[go: up one dir, main page]

JPS63123433A - Reactor - Google Patents

Reactor

Info

Publication number
JPS63123433A
JPS63123433A JP26767886A JP26767886A JPS63123433A JP S63123433 A JPS63123433 A JP S63123433A JP 26767886 A JP26767886 A JP 26767886A JP 26767886 A JP26767886 A JP 26767886A JP S63123433 A JPS63123433 A JP S63123433A
Authority
JP
Japan
Prior art keywords
gas
reaction
reactor
tube
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26767886A
Other languages
Japanese (ja)
Other versions
JPH0673625B2 (en
Inventor
Toshikazu Shinkawa
新川 利和
Hiroshi Makihara
牧原 洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Gas Chemical Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP26767886A priority Critical patent/JPH0673625B2/en
Publication of JPS63123433A publication Critical patent/JPS63123433A/en
Publication of JPH0673625B2 publication Critical patent/JPH0673625B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To prevent excessive rise of catalytic reaction temp. by pressurizing gas separated through gas-liquid separation with a circulation gas compressor, and introducing it from the upper ends of annular spaces of respective pipes packed with a granular solid catalyst. CONSTITUTION:Central pipes 19 are positioned at the centers of a plurality of reaction pipes 11. The reaction pipes 11 are fitted to the tube plates 14, 15 of the upper and lower parts, and the upper ends of the central pipes 19 are fitted to a partition plate 18 and the lower ends thereof are closed with end covers 21. A granular solid catalyst 12 is packed in the reaction pipes 11. Gas produced by a steam reforming method or the like is introduced into the central pipes 19 as replenishment gas 1 of a reactor 7. The reactor having the following structure is obtained wherein the ratio of CO, CO2 to H2 can be made smaller in comparison with a conventional method in case of bringing circulated nonreactive gas 4 having a low-concn. of methanol into contact with the catalyst 12 packed in the reaction pipes 11.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は新規なメタノール合成用多管式反応器に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a novel multi-tubular reactor for methanol synthesis.

〔従来の技術〕[Conventional technology]

炭化水素を主成分とするガスを水蒸気改質して主として
水素、一酸化炭素、二酸化炭素の混合ガスを得、これを
原料としてメタノール合成する方法はよく知られている
A well-known method is to steam-reform a gas mainly composed of hydrocarbons to obtain a mixed gas mainly consisting of hydrogen, carbon monoxide, and carbon dioxide, and to synthesize methanol using this as a raw material.

この種のメタノール合成の一例を表1(出典;触媒学会
編触媒講座A6「触媒反応装置とその設計」294頁、
講談社すイエンテイフイク刊。
An example of this type of methanol synthesis is shown in Table 1 (Source: Catalyst Society of Japan, Catalysis Course A6 "Catalytic Reactor and Its Design", p. 294,
Published by Kodansha Suentei.

1958年12月)に、その一般に用いられているメタ
ノール合成プラントの機器配列と管系を第6図に示す。
Figure 6 shows the equipment arrangement and piping system of a commonly used methanol synthesis plant (December 1958).

第6図において、炭化水素の水蒸気改質系より得られた
主として水素、一酸化炭素、二酸化炭素よりなる合成原
料ガス1は、合成ガス圧縮機2により圧縮後、メタノー
ル分離器3で分離された循環ガス4と混合され、循環ガ
ス圧縮機5で更に圧縮された後、熱交換器6で加熱され
、メタノール合成反応器7に供給されメタノール合成反
応が行なわれる。合成済みのガスは熱交換器8で冷却さ
れ、メタノール分離器3に送られ、と\で循環ガス4と
なる未反応ガスと粗メタノール液9に分離され、循環ガ
ス4の一部はパージガス10として一部系外に放出され
るが大部分は前述のように循環される。
In FIG. 6, a synthesis raw material gas 1 mainly consisting of hydrogen, carbon monoxide, and carbon dioxide obtained from a hydrocarbon steam reforming system is compressed by a synthesis gas compressor 2 and then separated by a methanol separator 3. After being mixed with the circulating gas 4 and further compressed by the circulating gas compressor 5, it is heated by the heat exchanger 6, and then supplied to the methanol synthesis reactor 7, where a methanol synthesis reaction is performed. The synthesized gas is cooled in the heat exchanger 8 and sent to the methanol separator 3, where it is separated into unreacted gas and crude methanol liquid 9, which becomes the circulating gas 4. A part of the circulating gas 4 is sent to the purge gas 10. Although some of it is released outside the system, the majority is recycled as described above.

第6図のメタノール合成反応器7としては、■複数個の
反応管の管内に粒状固形触媒を充填し、この触媒層に水
素、一酸化炭素、二酸化炭素を有意物質とした加圧混合
ガスを流動させて、2111、−1− Co −+ (
H,OH−−−一−(1)という接触反応を生じさせる
と共に、適正反応温度よりも低い温度の飽和条件の加圧
水と該反応管の外表面に位置させて(1)式の発熱反応
の進行に伴なって発生する熱を反応管の管壁を介した熱
移動により水の蒸発潜熱に転換し反応温度を適正条件範
囲に維持しようとする反応器(特公昭56−22854
号公報参照)及び■本発明者らが先に提案してなる反応
器、すなわち複数個の反応管の中央に中心管を位置させ
、反応管と中心管に囲まれた環状空間を粒状触媒充填部
とし、該中心管の下方より上方へ未反応供給ガスが流通
し、かつ該環状触媒層においては上方より下方へガスが
流通するようにした発熱反応を行わす反応器であって、
未反応供給ガスが流通する中心管が上部に設置された一
つ以上の混合室に連結され、該混合室には中心管を出た
未反応供給ガスより低い温度の冷い未反応供給ガス導入
部が設けられた反応器(特願昭59−80055号)な
どがある。
The methanol synthesis reactor 7 shown in Fig. 6 consists of: 1) A plurality of reaction tubes are filled with a granular solid catalyst, and a pressurized mixed gas containing hydrogen, carbon monoxide, and carbon dioxide as significant substances is supplied to the catalyst layer. 2111, -1- Co -+ (
The exothermic reaction of formula (1) is caused by placing pressurized water under saturated conditions at a temperature lower than the appropriate reaction temperature on the outer surface of the reaction tube. A reactor that attempts to maintain the reaction temperature within an appropriate condition range by converting the heat generated as the reaction progresses into the latent heat of vaporization of water by heat transfer through the tube wall of the reaction tube (Japanese Patent Publication No. 56-22854)
(Refer to the above publication) and ■ The reactor previously proposed by the present inventors, that is, a center tube is located in the center of a plurality of reaction tubes, and the annular space surrounded by the reaction tubes and the center tube is filled with granular catalyst. A reactor for carrying out an exothermic reaction in which unreacted supply gas flows from the bottom to the top of the central tube, and gas flows from the top to the bottom in the annular catalyst layer,
A central tube through which unreacted feed gas flows is connected to one or more mixing chambers located above, into which cold unreacted feed gas is introduced at a lower temperature than the unreacted feed gas leaving the central tube. There is a reactor equipped with a section (Japanese Patent Application No. 59-80055).

