ... In case of broken line
3.5T 0 −△T, 4T 0 , 3.5T 0 +△T, ..., and 3.5T 0 alternately changes by ±△T, so there is a fraction of 0.5 in the overall frequency division ratio N T In this case, the frequency-divided output interval also changes by ±△T, which is N T T 0 ±△T, but this slight phase modulation due to the 1/2 frequency can be easily removed with a filter, etc. It does not cause any essential problems as a frequency divider.
以上本発明の一実施例について説明したが、本
発明に用いる前置可変分周器は第4図に示した回
路のみならず、他の回路例えば入力信号の立下り
で動作するT型フリツプフロツプを含んだ回路で
も構成することができ、非同期式のリプルカウン
タ回路のみならず同期式カウンタ回路によつても
実現することができる。又、第3図の実施例の説
明において、前置可変分周器9は2つの分周比P
及び(P−0.5)がそれぞれ制御信号200の
“1”及び“0”に対応するものとしたが、逆に
制御信号の“0”及び“1”に対応してもよい。
更に、分周比がP及び(P+0.5)であつても同
様の効果を得ることができ、制御信号も論理レベ
ルの“0”及び“1”の2値信号に限られるもの
ではなく、切替え時点に出されるパルス信号であ
つても差支えない。なお、本実施例においては、
制御信号200はすべてカウンタ3から供給され
るように構成されているが、カウンタ2及び3の
リセツトと同時に分周比を切替える制御信号は、
カウンタ3を経由することなく直接カウンタ2か
ら供給するよう構成することも可能である。又、
カウンタ2が計数する総計B個のパルスの内、最
初にA個の(P−0.5)分周パルスを計数するよ
う構成されているが、A個のパルスの計数時期は
最初に限らず任意の位置であつても同じ効果が得
られることも明らかである。 Although one embodiment of the present invention has been described above, the variable prefrequency divider used in the present invention is not limited to the circuit shown in FIG. It can be constructed with a circuit including a ripple counter circuit, and can be realized not only with an asynchronous ripple counter circuit but also with a synchronous counter circuit. In addition, in the description of the embodiment shown in FIG. 3, the variable prefrequency divider 9 has two frequency division ratios P
and (P-0.5) correspond to "1" and "0" of the control signal 200, respectively, but they may correspond to "0" and "1" of the control signal conversely.
Furthermore, the same effect can be obtained even if the frequency division ratio is P or (P+0.5), and the control signal is not limited to binary signals of logic levels "0" and "1". It may be a pulse signal issued at the time of switching. In addition, in this example,
All of the control signals 200 are configured to be supplied from the counter 3, but the control signal that switches the frequency division ratio at the same time as the counters 2 and 3 are reset is
It is also possible to configure the supply directly from the counter 2 without passing through the counter 3. or,
Of the total B pulses counted by the counter 2, it is configured to first count A (P-0.5) frequency-divided pulses, but the timing of counting A pulses is not limited to the beginning but can be determined at any arbitrary time. It is also clear that the same effect can be obtained regardless of position.
以上説明した如く、本発明のパルス・スワロー
分周回路によれば連続した半整数分周比を得るこ
とがきるので、これを周波数シンセサイザ等の
PLL回路に応用すると、基準周波数を周波数ス
テツプの2倍に選定でき、従来の設計上の諸制約
が緩和され性能のよい装置が容易に得られる効果
がある。 As explained above, according to the pulse swallow frequency divider circuit of the present invention, it is possible to obtain a continuous half-integer frequency division ratio.
When applied to a PLL circuit, the reference frequency can be selected to be twice the frequency step, which has the effect of easing conventional design constraints and easily providing a device with good performance.
第1図は従来のパルス・スワロー分周回路の基
本ブロツク図、第2図は周波数シンセサイザの基
本的構成を示すブロツク図、第3図は本発明の一
実施例のブロツク図、第4図は本発明に用いる前
置可変分周器の一実施例のブロツク図、第5図は
第4図の回路の動作を説明するタイムチヤートで
ある。
1……従来の前置可変分周器、2,3及び4…
…プログラマブルカウンタ、5……基準周波数発
生器、6……位相比較器、7……低域ろ波器、8
……電圧制御発振器(VCO)、9および9′……
前置可変分周器、10……排他的論理和回路、1
1,12および13……T型フリツプフロツプ回
路、14……論理和回路、100……入力信号、
200……制御信号。
Fig. 1 is a basic block diagram of a conventional pulse swallow frequency divider circuit, Fig. 2 is a block diagram showing the basic configuration of a frequency synthesizer, Fig. 3 is a block diagram of an embodiment of the present invention, and Fig. 4 is a block diagram showing the basic configuration of a frequency synthesizer. FIG. 5 is a block diagram of one embodiment of the variable prefrequency divider used in the present invention, and is a time chart explaining the operation of the circuit shown in FIG. 4. 1... Conventional variable pre-frequency divider, 2, 3 and 4...
...Programmable counter, 5...Reference frequency generator, 6...Phase comparator, 7...Low pass filter, 8
...Voltage controlled oscillator (VCO), 9 and 9'...
Prevariable frequency divider, 10...Exclusive OR circuit, 1
1, 12 and 13...T-type flip-flop circuit, 14...OR circuit, 100...input signal,
200...Control signal.
Claims (1)
数)とP−0.5(若しくはPとP+0.5)の内のい
ずれか一方の分周比が選択されて分周動作をする
第1のカウンタと、前記第1のカウンタに縦続接
続されB(Bは正の整数)の分周比で分周動作を
する第2のカウンタと、前記第1のカウンタに縦
続接続され前記分周比Bに等しいかBよりも小さ
い正の整数Aを計数できる第3のカウンタとを備
え、前記第2のカウンタが前記第1のカウンタの
予め選択されたいずれか一方の分周比による分周
出力を前記A個計数し他の一方の分周比による分
周出力を残りのB−A個計数して分周動作をする
ように前記第1のカウンタの分周比が前記第2及
び第3のカウンタの情報によつて制御されること
を特徴とするパルス・スワロー分周回路。1 The first frequency dividing operation is performed by selecting one of a pair of frequency dividing ratios P (P is a positive integer) and P-0.5 (or P and P+0.5) by a control signal. a second counter that is cascade-connected to the first counter and performs frequency dividing operation at a frequency division ratio of B (B is a positive integer); a third counter that can count a positive integer A that is equal to or smaller than B, and the second counter outputs a frequency divided by a preselected frequency division ratio of one of the first counters. The frequency division ratio of the first counter is set to the second and third frequency division ratios so that the frequency division ratio of the first counter is calculated by counting the A number of frequency outputs and counting the remaining B-A frequency division outputs based on the other frequency division ratio to perform the frequency division operation. A pulse swallow frequency divider circuit characterized in that it is controlled by information of a counter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56181611A JPS5883435A (en) | 1981-11-12 | 1981-11-12 | Pulse swallow frequency dividing circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56181611A JPS5883435A (en) | 1981-11-12 | 1981-11-12 | Pulse swallow frequency dividing circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5883435A JPS5883435A (en) | 1983-05-19 |
JPS6312404B2 true JPS6312404B2 (en) | 1988-03-18 |
Family
ID=16103825
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56181611A Granted JPS5883435A (en) | 1981-11-12 | 1981-11-12 | Pulse swallow frequency dividing circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5883435A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2692071B2 (en) * | 1987-02-25 | 1997-12-17 | 日本電気株式会社 | Phase-locked pulse generator |
US4956797A (en) * | 1988-07-14 | 1990-09-11 | Siemens Transmission Systems, Inc. | Frequency multiplier |
JP2571622B2 (en) * | 1989-05-24 | 1997-01-16 | 株式会社ケンウッド | Divider |
FR2666706B1 (en) * | 1990-09-12 | 1993-08-06 | Sgs Thomson Microelectronics | FAST COUNTER / DIVIDER AND APPLICATION TO A SWALLOW COUNTER. |
-
1981
- 1981-11-12 JP JP56181611A patent/JPS5883435A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5883435A (en) | 1983-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4264863A (en) | Pulse swallow type programmable frequency dividing circuit | |
EP1368896A1 (en) | Sigma delta fractional-n frequency divider with improved noise and spur performance | |
US4354124A (en) | Digital phase comparator circuit | |
JPH0897711A (en) | Pll circuit | |
JPH07101847B2 (en) | Digital Phase Locked Loop Device | |
JPS6312404B2 (en) | ||
JPH06104748A (en) | Pll circuit | |
JP3305587B2 (en) | Digital delay control clock generator and delay locked loop using this clock generator | |
JPH1032486A (en) | Fractional frequency divider and PLL circuit | |
JPH047134B2 (en) | ||
AU750763B2 (en) | Frequency synthesiser | |
JPH0797744B2 (en) | Phase synchronization circuit | |
JP2002280897A (en) | Fully digital pll circuit | |
JPS6333739B2 (en) | ||
WO1986007219A1 (en) | Phase modulators | |
JP3797791B2 (en) | PLL synthesizer oscillator | |
JP2906263B2 (en) | Phase locked loop | |
JP3883812B2 (en) | PLL circuit | |
JPS6053930B2 (en) | variable frequency divider circuit | |
JPH0338777B2 (en) | ||
JP3389915B2 (en) | Phase locked loop circuit and frequency modulation method in phase locked loop circuit | |
JPH09232945A (en) | Frequency divider, ring counter and PLL circuit | |
JPH01228325A (en) | Digital phase locked loop circuit | |
JP3857878B2 (en) | PLL circuit | |
JPS6342599Y2 (en) |