[go: up one dir, main page]

JPS6312324A - Reactor for carbon dioxide removing device by ion-exchange resin - Google Patents

Reactor for carbon dioxide removing device by ion-exchange resin

Info

Publication number
JPS6312324A
JPS6312324A JP61155117A JP15511786A JPS6312324A JP S6312324 A JPS6312324 A JP S6312324A JP 61155117 A JP61155117 A JP 61155117A JP 15511786 A JP15511786 A JP 15511786A JP S6312324 A JPS6312324 A JP S6312324A
Authority
JP
Japan
Prior art keywords
exchange resin
perforated plate
reactor
ion exchange
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61155117A
Other languages
Japanese (ja)
Other versions
JPH0685857B2 (en
Inventor
Yutaka Suzuki
裕 鈴木
Yoshio Nakajima
義雄 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP61155117A priority Critical patent/JPH0685857B2/en
Publication of JPS6312324A publication Critical patent/JPS6312324A/en
Publication of JPH0685857B2 publication Critical patent/JPH0685857B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Treating Waste Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

PURPOSE:To compress an ion-exchange resin bed with an appropriate pressure by packing the bed between a lower fixed perforated plate and an upper movable perforated plate, and pressing the movable perforated plate furnished to a spring adjusting spindle. CONSTITUTION:CO2-contg. air is introduced from an inlet pipe 11 for the air to be treated, CO2 is absorbed and removed by the ion-exchange resin bed 5, and the purified air is discharged from a purified air outlet pipe 12. In the absorption stage, the ion-exchange resin bed 5 is compressed by the spring device 6 furnished to the spring adjusting spindle 7 with an appropriate pressure through the movable perforated plate 4. In the subsequent regeneration stage, steam is introduced from a regenerating steam inlet 12 to heat the ion-exchange resin bed 5, and CO2 is desorbed. Although the resin bed 5 is expanded by water, the expansion pressure is absorbed by the spring device 6. The top of a barrel part 1 is closed by a convex spherical spacer 2a, and the holdup volume of CO2 is also reduced since the volume of the upper space is small.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は閉鎖空間における環境大気中から炭酸ガスを除
去する装置における反応器の構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to the structure of a reactor in an apparatus for removing carbon dioxide gas from the ambient atmosphere in a closed space.

第5図は反応器の使用されたイオン交換樹脂を吸収剤と
するCO□除去システムの概略図である。
FIG. 5 is a schematic diagram of a CO□ removal system using an ion exchange resin used in a reactor as an absorbent.

CO2高濃度の空気は送風機すでフィルタaを介し吸収
される。そして、イオン交換樹脂を吸収剤とする反応器
dに送られ、こ\でイオン交換樹脂にC02を吸収され
浄化された空気は排出される。この場合、反応器dは複
数用意され、イオン交換樹脂によるCO8吸収と再生を
交互に連続的に行うようになっている。
Air with high CO2 concentration is absorbed by the blower through filter a. The air is then sent to a reactor d using an ion exchange resin as an absorbent, where the ion exchange resin absorbs CO2 and the purified air is discharged. In this case, a plurality of reactors d are prepared, and CO8 absorption and regeneration by the ion exchange resin are performed alternately and continuously.

さて、何れか1つの反応器dの吸収能力が低下すると、
該反応器dのCO2吸収は停止し、再生用蒸気送入加熱
等による再生の必要がある。再生用蒸気は蒸気発生器e
で発生させ、反応器dに送り込むようになっている。本
発明はこのようなCO2除去システムにおける反応器d
の改良に係るものである。
Now, if the absorption capacity of any one reactor d decreases,
The CO2 absorption in the reactor d has stopped, and it is necessary to regenerate it by heating the regenerating steam or the like. Steam for regeneration is provided by steam generator e.
It is designed to be generated in the reactor d and sent to the reactor d. The present invention provides a reactor d in such a CO2 removal system.
This is related to the improvement of.