上記■の反応器の概略を第7図に示す。この反応器には
複数個(図では1個のみ示す)の反応管11が設けられ
ており、該管11内には第7図に示すように固形粒状触
媒12を充填し、この触媒層をガスが移動しつつ接触反
応によジメタツールを生成し、反応熱は反応管11外に
接した水に伝達させて水蒸気を得る。
A schematic diagram of the reactor (2) above is shown in FIG. This reactor is equipped with a plurality of reaction tubes 11 (only one is shown in the figure), and the tubes 11 are filled with a solid granular catalyst 12 as shown in FIG. While the gas is moving, dimethatol is generated through a catalytic reaction, and the reaction heat is transferred to the water in contact with the outside of the reaction tube 11 to obtain water vapor.

圧縮機(第6図中の2と5)で昇圧され、熱交換器(第
6図中の6)で予熱されたガス(未反応ガス)は、第7
図において、上部値15と上部管板14で仕切られた空
間■内に送入される。このガスは複数個の反応管11内
へ分散流入し、(1)式の接触反応を生じつつ反応管1
1内を上から下へ移動し、下部管板15と下部鏡16で
仕切られた空間@へ流出し、その後、下部鏡16に設け
られたガス出口ノズルから取出される。上下部管板1a
、15と胴17、および反応管11で囲まれた空間θに
は飽和温度の加圧水が流入されている。
The gas (unreacted gas) is pressurized by the compressor (2 and 5 in Figure 6) and preheated by the heat exchanger (6 in Figure 6).
In the figure, the tube is fed into a space (3) partitioned by an upper tube plate 15 and an upper tube plate 14. This gas flows into the plurality of reaction tubes 11 in a dispersed manner, causing the catalytic reaction of equation (1).
1 from top to bottom, flows out into a space @ partitioned by a lower tube plate 15 and a lower mirror 16, and is then taken out from a gas outlet nozzle provided in the lower mirror 16. Upper and lower tube plate 1a
, 15, the shell 17, and the reaction tube 11, pressurized water at a saturated temperature is introduced into the space θ.

また、上記■の反応器の概略を第8図に示す。Furthermore, a schematic diagram of the reactor (2) above is shown in FIG.

この反応器は熱交換器(第6図中の6)を経由しないガ
スを用いる。従って、反応器に導入されるガスの温度は
50〜150℃と接触反応を生ぜさせるには低い温度で
あシ、この点が上記■の反応器の場合と異なる。
This reactor uses gas that does not pass through a heat exchanger (6 in Figure 6). Therefore, the temperature of the gas introduced into the reactor must be 50 to 150 DEG C., which is low enough to cause a catalytic reaction, and this is different from the reactor described in (2) above.

この未反応ガスは、第8図において、下部鏡16と仕切
板18で囲まれた空間のに流入する。
This unreacted gas flows into the space surrounded by the lower mirror 16 and the partition plate 18 in FIG.

その後、複数個(図では1個のみ示す)の反応管11内
に位置された中心管19内に分散流入し、該中心管19
内を下から上へ流動し、上部値15と上部管板14で仕
切られた空間G内へ流入する。このガスは中心管19内
を上昇する過程で接触反応熱を管壁19を介した伝熱に
より与えられる(加熱昇温される)、即ちこの過程でガ
スは適正温度に予熱されると共に、接触反応温度の過上
昇を防止する。このように中心管19は熱交換器として
機能し、未反応ガスは冷媒としての役割を有する。
Thereafter, the flow is dispersed into the central tubes 19 located in a plurality of reaction tubes 11 (only one is shown in the figure), and the central tubes 19
The liquid flows inside from the bottom to the top and flows into the space G partitioned by the upper tube plate 15 and the upper tube plate 14. In the process of rising in the central tube 19, this gas is given heat of contact reaction by heat transfer through the tube wall 19 (heated and raised in temperature). In other words, in this process, the gas is preheated to an appropriate temperature, and Prevent excessive rise in reaction temperature. In this way, the central tube 19 functions as a heat exchanger, and the unreacted gas has a role as a refrigerant.

空間e内に流入させられた未反応ガスは、反応管11と
中心管19の間の円環柱状空間に充填された触媒12層
を上から下へ流動し、接触反応を行ない、下部管板15
と仕切板18で構成される空間[F]に流出し、その後
ガス出口ノズルから取出される。
The unreacted gas flowing into the space e flows from top to bottom through the 12 layers of catalysts filled in the annular columnar space between the reaction tube 11 and the central tube 19, performs a catalytic reaction, and then passes through the lower tube plate. 15
and the partition plate 18, and is then taken out from the gas outlet nozzle.

この円環柱状空間をガスが移動しながら接触反応を生じ
る過程で発生する熱が上記の中心管19内のガスに与え
られると共に、反応管11外に接した飽和温度の加圧水
に反応管11の管壁を介した熱移動により与えられ、反
応温度の過上昇を防止する。水に与えられた熱は水蒸気
として取出し、動力用などの用途に利用する。
The heat generated in the process of causing a catalytic reaction while the gas moves through this annular columnar space is given to the gas in the central tube 19, and the pressurized water at a saturated temperature in contact with the outside of the reaction tube 11 is fed into the reaction tube 11. Provided by heat transfer through the tube wall, preventing excessive rise in reaction temperature. The heat given to the water is extracted as steam and used for purposes such as power generation.

ところで、上記のようなメタノール合成反応器に用いら
れる触媒として、現在量も優れている銅系触媒は、適正
な反応温度範囲が220〜280℃であって、この温度
以上になると触媒の活性低下、平衡メタノール濃度の低
下、好ましくない副反応生成物の増加が生じるという欠
点がある。この温度制御がメタノール合成用反応器の構
造の良否を支配する大きい要因となる。
By the way, the copper-based catalyst, which is currently available in excellent quantities, has an appropriate reaction temperature range of 220 to 280°C as a catalyst used in the methanol synthesis reactor as mentioned above, and if the temperature exceeds this temperature, the activity of the catalyst decreases. , a decrease in the equilibrium methanol concentration and an increase in undesirable side reaction products occur. This temperature control is a major factor governing the quality of the structure of the reactor for methanol synthesis.

特に、触媒の改良により反応速度が大となるに従い発生
熱量も大となり、温度制御技術が大きい問題となり、こ
の点を解決しないと空間速度を小とすることができない
In particular, as the reaction rate increases due to improved catalysts, the amount of heat generated also increases, creating a major problem in temperature control technology, and unless this point is solved, it will not be possible to reduce the space velocity.

この空間速度と小にすることができれば、触媒1をガス
が移動する際のガス流動抵抗、即ち圧力損失が小となり
、循環ガス圧縮機のS動エネルギー(動力費)を小とす
ることができると共に、接触反応時間が大となシ、反応
器内のメタノール生成量を大とすることができる(平衡
濃度に近づけろ)という工業的々利点がある。
If this space velocity can be made small, the gas flow resistance, that is, the pressure loss when the gas moves through the catalyst 1, will be small, and the S dynamic energy (power cost) of the circulating gas compressor can be made small. In addition, there are industrial advantages in that the contact reaction time is long and the amount of methanol produced in the reactor can be increased (closer to equilibrium concentration).

しかし、上記■のような構造では反応管の管壁を介した
熱移動量に制限があり、反応器の性能として限界がある
。即ち、金属壁面で水が水蒸気泡を発生しながら熱移動
を行なう時の水側の熱伝達係数αは約I Q、 000
 kcal/L”h”Cであシ、これを大巾に増加させ
ることは不可能である。また一方、反応管内のガスと金
属壁面間の熱伝達係数は、圧力、ガス組成、流速により
若干変動するもα−1,000〜3. OOOkoa1
/yJ・h・cであり、これを大巾に増加させることも
不可能である。
However, in the structure like (2) above, there is a limit to the amount of heat transfer through the wall of the reaction tube, and there is a limit to the performance of the reactor. That is, when water transfers heat while generating water vapor bubbles on a metal wall surface, the heat transfer coefficient α on the water side is approximately IQ, 000.
kcal/L"h"C, and it is impossible to increase this significantly. On the other hand, the heat transfer coefficient between the gas in the reaction tube and the metal wall surface varies slightly depending on the pressure, gas composition, and flow rate, but is α-1,000 to 3. OOOkoa1
/yJ·h·c, and it is impossible to increase this significantly.

従って、反応管の外表面に接触させた水に対する熱移動
のみでは今後の高性能反応器としては充分でなく、本発
明者らは反応管の中央に中心管を位置させ、この中心管
を伝熱管、即ち熱交換器として機能させた上記■の反応
器を提案したのである。
Therefore, heat transfer to the water in contact with the outer surface of the reaction tube alone will not be sufficient for future high-performance reactors, and the inventors have positioned a central tube in the center of the reaction tube and used this central tube to transfer heat. They proposed the reactor (2) above, which functioned as a heat tube, that is, a heat exchanger.

なお、第6図において、メタノール分離器5で分離され
たガス4の組成は表1のパージガス組成で明らか々よう
にco 、 co17m、比は小さく第6図中の五点で
約0.05である。一方、水蒸気改質系から供給される
ガス1は表1の合成ガス圧縮機入口ガス組成で明らかな
ようにCo、Co、/馬比が大きく第6図中のG点で約
150である。
In addition, in FIG. 6, the composition of the gas 4 separated by the methanol separator 5 is co, co17m, as is clear from the purge gas composition in Table 1, and the ratio is small, approximately 0.05 at the five points in FIG. be. On the other hand, as is clear from the syngas compressor inlet gas composition in Table 1, gas 1 supplied from the steam reforming system has a large Co, Co,/horse ratio of about 150 at point G in FIG.

これは−例であって、水蒸気改質炉に供給される天然ガ
スの組成0/Tl比、メタノール合成反応器の性能など
で異なる。しかし、具体的な値には若干の変動はあるも
のの、メタノール分離器5出ロガス4と水蒸気改質系か
らの補給ガス1との間でco、co、/4比には大きい
差がある。
This is just an example, and differs depending on the composition 0/Tl ratio of the natural gas supplied to the steam reformer, the performance of the methanol synthesis reactor, etc. However, although there are slight variations in specific values, there is a large difference in the co, co, /4 ratio between the log gas 4 from the methanol separator 5 and the makeup gas 1 from the steam reforming system.

表1におけるメタノール合成反応器7人口ガスは、水蒸
気改質系からの補給ガス1に対しメタノール分離器出口
ガスを五75の割合で混合させている。これによりco
 、coA比約α09の状態で反応器7内に送入させ、
触媒に接触させている。
In the methanol synthesis reactor 7 population gas in Table 1, methanol separator outlet gas is mixed with 1 part make-up gas from the steam reforming system at a ratio of 575 parts. This allows co
, fed into the reactor 7 at a coA ratio of about α09,
in contact with the catalyst.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記■の構造の反応器を用いてメタノール合成反応を行
なわせた時の反応管の長さ方向の温度分布を第9図に示
す〔出典;野沢他「メタノール」化学工学701,46
4 ? (1982) 512頁〕に示す。第9回置は
第7図の反応器と同じものを、第9図(3)は第9回置
の対応位置における温度分布を示している。
Figure 9 shows the temperature distribution in the length direction of the reaction tube when a methanol synthesis reaction is carried out using the reactor with the structure of (2) above [Source: Nozawa et al. "Methanol" Chemical Engineering 701, 46]
4? (1982) p. 512]. The 9th station is the same as the reactor shown in FIG. 7, and FIG. 9 (3) shows the temperature distribution at the corresponding position of the 9th station.

第9図(A) 、 CB+に示すように触媒層入口で温
度が高くなるのは (1)  流入するガスのメタノール濃度が実質的にゼ
ロであり、反応平衡濃度との差が大きい、(2)未反応
のco、co、濃度が高い、という理由から反応速度が
大きい(単位管長即ち単位伝熱面積車シの発生熱量が大
きい)ためであり、これは触媒活性向上、空間速度小に
より更に顕著となるはずである。
As shown in Figure 9(A) and CB+, the temperature rises at the inlet of the catalyst layer because (1) the methanol concentration of the inflowing gas is essentially zero, and the difference from the reaction equilibrium concentration is large; (2) ) This is because the reaction rate is high due to the high concentration of unreacted co, co, (the amount of heat generated per unit pipe length, that is, unit heat transfer area is large), and this is due to the increased catalyst activity and small space velocity. It should be noticeable.

なお、この第9図では温度上昇−反応速度上昇という要
因も含まれている。
Note that this FIG. 9 also includes the factor of temperature rise-reaction rate rise.

また、触媒層入口、即ち第9図(4)の反応管の上方域
から下方に行くに従い温度は次第に低下するが、これは ■ 粒状固形触媒に接するガスが有意濃度のメタノール
を含有したものになり、反応平衡濃度との差はあるもの
の上記(1)程のものではない ■ 未反応のco、oo、濃度が上記(2)よりも低下
している という理由により反応速度が小となるだめである。
Furthermore, the temperature gradually decreases from the inlet of the catalyst layer, that is, the upper region of the reaction tube in Figure 9 (4), to the lower part, but this is because the gas in contact with the granular solid catalyst contains a significant concentration of methanol. Although there is a difference from the reaction equilibrium concentration, it is not as large as (1) above ■ The reaction rate is lower because the concentration of unreacted co, oo, and so on is lower than in (2) above. It is.

換言すれば、との89図の反応器は管長方向の反応負荷
分布が大きく異なり、触媒層入口付近の負荷が著しく大
きい(大に過ぎる)という問題を有している。
In other words, the reactor shown in Figure 89 has a problem in that the reaction load distribution in the tube length direction is significantly different, and the load near the catalyst layer inlet is extremely large (too large).

一方、本発明者らが提案した上記■の反応器は中心管を
介した熱移動により第9図よりも大巾な改善はあるもの
の、傾向としては第9図に近い挙動を示す。
On the other hand, the reactor (2) proposed by the present inventors exhibits a behavior similar to that shown in FIG. 9, although there is a significant improvement over that shown in FIG. 9 due to heat transfer through the central tube.

この温度上昇は、前述のように、触媒の失活、好ましく
ない副反応生成物増加の点で好ましくなく、空間速度を
小とする際の障害となる。
As mentioned above, this temperature increase is undesirable in terms of deactivation of the catalyst and increase in undesirable side reaction products, and becomes an obstacle in reducing the space velocity.

本発明は、以上のような欠点のない反応器を提案するも
のである。
The present invention proposes a reactor that does not have the above drawbacks.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、縦方向に位置させた複数個の反応管を上下の
管板に固定させると共に該反応管の中央に中心管を位置
させ、反応管と中心管で構成された円環状空間に粒状固
形触媒を充填し該触媒に水素、一酸化炭素、二酸化炭素
を有意物質とした加圧混合ガスを接触させてメタノール
合成反応を行なわせ、かつその反応熱を反応管外に位置
させた飽和温度の加圧水に移行させて水蒸気を得るよう
にした反応器において、各反応管の粒状固形触媒を充填
した円環状空間の上端からは気液分離で分離したガスを
循環ガス圧縮機で昇圧して流入するようにすると共に、
各中心管の管内には水蒸気改質法などの手段で製造した
補給ガスが流入するようにし、該中心管の管長方向の任
意の位置から該中心管の管壁を貫通した複数個のガス流
入孔より接触反応を生じつつある触媒層内へ上記補給ガ
スが流入するようにして接触反応温度の過上昇を防止す
るようにしたことを特徴とする反応器に関するものであ
る。
The present invention fixes a plurality of reaction tubes positioned in the vertical direction to upper and lower tube plates, and also positions a center tube in the center of the reaction tubes, so that granular particles are formed in an annular space constituted by the reaction tubes and the center tube. A methanol synthesis reaction is carried out by filling a solid catalyst and contacting the catalyst with a pressurized mixed gas containing hydrogen, carbon monoxide, and carbon dioxide as significant substances, and the reaction heat is located outside the reaction tube at a saturation temperature. In the reactor, steam is obtained by transferring pressurized water to water, and from the upper end of the annular space filled with granular solid catalyst in each reaction tube, gas separated by gas-liquid separation is pressurized by a circulating gas compressor and flows into the reactor. In addition to doing so,
Makeup gas produced by a method such as steam reforming is allowed to flow into each center tube, and a plurality of gas inflows penetrate the wall of the center tube from any position in the longitudinal direction of the center tube. The present invention relates to a reactor characterized in that the supplementary gas is allowed to flow through the holes into the catalyst layer in which a catalytic reaction is occurring, thereby preventing an excessive rise in the catalytic reaction temperature.

本発明反応器は、その−例を第1図(4)に示すように
、前記■の反応器と同様、複数個〔第1図(4)では1
個のみ示す〕反応管11の中央に中心管19を位置させ
る。但し、この中心管19は反応管11の管長全体に設
ける必要はなく、第1図(4)に示すように反応管11
の管長の中間位置までとしてもよく、かつ第1図@)に
示すように中心管19の任意の位置にガス流出孔20を
設ける。複数個の反応管11は上下部の管板iA、15
に取付けられる。各中心管19は上端は仕切板18に取
付けられ、下端は端蓋21により閉じる。反応管11内
には粒状固形触媒12を充填する。反応管11内の触媒
12は第1図(q(2)のような充填形態となる。なお
、第1図(切は第1装置の0点における断面図、第1図
(至)は第1図(8)の0点における断面図である。
As an example of the reactor of the present invention is shown in FIG. 1 (4), similar to the reactor (2) above, a plurality of reactors [in FIG. 1 (4), one
[Only shown] A central tube 19 is located at the center of the reaction tube 11. However, this center tube 19 does not need to be provided over the entire length of the reaction tube 11, and as shown in FIG.
The gas outlet hole 20 may be provided at an arbitrary position of the central tube 19 as shown in FIG. The plurality of reaction tubes 11 are arranged on upper and lower tube plates iA, 15.
mounted on. Each central tube 19 has an upper end attached to the partition plate 18 and a lower end closed by an end cap 21. A granular solid catalyst 12 is filled in the reaction tube 11 . The catalyst 12 in the reaction tube 11 is packed in the form shown in Figure 1 (q(2)). FIG. 1 is a cross-sectional view at the 0 point in FIG. 1 (8).

中心管19には反応器7補給ガス1として水蒸気改質法
などで製造されたガスが流入するようにする。一方、第
5図のように、気液分離器3でメタノール(水および少
量の副反応生成物と溶解ガスを含む)液を分離した後の
循環ガス4、もしくはこれに若干量の新らしい補給ガス
1を添加したガスは熱交換器8で予熱されて反応器7の
循環ガスノズルから供給され、反応管11内へ流入する
ようにする。
A gas produced by steam reforming or the like is allowed to flow into the central pipe 19 as the supplementary gas 1 for the reactor 7. On the other hand, as shown in Fig. 5, the circulating gas 4 after the methanol (containing water and a small amount of side reaction products and dissolved gas) liquid has been separated in the gas-liquid separator 3, or a small amount of new replenishment to this The gas to which gas 1 has been added is preheated by a heat exchanger 8 and supplied from the circulating gas nozzle of the reactor 7, so as to flow into the reaction tube 11.

前記したように、気液分離器5出ロガス4は(:!0,
00./H,比が小さく、例えば前記衣1のとおシであ
り、換言すれば反応有意物質濃度が小さい。
As mentioned above, the log gas 4 output from the gas-liquid separator 5 is (:!0,
00. /H, ratio is small, for example, the ratio of the coating 1, in other words, the concentration of the substance with significant reaction is small.

即ち本発明は、メタノール論度小の状態の未反応ガス4
が反応管11内の触媒12に接する時のco、co、7
m、比を前記した第6,7.8図の従来のものに比し小
とすることができる構造の反応器である点に第1の特徴
を有する。
That is, in the present invention, the unreacted gas 4 in a state where the degree of methanol is low is
co, co, 7 when in contact with the catalyst 12 in the reaction tube 11
The first feature is that the reactor has a structure in which the ratio of m and m can be made smaller than that of the conventional reactor shown in FIGS. 6 and 7.8.

なお、反応平衡濃度との差が大であっても反応有意物質
の濃度が小であれば反応速度が大となり得ないことは当
然の理である。
It is a matter of course that even if the difference from the reaction equilibrium concentration is large, the reaction rate cannot be increased if the concentration of the reaction significant substance is small.

また本発明は、第3図に示すように触媒12層を移動し
つつあるガス中のメタノール濃度が有意値に達した後に
該ガス中にco、oo!/4比の大きい反応器補給ガス
1を添加する、即ちCO。
Further, the present invention provides co, oo! /4 ratio reactor make-up gas 1 is added, i.e. CO.

0偽の分圧を上げることのできる構造の反応器である点
に第2の特徴を有する。この反応器補給ガス1は前述の
第1図の)のように中心管19内を移動し、中心管19
の管曖に設けたガス流出孔20(複数)から触媒層12
内のガスに補給される。
The second feature is that the reactor has a structure that allows the partial pressure to be raised to zero. This reactor supply gas 1 moves in the center pipe 19 as shown in FIG.
From the gas outlet holes 20 (plurality) provided in the tube hole of the catalyst layer 12
The gas inside is replenished.

なお、ガス中のメタノール濃度が有意値であれば、co
、co、分圧を上昇させても反応速度が過大となり得な
いことは当然の理である。
Note that if the methanol concentration in the gas is a significant value, the co
, co, it is a matter of course that the reaction rate cannot become excessive even if the partial pressure is increased.

更に本発明は前記■の反応器のように中心管19内を流
動させるガスに冷媒としての役割を持たせることも含ま
れる。
Furthermore, the present invention includes providing the gas flowing in the central tube 19 with the role of a refrigerant, as in the reactor (2) above.

中心管19内へ供給する補給ガス1は圧縮機2吐出ガス
をガス予熱器(図示省略)を経由して予熱して送入する
こともでき、また一方では接触反応温度よ抄も低い40
〜150℃のガスを送入し、接触反応時間制#に用いる
こともできる。
The supplementary gas 1 to be supplied into the center pipe 19 can be supplied by preheating the discharge gas of the compressor 2 via a gas preheater (not shown), and on the other hand, the temperature is lower than the contact reaction temperature 40
It is also possible to introduce gas at ~150° C. and use it for a timed contact reaction.

本発明において、中心管19を第1装置のように反応管
11の管長の中間の位置までとする場合、中心管有の位
置と中心管無の位置では、触媒12の充填状況が第1図
tcqol18に示すように異なる。従って、反応管1
1径を同一とした場合は、中心管19の有無で空間速度
が異なることになるが、これは反応速度が小となる領域
、即ちガス中のメタノール濃度が上昇した領域では、接
触反応時間が大となるためメタノール生成量が増加(反
応器7出ロメタノ一ル濃度が上昇)する、ガスの流動抵
抗が小となるため圧損が小となるという利点があり、こ
れは本発明の第3の特徴である。
In the present invention, when the center tube 19 is extended to the middle of the length of the reaction tube 11 as in the first device, the filling state of the catalyst 12 is as shown in FIG. It is different as shown in tcqol18. Therefore, reaction tube 1
1 diameter is the same, the space velocity will differ depending on the presence or absence of the center tube 19, but this is because in the region where the reaction rate is small, that is, in the region where the methanol concentration in the gas increases, the contact reaction time will be different. This has the advantage that the amount of methanol produced increases (the concentration of methanol output from the reactor 7 increases), and the pressure drop decreases because the flow resistance of the gas decreases, which is the third aspect of the present invention. It is a characteristic.

但し、本発明の実施形態として第4図に示すような場合
もあシ、この場合はこの第5の特徴は危くなる。
However, there may also be a case as shown in FIG. 4 as an embodiment of the present invention, in which case the fifth feature is compromised.

〔作用〕〔実施例〕 本発明は、第S図に示すように1反応器7から出たガス
は熱交換器8で冷却され、メタノールを凝縮液化し、気
液分離器3でメタノール液を分離する。該気液分離器3
で分離されたガス4は一部をパージ10した後、残余の
ガスは循環ガス圧縮機5で昇圧し、熱交換器8で予熱し
た後、反応器7に送入される。co、cot/4比を調
節するため若干量の補給ガス1を加えてもよいO 図示省略の水蒸気改質などの手段で製造された新らしい
補給ガス1はco、co、lz比が大きいが、このガス
の全量(もしくは大部分)は、循環ガス4と混合するこ
となく、反応器7に送入さ・れる。温度を調節するため
に図示省略の熱交換器で予熱してもよい。
[Function] [Example] In the present invention, as shown in FIG. To separate. The gas-liquid separator 3
A portion of the separated gas 4 is purged 10, and the remaining gas is pressurized by a circulating gas compressor 5, preheated by a heat exchanger 8, and then sent to a reactor 7. A small amount of supplementary gas 1 may be added to adjust the co, cot/4 ratio.O New supplementary gas 1 produced by means such as steam reforming (not shown) has a large co, co, lz ratio. , all (or most) of this gas is fed into the reactor 7 without mixing with the recycle gas 4. In order to adjust the temperature, preheating may be performed using a heat exchanger (not shown).

なお第5囚は第1,4図の構造の反応器に対応したもの
で、第2図の構造の反応器ではガス送入点の修正を要す
る。
Incidentally, the fifth case corresponds to the reactor having the structure shown in FIGS. 1 and 4, and in the case of the reactor having the structure shown in FIG. 2, the gas feeding point needs to be corrected.

また、第1図(4)において、循環ガス4は仕切板18
と上部管板14で区切られた空間■へ流入し、該空間■
から各反応管11の上端へ分散流入し、触媒12層を上
から下へ接触反応によりメタノールを生じつつ移動して
行く。水蒸気改質などで製造された新らしい補給ガス1
は上部鏡15と仕切板18で区切られた空間■へ流入し
、該空間のから各中心管19の上端へ入り、流出孔20
から触媒12層へ分散流入する。
In addition, in FIG. 1 (4), the circulating gas 4 is
and the space ■ separated by the upper tube plate 14, and the space ■
It flows into the upper end of each reaction tube 11 in a dispersed manner, and moves from top to bottom of the catalyst 12 layer while producing methanol through a catalytic reaction. New supplementary gas produced by steam reforming etc. 1
flows into the space (2) divided by the upper mirror 15 and the partition plate 18, enters the upper end of each center pipe 19 from the space, and enters the outflow hole 20.
and then dispersedly flows into the 12 catalyst layers.

中心管19は、第1図(6)に示すように、仕切板〔第
1装置の18〕と触媒12層上端までの管長■について
は、連結管の役割シをなす。触媒12層上端からガス流
出孔20域までの管長■は補給ガス予熱領域(熱交換器
の役割)である。換言すれば補給ガス1は冷媒として機
能し接触反応温度の過上昇を抑制する。この管長■の区
間は循環ガス4中のao、ao、と馬の接触反応にメタ
ノールが生成される。
As shown in FIG. 1 (6), the central pipe 19 plays the role of a connecting pipe with respect to the pipe length (2) between the partition plate [18 of the first device] and the upper end of the catalyst 12 layer. The pipe length (2) from the upper end of the catalyst layer 12 to the gas outlet hole 20 area is a supplementary gas preheating area (role of heat exchanger). In other words, the supplementary gas 1 functions as a refrigerant and suppresses an excessive rise in the contact reaction temperature. In this section of the pipe length (■), methanol is produced by the contact reaction between ao and ao in the circulating gas 4.

中心管19の管長■は、有意メタノール濃度に達した循
環ガス4中に00.Co、/E、比の大きい補給ガス1
を添加する領域である。これは中心管19の管壁に設け
られた複数個の小孔(ガス流出孔)20により行われる
。このクス流出孔20の孔径、孔の数、位置、分布、差
圧については何ら制限はない。
The pipe length of the central pipe 19 is 0.00. Co, /E, make-up gas 1 with a large ratio
This is the area where . This is done by a plurality of small holes (gas outflow holes) 20 provided in the wall of the central tube 19. There are no restrictions on the diameter, number, position, distribution, or differential pressure of the sous outlet holes 20.

管長■は空間速度を大に維持する領域である。Pipe length ■ is the area where the space velocity is maintained high.

■、■、■、■の管長、中心管19の径についても何ら
制限はない。
There are no restrictions on the pipe lengths of (1), (2), (2), and (2) and the diameter of the central tube 19.

第1回置において、触媒12層で反応しつつ流下したガ
スは下部管板15と下部鏡16で構成された空間◎に流
入し、反応器7外へ取出される。上下部管板14,15
と胴17で仕切られた空間■には飽和温度の加圧水が位
置されている。当然ながらその温度は適正な接触反応温
度よりも低い条件に維持される。
In the first stage, the gas flowing down while reacting in the catalyst 12 layer flows into the space ◎ formed by the lower tube plate 15 and the lower mirror 16, and is taken out of the reactor 7. Upper and lower tube plates 14, 15
Pressurized water at a saturated temperature is placed in a space (2) partitioned by a body 17 and a body 17. Naturally, the temperature is maintained below the appropriate catalytic reaction temperature.

本発明反応器の他の実施形態を余す第2装置において、
循環ガス4は上部値1Sと仕切板1Bで区切られた空間
■から各反応器11上端に流入される。補給ガス1は仕
切板18と上部管板14で区切られた空間のから各中心
管19上端に流入される。
In a second device other than another embodiment of the reactor of the present invention,
The circulating gas 4 is introduced into the upper end of each reactor 11 from a space 1 separated by an upper part 1S and a partition plate 1B. The supplementary gas 1 flows into the upper end of each central tube 19 from a space defined by the partition plate 18 and the upper tube plate 14.

第2図のものは、上部管板14と仕切板18の間は、第
1図のものとは構造が異なり、第2図の)に示すように
上部管板14と仕切板18の間で中心管1?を屈曲させ
、連結管22の管壁を貫通して中心管19を位置させる
。連結管22の上端は仕切板1Bと上部値(第2図(4
)中の15)で構成される空間■に開放する。
The structure in Fig. 2 is different from that in Fig. 1 between the upper tube plate 14 and the partition plate 18, and as shown in ) in Fig. 2, the structure between the upper tube plate 14 and the partition plate 18 is different from that in Fig. 1. Central tube 1? is bent, and the central tube 19 is positioned by penetrating the tube wall of the connecting tube 22. The upper end of the connecting pipe 22 is connected to the partition plate 1B (Fig. 2 (4)
) is opened to the space ■ consisting of 15) inside.

第2図のものは、上方については仕切板18と上部値1
5との間の空間■、下方については下部管板15と下部
鏡16との間の空間◎に中心管19、連結管22などが
なく、前記■の反応器に比し、触媒充填、触媒抜き出し
の作業が大巾に容易となるという利点をも有する。
The one in Figure 2 has a partition plate 18 and an upper value 1 for the upper part.
There is no center pipe 19, connecting pipe 22, etc. in the space ◎ between the lower tube plate 15 and the lower mirror 16, and compared to the reactor in It also has the advantage that the extraction work becomes much easier.

また、第2図を上下逆にした反応器もあり、この反応器
は触媒充填作業の点からより有利であり、この場合、触
媒層内のガス流れは下から上へとなる。
There is also a reactor in which FIG. 2 is turned upside down, which is more advantageous from the point of view of catalyst loading operations, in which case the gas flow in the catalyst bed is from bottom to top.

第4図に示す反応器は第1図の反応器の中心管19の長
さを大として反応管11の下端の触媒−12層下端以上
まで延長させたもの、即ち第1図(ト)の■領域の中心
管の管長を大としたものである。この場合は充填される
触媒12層は全長にわたり円環状となる。
The reactor shown in FIG. 4 is one in which the length of the center tube 19 of the reactor in FIG. ■The length of the central canal in the area is increased. In this case, the 12 layers of catalyst packed have an annular shape over the entire length.

第4図の中心管19の管長延長は第2図の反応器にも適
用できる。
The extension of the length of the central tube 19 shown in FIG. 4 can also be applied to the reactor shown in FIG. 2.

第9図の作図要領により本発明反応器の反応管内接触反
応温度の管長方向の分布を模式図で第5図に示す。
FIG. 5 schematically shows the distribution of the contact reaction temperature in the reaction tube of the reactor of the present invention in the tube length direction using the drawing method shown in FIG. 9.

第7,8図に示す従来の反応器7では、循環ガス4に補
給ガス1を加えてco、co□/H,比を高めた状態で
反応器7内に送入し、これを触媒層に流入して触媒と接
触させるものであるが、メタノール濃度が実質的にゼロ
で、かつGo 、CO,/4比が大きいため、触媒12
層上方では反応速度が大となシ、反応管11の管壁を介
した熱移動速度と熱発生速度の平衡から温度が上昇して
行く。温度上昇と共に反応速度も大となυ、その温度は
Mに達する。このM点到達後はメタノール濃度上昇とc
o、co、/4比低下により反応速度が減少し、温度も
次第に低下して行く。
In the conventional reactor 7 shown in FIGS. 7 and 8, a supplementary gas 1 is added to the circulating gas 4 to increase the co, co□/H, ratio, which is fed into the reactor 7, and this is fed into the catalyst layer. However, since the methanol concentration is substantially zero and the Go, CO, /4 ratio is large, the catalyst 12
The reaction rate is high above the layer, and the temperature rises due to the equilibrium between the heat transfer rate through the wall of the reaction tube 11 and the heat generation rate. As the temperature rises, the reaction rate also increases, υ, and the temperature reaches M. After reaching this point M, the methanol concentration increases and c
As the o, co, /4 ratio decreases, the reaction rate decreases and the temperature gradually decreases.

一方、本発明反応器では、触媒12層にガスが流入する
段階で00.cot/4比小の状態にしているので、こ
の温度上昇が小さい(第5図のm点)。なお、この領域
を■領域となるように中心管19を位置させ、中心管1
9内のガスを冷媒として機能させ、反応管11外に位置
させた飽和温度の加圧水の冷媒効果との複合作用により
m点の温度上昇を小とする。
On the other hand, in the reactor of the present invention, 0.00. Since the cot/4 ratio is kept small, this temperature rise is small (point m in FIG. 5). In addition, the central tube 19 is positioned so that this area becomes the ■ area, and the central tube 1
The gas in the reaction tube 9 functions as a refrigerant, and the temperature rise at the point m is reduced by a combined effect with the refrigerant effect of pressurized water at a saturation temperature located outside the reaction tube 11.

m点をすぎて接触反応温度が若干低下した位置n点から
p点の■領域では中心管19内からco、cot/4比
の大きい補給ガス1を分散供給して接触反応に必要なc
o、oo□を補給する。これにより温度は再び上昇する
が、分散供給であるため温度の過上昇は完全に防止する
ことができる。
In the region (■) from point n to point p, where the contact reaction temperature has slightly decreased after passing point m, supplementary gas 1 with a large co, cot/4 ratio is supplied from the center pipe 19 in a distributed manner to reduce the amount of c necessary for the contact reaction.
Replenish o, oo□. As a result, the temperature rises again, but since the supply is distributed, an excessive rise in temperature can be completely prevented.

p点から触媒12層下端までの■領域では中心管19内
から補給ガス1は供給されないが、p点のガスに含有さ
れるco、co、が鳥と反応しつつ移動して行く。なお
、co、co、濃度の低下により反応速度が小となるの
で温度も次第に低下して行くが、反応管11出口付近の
接触反応温度が低い程平衡メタノール濃度が大となると
いう公知事実から■領域の温度、触媒層高さ、空間速度
は反応器性能上重要な要因となる。
Although the supplementary gas 1 is not supplied from the center pipe 19 in the region (2) from point p to the lower end of the catalyst layer 12, the co contained in the gas at point p moves while reacting with the bird. Note that as the reaction rate decreases due to the decrease in co, co, concentration, the temperature gradually decreases, but based on the known fact that the lower the contact reaction temperature near the outlet of the reaction tube 11, the higher the equilibrium methanol concentration becomes. The temperature of the region, the height of the catalyst layer, and the space velocity are important factors in reactor performance.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、反応管全長にわたって反応負荷を均一
にでき、また温度の過上昇を防止でき、しかも触媒の充
填、抜出し作業を容易にできる等種々の効果を奏しうる
According to the present invention, various effects can be achieved, such as making the reaction load uniform over the entire length of the reaction tube, preventing an excessive rise in temperature, and facilitating the loading and unloading operations of the catalyst.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(5)〜(至)は本発明反応器の一実施態様例を
示す図で、第1図(6)が全体図、第1図CBIはその
一部拡大断面図、第1図(C)は第1図(1)の0点の
断面図、第1図口は第1図(4)の0点の断面図、第2
図(4)(5)は本発明反応器の他の実施態様例を示す
図で、第2図(6)が全体図、第2図(8)はその一部
拡大断面図、第3図は本発明反応器の作用を説明するた
めのメタノール合成の全系を示す図、第4図は本発明反
応器の他の実施態様例を示す図、第5図は本発明反応器
の作用効果を説明するための図表、第6図は従来のメタ
ノール合成の全系を示す図、第7,8図は従来の反応器
を示す図、第9装置(B)は第7図に示す従来の反応器
の欠点を説明するための図である。 復代理人  内 1)  明 復代理人  萩 原 亮 − 復代理人  安 西 篤 夫 第1図 (D) 第4函 817□−一」 第6図 ! 未反応ガス 手続補正書 昭和62年 3月 9日
Fig. 1 (5) to (to) are diagrams showing one embodiment of the reactor of the present invention, Fig. 1 (6) is an overall view, Fig. 1 CBI is a partially enlarged sectional view, and Fig. 1 (C) is a cross-sectional view of point 0 in Figure 1 (1), the opening in Figure 1 is a cross-sectional view of point 0 in Figure 1 (4),
Figures (4) and (5) are diagrams showing other embodiments of the reactor of the present invention, where Figure 2 (6) is an overall view, Figure 2 (8) is a partially enlarged sectional view, and Figure 3. is a diagram showing the entire system of methanol synthesis to explain the action of the reactor of the present invention, Figure 4 is a diagram showing another embodiment of the reactor of the present invention, and Figure 5 is a diagram showing the effects of the reactor of the present invention. Figure 6 is a diagram showing the entire conventional methanol synthesis system, Figures 7 and 8 are diagrams showing the conventional reactor, and Figure 9 (B) is a diagram showing the conventional methanol synthesis system shown in Figure 7. It is a figure for explaining the drawback of a reactor. Sub-Agent 1) Meifuku Agent Ryo Hagiwara - Sub-Agent Atsuo Anzai Figure 1 (D) Box 4 817□-1'' Figure 6! Unreacted gas procedure amendment March 9, 1986

Claims (2)

【特許請求の範囲】[Claims] (1)縦方向に位置させた複数個の反応管を上下の管板
に固定させると共に該反応管の中央に中心管を位置させ
、反応管と中心管で構成された円環状空間に粒状固形触
媒を充填し該触媒に水素、一酸化炭素、二酸化炭素を有
意物質とした加圧混合ガスを接触させてメタノール合成
反応を行なわさせ、かつその反応熱を反応管外に位置さ
せた飽和温度の加圧水に移行させて水蒸気を得るように
した反応器において、各反応管の粒状固形触媒を充填し
た円環状空間の上端からは気液分離で分離したガスを循
環ガス圧縮機で昇圧して流入するようにすると共に、各
中心管の管内には水蒸気改質法などの手段で製造した補
給ガスが流入するようにし、該中心管の管長方向の任意
の位置から該中心管の管壁を貫通した複数個のガス流入
孔より接触反応を生じつつある触媒層内へ上記補給ガス
が流入するようにして接触反応温度の過上昇を防止する
ようにしたことを特徴とする反応器。
(1) A plurality of reaction tubes placed in the vertical direction are fixed to the upper and lower tube plates, and a center tube is positioned in the center of the reaction tubes, and granular solids are placed in the annular space composed of the reaction tubes and the center tube. A methanol synthesis reaction is carried out by filling a catalyst and contacting the catalyst with a pressurized mixed gas containing hydrogen, carbon monoxide, and carbon dioxide as significant substances, and the reaction heat is transferred to a saturated temperature chamber located outside the reaction tube. In a reactor in which steam is obtained by transferring pressurized water, the gas separated by gas-liquid separation is pressurized by a circulating gas compressor and flows into the upper end of the annular space filled with granular solid catalyst in each reaction tube. At the same time, the supplementary gas produced by a steam reforming method or the like is allowed to flow into the pipe of each central pipe, and the pipe wall of the central pipe is penetrated from any position in the longitudinal direction of the central pipe. A reactor characterized in that the supplementary gas is caused to flow into the catalyst layer in which a catalytic reaction is occurring through a plurality of gas inflow holes, thereby preventing an excessive rise in the catalytic reaction temperature.
(2)気液分離器で分離したガス中に補給ガスの一部を
添加するようにした特許請求の範囲(1)記載の反応器
(2) The reactor according to claim (1), wherein a part of the supplementary gas is added to the gas separated by the gas-liquid separator.
JP26767886A 1986-11-12 1986-11-12 Reactor Expired - Fee Related JPH0673625B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26767886A JPH0673625B2 (en) 1986-11-12 1986-11-12 Reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26767886A JPH0673625B2 (en) 1986-11-12 1986-11-12 Reactor

Publications (2)

Publication Number Publication Date
JPS63123433A true JPS63123433A (en) 1988-05-27
JPH0673625B2 JPH0673625B2 (en) 1994-09-21

Family

ID=17448006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26767886A Expired - Fee Related JPH0673625B2 (en) 1986-11-12 1986-11-12 Reactor

Country Status (1)

Country Link
JP (1) JPH0673625B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02148027A (en) * 1988-11-30 1990-06-06 Canon Inc Camera device and interchangeable lens
WO2001085332A1 (en) * 2000-05-05 2001-11-15 Deggendorfer Werft Und Eisenbau Gmbh Tubular reactor for carrying out exothermic gas phase reactions
JP2017512133A (en) * 2014-02-10 2017-05-18 ハネウェル・インターナショナル・インコーポレーテッド Reactor design for liquid phase fluorination

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02148027A (en) * 1988-11-30 1990-06-06 Canon Inc Camera device and interchangeable lens
WO2001085332A1 (en) * 2000-05-05 2001-11-15 Deggendorfer Werft Und Eisenbau Gmbh Tubular reactor for carrying out exothermic gas phase reactions
JP2017512133A (en) * 2014-02-10 2017-05-18 ハネウェル・インターナショナル・インコーポレーテッド Reactor design for liquid phase fluorination

Also Published As

Publication number Publication date
JPH0673625B2 (en) 1994-09-21

Similar Documents

Publication Publication Date Title
EP0437059B2 (en) Steam reforming
US4181701A (en) Apparatus and process for the synthesis of ammonia
US3796547A (en) Heat exchange apparatus for catalytic system
US3825501A (en) Exothermic reaction process
EP1839735B1 (en) A transverse tubular heat exchange reactor and a process for catalytic synthesis therein
JPS6261629A (en) Device for manufacturing synthetic gas
US4778662A (en) Synthesis process and reactor
JPS60186401A (en) Autothermal manufacture of synthetic gas and reactor used for said method
US3721532A (en) Ammonia synthesis system
JPH04502426A (en) Process and equipment for exothermic reactions
CA2326950C (en) Process and reactor for carrying out non-adiabatic catalytic reactions
JPH01500252A (en) Equipment for endothermic reactions, especially hydrogen generation reactions
JPS60106527A (en) Double pipe reactor for exothermic reaction
US3851046A (en) Ammonia synthesis process
US4938930A (en) Reaction vessel
US3972688A (en) Reactor for cracking hydrocarbons
JPS63123433A (en) Reactor
AU2019320977B2 (en) A method for producing methanol in a reactor with bypass
JP3924040B2 (en) Reactor
JP3924039B2 (en) Reactor
JPS5876134A (en) Spherical reactor having plural cylindrical reaction chambers and use thereof
JPH01157402A (en) methanol reformer
US7776285B2 (en) Reactor and process for carrying out endothermic or exothermic catalytic reaction
JP4043248B2 (en) Method for producing dimethyl ether
JPS63218244A (en) Multi-tubular reactor for synthesizing methanol

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees