[go: up one dir, main page]

JPS6312343A - Ultraviolet laser monitor - Google Patents

Ultraviolet laser monitor

Info

Publication number
JPS6312343A
JPS6312343A JP15488286A JP15488286A JPS6312343A JP S6312343 A JPS6312343 A JP S6312343A JP 15488286 A JP15488286 A JP 15488286A JP 15488286 A JP15488286 A JP 15488286A JP S6312343 A JPS6312343 A JP S6312343A
Authority
JP
Japan
Prior art keywords
laser light
ultraviolet laser
reactor
laser
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15488286A
Other languages
Japanese (ja)
Other versions
JPH067065B2 (en
Inventor
Hiroshi Sekizuka
関塚 博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON TAIRAN KK
Original Assignee
NIPPON TAIRAN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON TAIRAN KK filed Critical NIPPON TAIRAN KK
Priority to JP61154882A priority Critical patent/JPH067065B2/en
Publication of JPS6312343A publication Critical patent/JPS6312343A/en
Publication of JPH067065B2 publication Critical patent/JPH067065B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/121Coherent waves, e.g. laser beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/0014Monitoring arrangements not otherwise provided for

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Chemical Vapour Deposition (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To precisely monitor the position and shape of laser light with an inexpensive mechanism by arranging a transparent glass sheet emitting fluorescence by the radiation of UV laser on the outside of a laser light outputting window, and providing an image pickup device capable of simultaneously catching the luminous image and the peripheral inclusions. CONSTITUTION:UV laser light 12 is passed through a reactor 2 in parallel with the surface of a sample 5 from an input window 9 in the laser CVD (chemical vapor deposition) device, and photochemical reaction is carried out on the plane of the sample 5. The transparent glass sheet 13 emitting fluorescence by the radiation of the UV laser light 12 is arranged on the outside of the output window 10 for introducing the laser light 12 to the outside of the reactor 2. Besides, the image pickup device 15 is arranged to catch the luminous image and the peripheral inclusions in the visual field. Since the laser light 12, the sample 5, and the peripheral inclusions can be observed by the same image surface of the monitor device 20 in this way, a change in the setting of a process parameter is facilitated, and the exposure to harmful UV rays can be prevented, since the observation is done by the monitor device 20.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、紫外線レーザ光の反応器内で光化学反応をさ
せるようにした装置の紫外線レーザモニターに関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an ultraviolet laser monitor for an apparatus that causes a photochemical reaction in an ultraviolet laser light reactor.

[従来の技術] 近年、エキシマレーザ等、波長が183〜350nmの
紫外線レーザ光が半導体製造装置やそのプロセス等の研
究に多く利用され始めているが、380nm以下の波長
となると直接目視することが不可能となり、プロセス条
件の設定、確認等が困難である。
[Prior Art] In recent years, ultraviolet laser light with a wavelength of 183 to 350 nm, such as excimer laser, has begun to be widely used in research on semiconductor manufacturing equipment and its processes, but when the wavelength is 380 nm or less, direct visual observation is impossible. This makes it difficult to set and confirm process conditions.

このような紫外線レーザ光の照射状態を容易に観測する
方法としては、蛍光板を利用してその発光を見る方法が
ある。また、紫外線像を可視化する手段として、紫外線
ビジコン、紫外域に感度を持つマイクロチャンネルプレ
ート(MCP)、そして高感度なものとして、紫外用イ
メージ・インテンシファイヤ(I I)等がある。紫外
光量にネルギ)の測定であれば、紫外光照度計及び紫外
レーザ光パワーメータが存在する。
As a method for easily observing the irradiation state of such ultraviolet laser light, there is a method of observing the emission using a fluorescent screen. Further, as means for visualizing ultraviolet images, there are an ultraviolet vidicon, a microchannel plate (MCP) sensitive to the ultraviolet region, and a highly sensitive ultraviolet image intensifier (II). For measuring the amount of ultraviolet light (energy), there are ultraviolet light meters and ultraviolet laser light power meters.

しかしながら、上記蛍光板を利用する方法は、手軽であ
るが、紫外線の反射散乱等による有害紫外線の被曝の危
険性を持ち、安全上の問題がある。また、微妙なビーム
形状、強度分布の測定には無理がある。
However, although the method of using the fluorescent screen is easy, there is a risk of exposure to harmful ultraviolet rays due to reflection and scattering of ultraviolet rays, which poses a safety problem. Furthermore, it is difficult to measure delicate beam shapes and intensity distributions.

一方、紫外線ビジコン、MCP、IIはいずれも高感度
′であり、普通の映像用としては憬れたものであるが、
レーザビームのような強力なスポット光に対してはハレ
ーションを起したり、撮像面の焼き付きを起し、実用上
問題がある。また、適切な光量に減衰させると、紫外線
レーザ光の照射位置を試料等の周辺介在物との関連で観
察するに際してその周辺介在物が映らなくなり、その部
分に強力な照明が必要となる。さらに、これらは大変高
価なものでもある。その他、レーザパワメータの使用は
、一般にその受光部が大面積であるため、ビーム位置、
形状を測定するのには適さない。
On the other hand, the ultraviolet vidicon, MCP, and II all have high sensitivity and are poor for ordinary video use.
Powerful spot light such as a laser beam causes halation and burn-in on the imaging surface, which poses practical problems. Furthermore, if the light intensity is attenuated to an appropriate level, when observing the irradiation position of the ultraviolet laser beam in relation to surrounding inclusions such as a sample, the surrounding inclusions will no longer be visible, and strong illumination will be required in that area. Furthermore, they are also very expensive. In addition, when using a laser power meter, the light receiving part is generally large, so the beam position,
Not suitable for measuring shapes.

[発明が解決しようとする問題点〕 本発明の目的は、紫外線により蛍光発光する透明ガラス
板を利用し、有害紫外線の被曝の危険性なしに、紫外線
レーザ光の発光像を捕えると共に、紫外線レーザ光の照
射位置との位置的関係を観察すべき反応器内の周辺介在
物の像をも同時に捕えて、それらをリアルタイムに映像
表示し、レーザ光の位置と形状を精度良く低コストな機
構でモニターできるようにした紫外線レーザモニターを
得ることにある。
[Problems to be Solved by the Invention] An object of the present invention is to capture the emission image of ultraviolet laser light without the risk of exposure to harmful ultraviolet rays by using a transparent glass plate that emits fluorescence when exposed to ultraviolet rays, and to It simultaneously captures images of peripheral inclusions in the reactor whose positional relationship with the light irradiation position must be observed, displays them in real time, and accurately monitors the position and shape of the laser beam using a low-cost mechanism. The goal is to obtain an ultraviolet laser monitor that can be used for monitoring.

゛[問題点を解決するための手段] 上記目的を達成するため、本発明の紫外線レーザモニタ
ーは、紫外線レーザ光を通過させて光化学反応をさせる
ようにした反応器におけるレーザ光の出力窓の外側に、
紫外線レーザの照射により蛍光発光する透明ガラス板を
介して、その発光像を捕えると共に、紫外線レーザ光の
照射位置との位置的関係を観察すべき反応器内の周辺介
在物の像を捕える撮像装置を配置し、それをモニタ装置
に接続している。
゛[Means for Solving the Problems] In order to achieve the above object, the ultraviolet laser monitor of the present invention provides an ultraviolet laser monitor that monitors the outside of the output window of the laser beam in the reactor through which the ultraviolet laser beam is caused to cause a photochemical reaction. To,
An imaging device that captures an image of the emitted light through a transparent glass plate that emits fluorescence when irradiated with an ultraviolet laser, and also captures images of peripheral inclusions in the reactor whose positional relationship with the irradiation position of the ultraviolet laser beam should be observed. and connect it to a monitoring device.

[作 用] 上記構成を有する紫外線レーザモニターによれば、紫外
線レーザの照射により蛍光発光するガラス板を逐して、
反応器内の試料等の周辺介在物とレーザ光との位置的関
係及びレーザ光の断面形状が、一つの撮像装置により、
一つのモニタ装置上に映像表示され、従って、有害紫外
線の被曝の危険性なしに、それらを精度良くモニターす
ることができる。
[Function] According to the ultraviolet laser monitor having the above configuration, the glass plate that emits fluorescence by irradiation with the ultraviolet laser is removed,
The positional relationship between peripheral inclusions such as a sample in the reactor and the laser beam, as well as the cross-sectional shape of the laser beam, can be determined using a single imaging device.
The images are displayed on a single monitor device, so they can be monitored accurately without the risk of exposure to harmful ultraviolet radiation.

[実施例] 第1図は4本発明に係る紫外線レーザモニターを備えた
レーザCVD  (化学気相成長)装置の構成を例示し
たもので、レーザCVD装置1は、反応器2内にX −
Yステージ3を備え、その上に設けた支持台4上に試料
5が載置される。
[Example] FIG. 1 illustrates the configuration of a laser CVD (chemical vapor deposition) apparatus equipped with four ultraviolet laser monitors according to the present invention.
A Y stage 3 is provided, and a sample 5 is placed on a support base 4 provided thereon.

また、上記反応器2の器壁には、真空装δに連通させる
排気口8及び反応器2内への反応ガスの導入ロア、8を
設けると共に、レーザ光の入力窓9及び出力窓lOを設
け、図示しないレーザ装置からの紫外線レーザ光12を
、入力窓9を通して反応器2内に置かれた試料5の表面
と平行に通過させ、試料面上において光化学反応をさせ
るように構成している。出力窓10は、試料5の表面を
通過したレーザ光12を反応器2外に導出するためのも
ので、この出力窓10を透過した不可視紫外線レーザ光
を可視化するため、出力窓10の外側には、紫外線Q−
ザの照射により蛍光発光する透明ガラス板13を配置し
、その透明ガラス板13を介して、紫外線レーザの発光
像を捕える撮像装置15を配置している。上記撮像装置
15は、紫外線レーザ光12の照射位置を、反応器2内
における試料5等の周辺介在物との位置的関係において
観察するため、その周辺介在物をも視野内に収めるよう
に配置したものである。なお、図中、17は必、要に応
じて取付けるUVカットフィルタ、 18は接写レンズ
を示している。
In addition, the wall of the reactor 2 is provided with an exhaust port 8 communicating with the vacuum system δ and a lower part 8 for introducing the reaction gas into the reactor 2, as well as an input window 9 and an output window IO for laser light. The ultraviolet laser beam 12 from a laser device (not shown) is passed through the input window 9 parallel to the surface of the sample 5 placed in the reactor 2 to cause a photochemical reaction on the sample surface. . The output window 10 is for guiding the laser beam 12 that has passed through the surface of the sample 5 to the outside of the reactor 2. In order to visualize the invisible ultraviolet laser beam that has passed through the output window 10, an output window 10 is provided outside the output window 10. is ultraviolet ray Q-
A transparent glass plate 13 that emits fluorescent light when irradiated with laser light is disposed, and an imaging device 15 that captures an image emitted by the ultraviolet laser is disposed through the transparent glass plate 13. In order to observe the irradiation position of the ultraviolet laser beam 12 in relation to the peripheral inclusions such as the sample 5 in the reactor 2, the imaging device 15 is arranged so that the peripheral inclusions are also included in the field of view. This is what I did. In addition, in the figure, 17 indicates a UV cut filter to be attached as necessary, and 18 indicates a close-up lens.

撮像装置15としては、一般に、CODまたはMO3第
3形オカメラなど、半導体撮像素子を備えたものが利用
されるが、必ずしもこれらに限るものでぼない。
As the imaging device 15, one equipped with a semiconductor imaging device, such as a COD or MO3 type 3 camera, is generally used, but the invention is not necessarily limited to these.

そして、上記撮像装置15は、それをビデオモニタ装置
20に接続している。
The imaging device 15 is connected to a video monitor device 20 .

このような構成を有する紫外線レーザモニターによれば
、前記透明ガラス板13を通して、反応器2内の試料表
面とレーザ光12との位置的関係及びレーザ光の断面形
状を、一つの撮像装置15を通して一つのビデオモニタ
装置20上で観測することができる0口出、21はビデ
オモニタ装置20上に表示されたレーザ光の発光像、2
2は同じく試料の画像である。
According to the ultraviolet laser monitor having such a configuration, the positional relationship between the sample surface in the reactor 2 and the laser beam 12 and the cross-sectional shape of the laser beam can be observed through one imaging device 15 through the transparent glass plate 13. 0 output that can be observed on one video monitor device 20; 21 is an emission image of the laser beam displayed on the video monitor device 20; 2;
2 is an image of the sample as well.

なお、上記CODカメラ等の撮像装置15にカラータイ
プのものを利用し、紫外線レーザ光12の中心に参照光
としてHe−Meの赤色(6328A )レーザビーム
光を重畳させ、直接的な目視と共にビデオモニタ装置2
0上でも各レーザが同時に観測できるようにすれば、よ
り便利なものとすることができる。
In addition, a color type imaging device 15 such as the COD camera is used, and a He-Me red (6328A) laser beam light is superimposed as a reference light on the center of the ultraviolet laser light 12, and both direct visual observation and video observation are performed. Monitor device 2
If each laser can be observed simultaneously even on 0, it will be more convenient.

また、透明ガラス板13上の発光像と試料の面像の焦点
をシャープにするため、撮像装置15の接写レンズ18
を容易に取付自在にするとか、焦点距離の異なる接写レ
ンズを迅速に交換し、易くするのが望ましい。
In addition, in order to sharpen the focus of the luminescent image on the transparent glass plate 13 and the plane image of the sample, the close-up lens 18 of the imaging device 15
It would be desirable to be able to easily mount the lens, or to be able to quickly and easily exchange close-up lenses with different focal lengths.

° さらに、撮f!装置15において、1個のレンズで
もって透明ガラス板13上の発光像に焦点を合わせると
、同時に撮像する反応器2内の試料等の像がある程度ぼ
けることになるが、事前に試料等の表面に焦点を合わせ
て透明ガラス板13またはビデオモニタ装置20の画面
にその試料形状をマークしておくことにより、試料面位
置を鮮明化することができる。
° Furthermore, shooting f! In the device 15, if one lens is used to focus the luminescent image on the transparent glass plate 13, the image of the sample, etc. inside the reactor 2, which is simultaneously imaged, will be blurred to some extent. By focusing on the sample shape and marking the sample shape on the transparent glass plate 13 or the screen of the video monitor device 20, the sample surface position can be made clear.

[発四の効果] 以上に詳述した本発明の紫外線レーザモニターによれば
、 (+)レーザ光と周辺介在物が同一像面で観測できるた
め、プロセス命パラメータの設定変更が容易となり、′
再現性及び操作性が向上する。
[Effects of irradiation] According to the ultraviolet laser monitor of the present invention detailed above, since the (+) laser beam and peripheral inclusions can be observed on the same image plane, it is easy to change the settings of process parameters, and
Improves reproducibility and operability.

(2)紫外線レーザの照射により蛍光発光する透明ガラ
ス板を介して、その発光像を捕える撮像装置を配置し、
それに接続したモニタ装置によって観察できるようにし
ているので、有害紫外線の被曝の危険性がない。
(2) Arranging an imaging device that captures the luminescent image through a transparent glass plate that emits fluorescence when irradiated with an ultraviolet laser;
Since it can be observed using a monitor device connected to it, there is no risk of exposure to harmful ultraviolet rays.

(3)高感度の撮像装置を利用する必要がなく、そのた
め強力なスポット光に対してハレーシ1ン、を起したり
、撮像面の焼き付きを起すようなことはなく、また撮像
装置への紫外線の入射もないため、長寿命である。
(3) There is no need to use a high-sensitivity imaging device, and as a result, there is no need to use a high-sensitivity imaging device, so there is no possibility of halation caused by strong spot light or burn-in on the imaging surface, and there is no need to use ultraviolet rays on the imaging device. It has a long lifespan as there is no incidence of

(4)格別高価な装置等を用いることなく、レーザ゛ 
 光の位置と形状を精度良く低コストな機構でモニター
することができる。
(4) Without using particularly expensive equipment, laser
The position and shape of light can be monitored with high precision and low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る紫外線レーザモニターを備えたレ
ーザCVD装置の断面図である。 2・嗜反応器、  8・・入力窓、 10・・出力窓、  12・・紫外線レーザ光、13・
・透明ガラス板、15φ・撮像装置、20・魯モニタ装
置。
FIG. 1 is a sectional view of a laser CVD apparatus equipped with an ultraviolet laser monitor according to the present invention. 2. Reactor, 8. Input window, 10. Output window, 12. Ultraviolet laser light, 13.
・Transparent glass plate, 15φ・Imaging device, 20・Romonitor device.

Claims (1)

【特許請求の範囲】[Claims] 1、紫外線レーザ光の入出力窓を持つ反応器内に上記レ
ーザ光を通過させて反応器内で光化学反応をさせるよう
にした装置のレーザモニターであって、上記出力窓の外
側に、紫外線レーザの照射により蛍光発光する透明ガラ
ス板を介して、その発光像を捕えると共に、紫外線レー
ザ光の照射位置との位置的関係を観察すべき反応器内の
周辺介在物の像を捕える撮像装置を配置し、それをモニ
タ装置に接続したことを特徴とする紫外線レーザモニタ
ー。
1. A laser monitor for an apparatus in which the laser beam is passed through a reactor having an input/output window for the ultraviolet laser beam to cause a photochemical reaction within the reactor, and the ultraviolet laser beam is provided outside the output window. An imaging device is installed to capture the emitted light image through a transparent glass plate that emits fluorescence when irradiated with the ultraviolet laser beam, and to capture images of peripheral inclusions in the reactor whose positional relationship with the irradiation position of the ultraviolet laser beam should be observed. An ultraviolet laser monitor characterized in that the ultraviolet laser monitor is connected to a monitoring device.
JP61154882A 1986-07-01 1986-07-01 UV laser monitor Expired - Lifetime JPH067065B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61154882A JPH067065B2 (en) 1986-07-01 1986-07-01 UV laser monitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61154882A JPH067065B2 (en) 1986-07-01 1986-07-01 UV laser monitor

Publications (2)

Publication Number Publication Date
JPS6312343A true JPS6312343A (en) 1988-01-19
JPH067065B2 JPH067065B2 (en) 1994-01-26

Family

ID=15594015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61154882A Expired - Lifetime JPH067065B2 (en) 1986-07-01 1986-07-01 UV laser monitor

Country Status (1)

Country Link
JP (1) JPH067065B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01218080A (en) * 1988-02-26 1989-08-31 Fanuc Ltd Beam monitor system of laser oscillator
KR20020089043A (en) * 2001-05-22 2002-11-29 이호근 An apparatus to observe inside of high pressure reactor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5815127A (en) * 1981-07-20 1983-01-28 Matsushita Electric Ind Co Ltd Measuring device for laser far field pattern

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5815127A (en) * 1981-07-20 1983-01-28 Matsushita Electric Ind Co Ltd Measuring device for laser far field pattern

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01218080A (en) * 1988-02-26 1989-08-31 Fanuc Ltd Beam monitor system of laser oscillator
KR20020089043A (en) * 2001-05-22 2002-11-29 이호근 An apparatus to observe inside of high pressure reactor

Also Published As

Publication number Publication date
JPH067065B2 (en) 1994-01-26

Similar Documents

Publication Publication Date Title
JP2859159B2 (en) Method and apparatus for in-situ real-time observation of the morphology and thickness of a localized area of a surface layer of a thin-layer structure
US4573195A (en) System for the automatic observation and quantification of phenomena capable of being detected by fluorescence
Eckert et al. The subcellular origin of bioluminescence in Noctiluca miliaris
US20080054166A1 (en) Detachably coupled image intensifier and image sensor
JP2008502929A (en) Inspection apparatus or inspection method for fine structure by reflected or transmitted infrared light
JPS5917590B2 (en) X-ray fluoroscope
JP2005106815A (en) Optical alignment of x-ray microanalyzer
JPS59145930A (en) Small-sized time spectral photometer
JPH01152377A (en) Partial discharge detection method
JP2622567B2 (en) High sensitivity optical imaging device
CN102353526B (en) Device and method for detecting uniformity of plate color glass filter
EP1136816A2 (en) X-ray spectroscopic analyzer having sample surface observation mechanism
US5406089A (en) Phytoluminometer
US7105834B2 (en) Fluorescent coating void detection system and method
JP7197134B2 (en) Fluorometer and observation method
JPS6312343A (en) Ultraviolet laser monitor
CN117607108A (en) System and method for measuring semiconductor point defect
JP3107773B2 (en) Fluorescent dot area meter
JPH02259515A (en) Measuring instrument for fluorescent x-rays film thickness
RU2280965C1 (en) Laser localizer for x-ray emitter
JPH08201413A (en) Two-dimensional flow velocity measuring device
Fernández et al. Improved optical diagnostics for the NOVA laser
JPH0312542A (en) Mask surface inspection device
US3778161A (en) Extended-range spectroscope for intense radiation sources
JPH04343003A (en) Detecting apparatus of fluorescence of semiconductor/ mask