(従来技術及びその問題点) 閉鎖空間における環境大気中から炭酸ガスCO2を吸収
し、これを除去するため、炭酸ガス吸収剤として弱塩基
性陰イオン交換樹脂を利用した装置は知られている。こ
の装置においては、イオン交換樹脂と炭酸ガスを効果的
に接触させイオン交換反応を促進させるための反応器が
重要な要素となる。この反応器内のイオン交換樹脂は、
適度な熱量を加える事によって成る温度変化を与え、吸
収した炭酸ガスを解離し放出して再生することができる
(Prior Art and its Problems) Devices using a weakly basic anion exchange resin as a carbon dioxide absorbent are known for absorbing and removing carbon dioxide gas CO2 from the ambient air in a closed space. In this device, a reactor is an important element for effectively bringing the ion exchange resin into contact with carbon dioxide gas and promoting the ion exchange reaction. The ion exchange resin in this reactor is
By applying a suitable amount of heat, the temperature can be changed to dissociate and release the absorbed carbon dioxide, allowing it to be regenerated.

従来より、吸収反応器の形式には、第4図(a)。Conventionally, the type of absorption reactor is as shown in Fig. 4(a).

(b)、(c)で示すような垂直型、環状型、水平型が
知られている。
Vertical types, annular types, and horizontal types as shown in (b) and (c) are known.

閉鎖空間における環境大気中から炭酸ガスを吸収する装
置における反応器は、吸収作用時には充填樹脂層に適度
な圧縮力を与え、また再生時に例えば水蒸気によって供
給される熱量及び水分によって膨潤する樹脂層の膨張圧
力を吸収する機構が重要となる。ところが炭酸ガス吸収
用に選択したイオン交換樹脂を効果的に利用するために
は、従来型の反応器では何れの場合も、イオン交換樹脂
の収縮及び膨潤は特に制御される事なく自由なイオン交
換樹脂の運動にまかされていた。このため、イオン交換
反応に対して最適な樹脂層の密状態を確保する事が難か
しかった。また、樹脂層の再生に水蒸気による直接加熱
法を採る場合には、樹脂層の膨潤は自由な状態で任意に
膨張し、膨潤後の状態は樹脂層内部が線状態となり次工
程のCO□ガス吸収時に際して均一なイオン交換反応を
期待するのが難しくなる欠点を持っていた。
A reactor in a device for absorbing carbon dioxide gas from the ambient air in a closed space applies an appropriate compressive force to the filled resin layer during absorption, and also applies a moderate compressive force to the resin layer during regeneration, which swells due to the amount of heat supplied by water vapor and moisture. The mechanism that absorbs the expansion pressure is important. However, in order to effectively utilize the ion exchange resin selected for carbon dioxide absorption, conventional reactors require free ion exchange without any particular control over the contraction and swelling of the ion exchange resin. It was left to the movement of the resin. For this reason, it has been difficult to ensure the optimal dense state of the resin layer for the ion exchange reaction. In addition, when direct heating with water vapor is used to regenerate the resin layer, the resin layer swells freely and expands arbitrarily, and after swelling, the inside of the resin layer becomes linear and the CO□ gas is used in the next process. It has the disadvantage that it is difficult to expect a uniform ion exchange reaction during absorption.

(発明の目的) 上記従来技術の問題点に鑑み、本発明は■反応器に充填
する樹脂の膨潤による膨張圧力及び収縮のための圧縮圧
力を調整できること、■再生時の熱損失を少なくするこ
と、■同一反応器内で効率良く炭酸ガスを吸収でき、且
つ再生作用も効果的に行なえること、等の点を可能とす
る反応器を提供することにある。
(Objective of the Invention) In view of the above-mentioned problems of the prior art, the present invention aims to: (1) be able to adjust the expansion pressure due to swelling of the resin filled in the reactor and the compression pressure for contraction; and (2) reduce heat loss during regeneration. The object of the present invention is to provide a reactor that can efficiently absorb carbon dioxide gas in the same reactor and also effectively perform a regeneration action.

(発明による解決手段) 面端部を内に向って凸の球面スペーサで閉塞された円胴
と、1方の球面スペーサの内方に空間を置いて隔設され
た固定多孔板と、他方の球面スペーサの内方に空間を置
き、上下摺動運動可能に設けた可動多孔板との間に充填
したイオン交換樹脂層と、前記可動多孔板に固着され、
かつ前記1方の球面スペーサに取付けられた軸封装置付
軸受に上下動可能に取付けられたばね調整軸にねじ装置
によりばね力を調整可能に取付けられたばね装置と、前
記球面スペーサの内方空間に通ずる空気入口管、及び浄
化空気出口管よりなることを特徴とする。
(Solution Means by the Invention) A cylinder whose surface end is closed with a convex spherical spacer facing inward, a fixed perforated plate spaced apart with a space inside one of the spherical spacers, and the other. an ion exchange resin layer filled between a movable porous plate provided with a space inside the spherical spacer so as to be able to slide vertically; and an ion exchange resin layer fixed to the movable porous plate;
and a spring device that is attached to a spring adjustment shaft that is movable up and down on a bearing with a shaft sealing device that is attached to the one spherical spacer so that the spring force can be adjusted by a screw device, and a spring device that is attached to the inner space of the spherical spacer. It is characterized by a communicating air inlet pipe and a purified air outlet pipe.

(実施例) 図に基いて説明する。1は反応器Aの円胴で、再生用蒸
気による加熱の際、熱容量を少なくする為極薄で熱伝導
率の低い材料を用いて成形されている。円胴1の上部と
下部は夫々内方に凸の球面スペーサ2a、2bで閉塞さ
れている。3は底部の球面スペーサ2bの上部に小空間
13aを置いて固定された多孔板で、第3図に示す如く
多数の極細の開孔を有している。4は頂部の球面スペー
サ2aの下部空間13bに上下摺動可能に嵌挿された可
動多孔板である。可動多孔板4も第3図の平面図にみる
如く極細の開孔を有している。4aは可動多孔板4の周
縁に設けたリングで、これにより円胴1内を上下摺動運
動するとき、円滑に摺動できるようになっている。5は
反応器A内の前記固定多孔板3と可動多孔板4間に充填
されたイオン交換樹脂である。この樹脂は通称固体アミ
ン樹脂と呼ばれる弱塩基性陰イオン交換樹脂が用いられ
る。
(Example) This will be explained based on the drawings. 1 is the cylindrical body of reactor A, which is made of an extremely thin material with low thermal conductivity in order to reduce its heat capacity during heating with regeneration steam. The upper and lower parts of the cylinder 1 are respectively closed with inwardly convex spherical spacers 2a and 2b. A porous plate 3 is fixed with a small space 13a placed above the spherical spacer 2b at the bottom, and has a large number of extremely thin holes as shown in FIG. A movable porous plate 4 is fitted into the lower space 13b of the top spherical spacer 2a so as to be vertically slidable. The movable perforated plate 4 also has extremely fine holes as shown in the plan view of FIG. Reference numeral 4a denotes a ring provided on the periphery of the movable perforated plate 4, which allows the movable perforated plate 4 to slide smoothly when vertically sliding inside the cylinder 1. 5 is an ion exchange resin filled between the fixed porous plate 3 and the movable porous plate 4 in the reactor A. As this resin, a weakly basic anion exchange resin commonly called solid amine resin is used.

6は上部の球面スペーサ2aの外方上部に設けられたば
ね装置でこれによりイオン交換樹脂の膨潤及び収縮の際
の圧力を調整することができる。ばね装置6はばね調整
軸7に挿通され、ばね力調整ねじ8によって引張状態で
とりつけられている。
Reference numeral 6 denotes a spring device provided on the outer upper part of the upper spherical spacer 2a, which can adjust the pressure during swelling and contraction of the ion exchange resin. The spring device 6 is inserted through the spring adjustment shaft 7 and is attached under tension by a spring force adjustment screw 8.

ばね調整軸7は可動多孔板4の中心上に固着9され、球
面スペーサ2aの中心部に設けた軸封装置付軸受10に
よって垂直に立設されている。
The spring adjustment shaft 7 is fixed 9 on the center of the movable porous plate 4, and is vertically erected by a bearing 10 with a shaft sealing device provided at the center of the spherical spacer 2a.

反応器A内に充填したイオン交換樹脂は、乾燥時(CO
,吸収工程中)及び膨潤時(再生蒸気による加熱中)に
収縮と膨張を繰り返す。この時の膨張率は、乾燥時に比
べて約20%程度の大きな値を示し、この膨潤時の膨張
圧力を逃がす工夫が必要になるので、予め樹脂5の充填
量に見合った膨潤量を推定しておき、ばね装置6を選定
し反応器外に装備するものとする。11は処理空気入口
管で、再生時の炭酸ガス出口管を兼ね1円胴1の上部で
可動多孔板4の上部に設けられている。12は浄化空気
出口管で、再生時の再生用蒸気入口管を兼ね、下部の固
定多孔板3の下部に設けられている。
When the ion exchange resin filled in reactor A is dried (CO
, during the absorption process) and during swelling (during heating with regeneration steam). The expansion rate at this time is about 20% larger than that when dry, and it is necessary to take measures to release the expansion pressure during this swelling. Then, a spring device 6 is selected and installed outside the reactor. Reference numeral 11 denotes a processing air inlet pipe, which also serves as a carbon dioxide gas outlet pipe during regeneration and is provided above the movable perforated plate 4 in the upper part of the cylinder 1. Reference numeral 12 denotes a purified air outlet pipe, which also serves as a regeneration steam inlet pipe during regeneration, and is provided at the bottom of the lower fixed porous plate 3.

尚1本実施例では円胴上部側に可動多孔板を設け、該多
孔板にバネ装置を固着したが、逆に下部側に可動多孔板
を設け、これにバネ装置を固着しても同効である。また
、処理空気入口と浄化空気出口とを逆にしても何ら作用
に変化はない。
In this embodiment, a movable perforated plate was provided on the upper side of the cylinder and the spring device was fixed to the perforated plate, but the same effect could be obtained even if a movable perforated plate was provided on the lower side and the spring device was fixed to this. It is. Further, even if the processing air inlet and purified air outlet are reversed, there is no change in operation.

以上炭酸ガスの除去装置用として説明したが。The above description has been made for use in a carbon dioxide removal device.

必ずしもこれに限らず、イオン交換樹脂等の化学的薬剤
を利用したガス分離(たとえばNOx、SOx、Nu、
Gas separation using chemical agents such as ion exchange resins (e.g. NOx, SOx, Nu,
.

−酸化炭素ガス、その他)に用いる反応器とか、大気中
の悪臭の原因となる化学成分の吸収、除去装置用の反応
器にも応用することが可能である。
- It can also be applied to reactors used for absorbing and removing chemical components that cause odor in the atmosphere (carbon oxide gas, etc.).

(作用) a)炭酸ガスの吸収工程: CO2を多量に含有した処理空気は、処理空気入口管1
1より導入される。処理空気は、イオン交換樹脂層5を
通過中に002が吸収、除去され反応器下部の浄化空気
出口管12より反応器A外に出る。 CO,吸収工程中
にあっては、ばね装置6により適当な圧力でイオン交換
樹脂層5が可動多孔板4を介し加圧状態に保たれる。成
る時間経過後。
(Function) a) Carbon dioxide absorption process: The treated air containing a large amount of CO2 is passed through the treated air inlet pipe 1.
It is introduced from 1. The treated air absorbs and removes 002 while passing through the ion exchange resin layer 5, and exits from the reactor A through the purified air outlet pipe 12 at the bottom of the reactor. During the CO absorption process, the ion exchange resin layer 5 is maintained under pressure by the spring device 6 with an appropriate pressure via the movable porous plate 4. After a certain amount of time has passed.

樹脂層5内でのCO□の吸収能力が低下した状況を検知
し、樹脂層5の再生工程に入る。
A situation in which the absorption capacity of CO□ in the resin layer 5 has decreased is detected, and a regeneration process of the resin layer 5 is started.

b)樹脂の再生工程: 再生用水蒸気人口12より水蒸気を供給し、イオン交換
樹脂層5の下部より加熱する。水蒸気で加熱する際に水
分も樹脂層5内に同時に供給される。熱が樹脂層5の上
部に達する間に吸収工程中に捕捉されていたCO2ガス
は樹脂層5より解離され、上方に向って放出される。樹
脂層5は供給される水分によって膨潤し1体積が増加す
るが、膨張圧力は可動多孔板4及びばね装置6によって
逃がされる。又再生時は反応器Aの上部空間13a内に
ほぼ100%濃度のCO□ガスが滞留する事になるが、
円胴1の頂部は内に向って凸の球面スペーサ2aで閉塞
し、上部空間の容積が小さいのでCO暑の滞留量も少な
くなるようになっている。同様に反応器下部を上方に向
って凸の球面スペーサ2bで閉塞しているので、蒸気人
口12から供給される再生用水蒸気の滞留量もできるだ
け少なくするように構成されている。
b) Resin regeneration step: Steam is supplied from the regeneration steam port 12 and heated from the lower part of the ion exchange resin layer 5. When heating with steam, moisture is also supplied into the resin layer 5 at the same time. While the heat reaches the top of the resin layer 5, the CO2 gas trapped during the absorption process is dissociated from the resin layer 5 and released upward. The resin layer 5 swells with the supplied water and increases in volume, but the expansion pressure is released by the movable porous plate 4 and the spring device 6. Also, during regeneration, almost 100% concentration of CO□ gas will remain in the upper space 13a of reactor A.
The top of the cylinder 1 is closed with an inwardly convex spherical spacer 2a, and since the volume of the upper space is small, the amount of CO heat retained is also reduced. Similarly, since the lower part of the reactor is closed upward with a convex spherical spacer 2b, the amount of stagnant regeneration steam supplied from the steam port 12 is also minimized.

(発明の効果) イオン交換樹脂層が下部の固定多孔板と上部の可動多孔
板との間に充填され、かつ可動多孔板が頂部の球面スペ
ーサと貫通するばね調整軸7に取付けた所定係数を有す
るばね装置で押圧されているので、樹脂層が適当に加圧
され、樹脂層で被処理空気が片流れするのを防ぐことが
できる。又イオン交換樹脂の膨潤及び収縮時の圧力をね
じ装置8を上下動することにより調整することができる
ので、CO2の吸収性能と再生性能に適した圧力で加圧
することができ、しかもばね装置16が反応器Aの外に
置かれたので、これの加熱に要する熱量を節約できる。
(Effects of the Invention) The ion exchange resin layer is filled between the lower fixed porous plate and the upper movable porous plate, and the movable porous plate has a predetermined coefficient attached to the spring adjustment shaft 7 passing through the spherical spacer at the top. Since the resin layer is pressed by a spring device, the resin layer is appropriately pressurized, and it is possible to prevent the air to be treated from flowing in one direction in the resin layer. In addition, since the pressure when the ion exchange resin swells and contracts can be adjusted by moving the screw device 8 up and down, it is possible to apply pressure at a pressure suitable for CO2 absorption performance and regeneration performance. is placed outside reactor A, so the amount of heat required to heat it can be saved.

円胴の頂部を球面スペーサで閉塞したので、イオン交換
樹脂層上部の空間を小さくでき、CO2再生時はこNに
滞留するC02を極力少なくできる。
Since the top of the cylinder is closed with a spherical spacer, the space above the ion exchange resin layer can be made small, and during CO2 regeneration, the amount of CO2 retained in the N can be minimized.

円胴の頂部と底部を球面スペーサで閉塞したので、処理
空気を入口管11から送入するとき、球面で渦流を生じ
適度に分散し、樹脂層内に送られ。
Since the top and bottom of the cylinder are closed with spherical spacers, when the processing air is introduced from the inlet pipe 11, a vortex is generated on the spherical surface, dispersed appropriately, and sent into the resin layer.

反応が効果的に行われる。又再生用蒸気を入口管12か
ら送るときも1球面スペーサで渦流を生じ、これ又適度
に分散され、樹脂層に均等に送られ、再生工程を効果的
に行うことができる。
The reaction is carried out effectively. Also, when the regeneration steam is sent from the inlet pipe 12, a vortex is generated by the single spherical spacer, and this is also appropriately dispersed and evenly sent to the resin layer, allowing the regeneration process to be carried out effectively.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る反応器の縦断面図。 第2図は第1図の上面図で半分のみ示す。 第3図は可動多孔板の平面図で半分のみ示す。 第4図は従来型吸収反応器の例を示す。 第5図はイオン交換樹脂を吸収剤としたCO□除去シス
テムの概略図。 図において; A 反応器 1 円胴      2a 、 2b  球面スペーサ
3 固定多孔板    4 可動多孔板4a  摺動リ
ング    5 イオン交換樹脂層6 ばね装置   
  7 ばね調整軸8 ばね力調整ねじ  9 固着部 10  軸封装置付軸受 11  処理空気入口管12
  浄化空気出口管 13a、13b  空間以上 出願人 住友重機械工業株式会社 復代理人 弁理士 大 橋   勇 第1図
FIG. 1 is a longitudinal sectional view of a reactor according to the present invention. FIG. 2 is a top view of FIG. 1, showing only half of it. FIG. 3 is a plan view of the movable perforated plate, showing only half of it. FIG. 4 shows an example of a conventional absorption reactor. Figure 5 is a schematic diagram of a CO□ removal system using ion exchange resin as an absorbent. In the figure: A reactor 1 cylinder 2a, 2b spherical spacer 3 fixed perforated plate 4 movable perforated plate 4a sliding ring 5 ion exchange resin layer 6 spring device
7 Spring adjustment shaft 8 Spring force adjustment screw 9 Fixed part 10 Bearing with shaft sealing device 11 Processed air inlet pipe 12
Purified air outlet pipes 13a, 13b Above space Applicant Sumitomo Heavy Industries, Ltd. Sub-agent Patent attorney Isamu Ohashi Figure 1

Claims (1)

【特許請求の範囲】[Claims] 両端部を内に向って凸の球面スペーサで閉塞された円胴
と、1方の球面スペーサの内方に空間を置いて隔設され
た固定多孔板と、他方の球面スペーサの内方に空間を置
き、上下摺動運動可能に設けた可動多孔板との間に充填
したイオン交換樹脂層と、前記可動多孔板に固着され、
かつ前記1方の球面スペーサに取付けられた軸封装置付
軸受に上下動可能に取付けられたばね調整軸にねじ装置
によりばね力を調整可能に取付けられたばね装置と、前
記球面スペーサの内方空間に通ずる処理空気入口管及び
浄化空気出口管よりなることを特徴とするイオン交換樹
脂による炭酸ガス除去装置用反応器。
A cylinder whose both ends are closed with inwardly convex spherical spacers, a fixed perforated plate spaced apart with a space inside one spherical spacer, and a space inside the other spherical spacer. and a movable perforated plate provided so as to be able to slide up and down, and an ion exchange resin layer filled between the ion exchange resin layer and the movable perforated plate, and fixed to the movable perforated plate,
and a spring device that is attached to a spring adjustment shaft that is movable up and down on a bearing with a shaft sealing device that is attached to the one spherical spacer so that the spring force can be adjusted by a screw device, and a spring device that is attached to the inner space of the spherical spacer. A reactor for a carbon dioxide removal device using an ion exchange resin, comprising a treated air inlet pipe and a purified air outlet pipe that communicate with each other.
JP61155117A 1986-07-03 1986-07-03 Reactor for carbon dioxide removal device using ion exchange resin Expired - Fee Related JPH0685857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61155117A JPH0685857B2 (en) 1986-07-03 1986-07-03 Reactor for carbon dioxide removal device using ion exchange resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61155117A JPH0685857B2 (en) 1986-07-03 1986-07-03 Reactor for carbon dioxide removal device using ion exchange resin

Publications (2)

Publication Number Publication Date
JPS6312324A true JPS6312324A (en) 1988-01-19
JPH0685857B2 JPH0685857B2 (en) 1994-11-02

Family

ID=15598948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61155117A Expired - Fee Related JPH0685857B2 (en) 1986-07-03 1986-07-03 Reactor for carbon dioxide removal device using ion exchange resin

Country Status (1)

Country Link
JP (1) JPH0685857B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7993432B2 (en) 2006-03-08 2011-08-09 Kilimanjaro Energy, Inc. Air collector with functionalized ion exchange membrane for capturing ambient CO2
KR20140031932A (en) * 2011-06-06 2014-03-13 아토테크더치랜드게엠베하 Device and method for recovering a recovering material from a recovering fluid containing the recovering material
US9266052B2 (en) 2006-10-02 2016-02-23 Carbon Sink, Inc. Method and apparatus for extracting carbon dioxide from air
US9266051B2 (en) 2005-07-28 2016-02-23 Carbon Sink, Inc. Removal of carbon dioxide from air
JP2016112530A (en) * 2014-12-17 2016-06-23 栗田工業株式会社 Ion exchange resin column
US9527747B2 (en) 2008-02-19 2016-12-27 Carbon Sink, Inc. Extraction and sequestration of carbon dioxide
US9616375B2 (en) 2007-04-17 2017-04-11 Carbon Sink, Inc. Capture of carbon dioxide (CO2) from air
US11737398B2 (en) 2018-02-16 2023-08-29 Carbon Sink, Inc. Fluidized bed extractors for capture of CO2 from ambient air

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9266051B2 (en) 2005-07-28 2016-02-23 Carbon Sink, Inc. Removal of carbon dioxide from air
US10010829B2 (en) 2005-07-28 2018-07-03 Carbon Sink, Inc. Removal of carbon dioxide from air
US10150112B2 (en) 2006-03-08 2018-12-11 Carbon Sink, Inc. Air collector with functionalized ion exchange membrane for capturing ambient CO2
US9205372B2 (en) 2006-03-08 2015-12-08 Carbon Sink, Inc. Air collector with functionalized ion exchange membrane for capturing ambient CO2
US7993432B2 (en) 2006-03-08 2011-08-09 Kilimanjaro Energy, Inc. Air collector with functionalized ion exchange membrane for capturing ambient CO2
US9861933B2 (en) 2006-10-02 2018-01-09 Carbon Sink, Inc. Method and apparatus for extracting carbon dioxide from air
US9266052B2 (en) 2006-10-02 2016-02-23 Carbon Sink, Inc. Method and apparatus for extracting carbon dioxide from air
US9616375B2 (en) 2007-04-17 2017-04-11 Carbon Sink, Inc. Capture of carbon dioxide (CO2) from air
US9527747B2 (en) 2008-02-19 2016-12-27 Carbon Sink, Inc. Extraction and sequestration of carbon dioxide
JP2014522449A (en) * 2011-06-06 2014-09-04 アトーテヒ ドイッチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Apparatus and method for recovering recovered material from recovered fluid containing recovered material
KR20140031932A (en) * 2011-06-06 2014-03-13 아토테크더치랜드게엠베하 Device and method for recovering a recovering material from a recovering fluid containing the recovering material
JP2016112530A (en) * 2014-12-17 2016-06-23 栗田工業株式会社 Ion exchange resin column
US11737398B2 (en) 2018-02-16 2023-08-29 Carbon Sink, Inc. Fluidized bed extractors for capture of CO2 from ambient air

Also Published As

Publication number Publication date
JPH0685857B2 (en) 1994-11-02

Similar Documents

Publication Publication Date Title
US5139668A (en) Hollow fiber bundle element
US3729902A (en) Carbon dioxide sorbent for confined breathing atmospheres
KR100192697B1 (en) Gas refining method using solid adsorbent
US4314828A (en) Method and system for regenerating dehumidifier for use in charcoal adsorber
US3981698A (en) Process for the removal of carbon dioxide from gases
WO1998017388A1 (en) Regenerable solid amine sorbent
US4054428A (en) Method and apparatus for removing carbon monoxide from compressed air
JPS6312324A (en) Reactor for carbon dioxide removing device by ion-exchange resin
JPS6312323A (en) Reactor for carbon dioxide removing device by ion-exchange resin
CA1068076A (en) Method for removing low concentrations of oxidizable organic contaminants from an oxygen-containing inert gas
JPH03296413A (en) Polar gas separating device
EP0434219B1 (en) Hollow fiber bundle element
KR102264810B1 (en) Continuous moving­bed CO2 capture system with vaccum desorption
US3507051A (en) Regeneration process
JPS61101229A (en) Dehumidification apparatus
CA2023054C (en) Hollow fiber bundle element for an adsorber
US20220410061A1 (en) Gas-processing systems and methods
JPS62298425A (en) Reversible heating regeneration type dehumidifier for pressurized gas
JPS55152522A (en) Regenerating method for desiccant in gas dehumidifier
US20240149246A1 (en) Thermo bimetallic alloy fins for regional heating of adsorbent reactors
WO1995024958A1 (en) Method and apparatus for separating gas
JPS62298426A (en) Reversible heating regeneration type dehumidifier for pressurized gas
KR100230858B1 (en) Regeneration of absorbent beds
JPH01130717A (en) Method for dehumidifying compressed air
JPS6359339A (en) Heat recovery method in carbon dioxide removing apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees