JPS63122922A - Hollow cathode lamp and atomic absorption/fluorescence spectrophotometer having said lamp as light source - Google Patents
Hollow cathode lamp and atomic absorption/fluorescence spectrophotometer having said lamp as light sourceInfo
- Publication number
- JPS63122922A JPS63122922A JP26903986A JP26903986A JPS63122922A JP S63122922 A JPS63122922 A JP S63122922A JP 26903986 A JP26903986 A JP 26903986A JP 26903986 A JP26903986 A JP 26903986A JP S63122922 A JPS63122922 A JP S63122922A
- Authority
- JP
- Japan
- Prior art keywords
- hollow
- hollow cathode
- lamp
- light source
- cathode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000010521 absorption reaction Methods 0.000 title claims description 35
- 230000003287 optical effect Effects 0.000 claims abstract description 7
- 238000003705 background correction Methods 0.000 claims abstract description 6
- 238000000295 emission spectrum Methods 0.000 claims description 19
- 238000012937 correction Methods 0.000 claims description 13
- 238000005259 measurement Methods 0.000 claims description 10
- 238000012921 fluorescence analysis Methods 0.000 claims description 4
- 238000004458 analytical method Methods 0.000 claims description 3
- 238000001228 spectrum Methods 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 2
- 230000005540 biological transmission Effects 0.000 abstract 1
- 238000000034 method Methods 0.000 description 16
- 230000003595 spectral effect Effects 0.000 description 9
- 238000002835 absorbance Methods 0.000 description 6
- 238000000889 atomisation Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 238000001479 atomic absorption spectroscopy Methods 0.000 description 5
- 238000004445 quantitative analysis Methods 0.000 description 3
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 229910052805 deuterium Inorganic materials 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- 238000001391 atomic fluorescence spectroscopy Methods 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Landscapes
- Spectrometry And Color Measurement (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
【発明の詳細な説明】
衾更公旦血
息1」Jす肘」土艷
本発明はホローカソード(HCL)及びこのランプを光
源として用いた原子吸光/螢光分光光度計に関し、特に
原子吸光分析ではバンクグラウンド吸収また原子螢光分
析では散乱の補正用光源を測定用光源と同じランプで与
える新しいタイプのホローカソードランプ及びそれを適
用した原子吸光/螢光分光光度計に関するものである。Detailed Description of the Invention The present invention relates to a hollow cathode (HCL) and an atomic absorption/fluorescence spectrophotometer using this lamp as a light source, and particularly relates to an atomic absorption/fluorescence spectrophotometer using a hollow cathode (HCL) and this lamp as a light source. This article concerns a new type of hollow cathode lamp that uses the same lamp as the light source for measurement to provide a light source for correcting background absorption in analysis and scattering in atomic fluorescence analysis, and an atomic absorption/fluorescence spectrophotometer using the same lamp.
獲米■狡歪
原子吸光分析では、分析しようとする元素の輝線スペク
トルの波長の光を試料原子化部に入射させ、その透過光
強度を測定して試料による吸収量を測定する。その吸収
量と試料濃度が比例関係にあることから定量分析がなさ
れるが、試料原子化部には目的元素以外の様々な分子種
による吸収や散乱があって、定量分析の精度を低下させ
てしまう。このような吸収のことをバックグラウンド吸
収と呼んでいる。この問題に対しては従来、連続光源(
例えば重水素ランプ)を用いてバックグラウンド吸収を
測定し、先に得られた結果を補正する方法が一般的であ
る。また、光源部または原子化部に強力な磁場を印加し
、原子のゼーマン(Zeen+an)分岐による近接線
を利用してバックグラウンド吸収補正をする三波長法も
ある。しかしながら前者は補正用光源を別に必要となる
し、補正の精度はあまり高くない。後者は装置が大かが
りになる上に、ゼーマン分岐の仕方が異なるためすべて
の原子に対して必ずしも良い結果が得られない。これに
対して、通常直流点灯されるホローカソードランプを大
電流パルスで駆動すると、スペクトル線幅が拡がること
を利用して、バックグラウンド補正を実行する手法が提
案されている。In atomic absorption spectrometry, light with a wavelength in the emission line spectrum of the element to be analyzed is incident on the sample atomization section, and the intensity of the transmitted light is measured to determine the amount absorbed by the sample. Quantitative analysis is performed because there is a proportional relationship between the absorption amount and sample concentration, but the sample atomization section has absorption and scattering by various molecular species other than the target element, reducing the accuracy of quantitative analysis. Put it away. This kind of absorption is called background absorption. Conventionally, continuous light sources (
A common method is to measure background absorption using a deuterium lamp (for example, a deuterium lamp) and correct the previously obtained results. There is also a three-wavelength method in which a strong magnetic field is applied to a light source section or an atomization section, and background absorption correction is performed using proximity lines due to Zeeman (Zeen+an) branching of atoms. However, the former requires a separate light source for correction, and the accuracy of correction is not very high. The latter method requires a large-sized device, and because the Zeeman branching method is different, good results cannot necessarily be obtained for all atoms. In contrast, a method has been proposed in which background correction is performed by taking advantage of the fact that when a hollow cathode lamp, which is normally lit with direct current, is driven with a large current pulse, the spectral line width expands.
この手法はS−H方式と名づけられ賢明な方法ではある
が、大電流パルス点灯させたときのスペクトル線の形状
が完全に自己反転しないときには若干の誤差を生じてし
まう。Although this method is called the S-H method and is a sensible method, some errors may occur if the shape of the spectral line does not completely self-invert when a large current pulse is turned on.
原子螢光分析は現在原子吸光分析法はどには汎用分析法
として定着していないが、原理的には原子吸光分析以上
の感度とダイナミックレンジを有している。光源として
はレーザー、無電極放電ランプ等が用いられているが、
ホローカソードランプを大電流パルス点灯させることに
より、それが分析用光源として用いられることが確かめ
られている。その際に問題となるのは原子化部の原子種
自身による散乱である。原子螢光分析における散乱補正
の問題は原子吸光分析におけるバックグラウンド補正の
問題と信号処理面の面で類似しており有効な補正手段が
必要とされている。Although atomic fluorescence spectrometry has not yet been established as a general-purpose analysis method, in principle it has greater sensitivity and dynamic range than atomic absorption spectrometry. Lasers, electrodeless discharge lamps, etc. are used as light sources, but
By pulsing a hollow cathode lamp with high current, it has been confirmed that it can be used as an analytical light source. The problem in this case is scattering by the atomic species of the atomized part itself. The problem of scattering correction in atomic fluorescence analysis is similar to the problem of background correction in atomic absorption spectrometry in terms of signal processing, and effective correction means are needed.
日が”しようとするユ 占
従って本発明の目的は、上述した各従来技術の問題点を
考慮し、特に別個の補正用光源を必要とせず装置も大が
かりにならないS−H方式に着目し、スペクトル線の形
状に完全な自己反転を生せしめることのできるホローカ
ソード及びこのランプを測定用と補正用の両光源として
用いた原子吸光/螢光分光光度計を提供することにある
。Therefore, the purpose of the present invention is to take into consideration the problems of the above-mentioned conventional techniques, and to focus on the S-H method, which does not require a separate light source for correction and does not require a large-scale device. The object of the present invention is to provide a hollow cathode capable of causing complete self-reversal in the shape of spectral lines, and an atomic absorption/fluorescence spectrophotometer using this lamp as both a light source for measurement and correction.
従来技術の問題点を解決し上記の目的を達成するため、
本発明のホローカソードランプは、複数個の同一元素か
ら成るホローカソードを同一のホローカソードランプ内
にその光軸に沿って縦列状に配置し、前段のホローカソ
ードが中空で後段のホローカソードランプからの光が前
段ホローカソードの中空部を透過するように構成したこ
とを特徴とするものである。In order to solve the problems of the conventional technology and achieve the above objectives,
In the hollow cathode lamp of the present invention, a plurality of hollow cathodes made of the same element are arranged in a column along the optical axis within the same hollow cathode lamp, and the hollow cathode at the front stage is hollow and the hollow cathode at the rear stage The device is characterized in that it is configured such that the light passes through the hollow part of the front stage hollow cathode.
また本発明による原子吸光/螢光分光光度計は上記のホ
ローカソードランプを光源として用い、上記複数のホロ
ーカソードを大電流パルス点灯させ、前段または後段ホ
ローカソードの大電流パルス点灯で生じた発光スペクト
ル線を測定光源とする一方、この発光スペクトル線を前
段ホローカソードの大電流パルス点灯によって大量に生
じた原子蒸気によって自己反転させ、この自己反転した
発光スペクトル線を原子吸光分析のバックグラウンド補
正光源又は原子螢光分析の散乱補正用光源としたことを
特徴とするものである。In addition, the atomic absorption/fluorescence spectrophotometer according to the present invention uses the above-mentioned hollow cathode lamp as a light source, lights the plurality of hollow cathodes with a high current pulse, and generates an emission spectrum caused by the high current pulse lighting of the first or second hollow cathode. This emission spectrum line is used as a measurement light source, and this emission spectrum line is self-inverted by the atomic vapor generated in large quantities by the large current pulse lighting of the hollow cathode in the previous stage, and this self-inverted emission spectrum line is used as a background correction light source for atomic absorption spectrometry. It is characterized by being used as a light source for scattering correction in atomic fluorescence analysis.
上記発光スペクトル線の自己反転は、前段ホローカソー
ドの大電流パルス点灯で生じた原子蒸気が前後ホローカ
ソード内部に残っている間に後段ホローカソードを大電
流パルス点灯させるように、前段及び後段のホローカソ
ードを所定の間隔で時分割大電流パルス点灯して生ぜし
めるのが好ましい。The above self-reversal of the emission spectrum line is caused by the atomic vapor generated by the high current pulse lighting of the front hollow cathode and the subsequent hollow cathode being lit by the high current pulse while the atomic vapor generated by the high current pulse lighting of the front hollow cathode remains inside the front and rear hollow cathodes. Preferably, this is produced by time-shared high current pulse lighting of the cathode at predetermined intervals.
さらに後段ホローカソードの大電流パルス点灯で生じる
発光スペクトル線が残存原子蒸気で吸収されることによ
って自己反転は生じるので、前段のホローカソードで生
じる原子蒸気を一定の空間に閉じ込める透明な遮へい板
を前段のホローカソードの前後に設けるのが好ましい。Furthermore, self-reversal occurs when the emission spectrum lines generated by the large current pulse lighting of the hollow cathode in the latter stage are absorbed by the remaining atomic vapor, so a transparent shielding plate is installed in the front stage to confine the atomic vapor generated in the hollow cathode in the former stage to a certain space. It is preferable to provide the hollow cathode before and after the hollow cathode.
まず、本発明のホローカソードランプの基本概念につい
て説明する。原子吸光分析法の原理を示した第1図を参
照すれば、ホローカソードランプ(HCL)1が駆動回
路2からの直流で点灯して生じた単色光は、フレームま
たはフレームレス原子化部3を通り試料に対応した波撫
が吸収された光となって、分光器4を経て検出器5に入
る。検出器5からの電気信号が信号処理部6で処理され
、試料の吸光度が求められる。いま入射光強度をIo、
透過光強度をIとすると、吸光度Aは
A=log 二= a b c
■
の関係から求められる。ここでaは吸光係数、bは光路
長、Cは試料濃度である。これより定量分析がなされる
。First, the basic concept of the hollow cathode lamp of the present invention will be explained. Referring to FIG. 1, which shows the principle of atomic absorption spectrometry, monochromatic light generated when a hollow cathode lamp (HCL) 1 is lit with direct current from a drive circuit 2 passes through a frame or frameless atomization section 3. The waves corresponding to the sample are absorbed and become light, which passes through the spectrometer 4 and enters the detector 5. The electrical signal from the detector 5 is processed by the signal processing section 6, and the absorbance of the sample is determined. Now the incident light intensity is Io,
When the transmitted light intensity is I, the absorbance A is determined from the relationship A=log2=a b c ■. Here, a is the extinction coefficient, b is the optical path length, and C is the sample concentration. Quantitative analysis is then performed.
光源として特にその元素特有の輝線を有するHCLを用
いる理由を第2(A)図で説明すれば、原子の吸収線幅
は通常10−2人のオーダで非常に狭い。したがって、
通常の分光器からの出力光を用いたのでは、吸収線幅に
較べて広すぎる。すなわちIoの面積が大きくなってし
まいI o ” Iとなり、吸光度Aが小さくなってし
まう。結果として検−ffivAの直線性が保たれなく
なる。したがって第2 (A)図に示すような線幅の狭
い光源■。が必要になる。The reason for using HCL as a light source, which has an emission line unique to that element, can be explained with reference to FIG. 2A. The absorption line width of atoms is usually very narrow, on the order of 10<-2 >. therefore,
Using the output light from a normal spectrometer is too wide compared to the absorption line width. In other words, the area of Io becomes large, Io''I, and the absorbance A becomes small.As a result, the linearity of the detection ffivA is no longer maintained.Therefore, the line width as shown in Fig. 2 (A) is ■ A narrow light source is required.
このようなHCLは通常、10〜20a+A程度で直流
点灯して用いられる。一方、HCLを繰り返し周波数I
KHz、パルス幅20μSec sビーク電流200m
A以内程度で大電流パルス駆動させると発光輝度が直流
点灯時と比較して数10〜数100倍になること、また
そのパルス電流にバースト状高周波パルス(160MH
z、 200Vp−p程度)を同期重置させると更に
輝度が数倍〜数10倍増加することが確認されている。Such HCL is usually used with DC lighting at about 10 to 20 a+A. On the other hand, HCL is repeated at frequency I
KHz, pulse width 20μSec s peak current 200m
When driving with a large current pulse within A, the luminance becomes several 10 to 100 times higher than when DC lighting is applied.
It has been confirmed that the luminance increases by several times to several tens of times when synchronously superimposing the LEDs (approximately 200 Vp-p).
このような大電流パルス動作ホローカソードランプに関
する詳細は、近接イオン線の過渡発光特性、スペクトル
線幅の過渡変化をも含めて既に同一の筆者により報告さ
れている。(例えば分光研究皿、 318 (1983
)参照)第2 (B)図はHCLの共鳴線のスペクトル
線幅が電流値に対してどのように変化するかを模式的に
示している。(a)は通常の直流点灯、(blは大電流
パルス点灯させた場合、(C)は更に電流値を増加させ
た場合である。電流値を増加させると輝度も増加するか
わりにスペクトル線幅も拡がっていく。Details regarding such a large current pulse-operated hollow cathode lamp have already been reported by the same author, including the transient emission characteristics of a nearby ion beam and the transient change in spectral line width. (e.g. Spectroscopic Research Dishes, 318 (1983
2 (B) schematically shows how the spectral line width of the resonance line of HCL changes with respect to the current value. (a) is normal DC lighting, (bl is the case when large current pulse lighting is applied, and (C) is the case when the current value is further increased. When the current value is increased, the brightness also increases, but the spectral line width is also expanding.
(勿論スペクトル線幅も過渡的に変化して発光開始後は
狭く、徐々に拡がっていくが、ここではその平均値とす
る。)(C)では自己反転を生じている。(Of course, the spectral line width also changes transiently, being narrow after the start of light emission and gradually expanding, but here it is taken as its average value.) In (C), self-inversion occurs.
スペクトル線幅が拡がる原因の主たるものは大電流パル
スによって大量にホローカソード内にスパッターされた
基底状態の原子蒸気による自己吸収のためである。The main reason for the broadening of the spectral line width is self-absorption by ground state atomic vapor sputtered into the hollow cathode in large quantities by the large current pulse.
前述した従来のS−H方式によるバンクグラウンド吸収
補正法は、通常HCLを直流点灯させて第3(B)図(
a)の状態で試料による吸光度とバックグラウンドによ
る吸光度の和を求めておき、−定周期毎に大電流パルス
点灯させて同図(b)または(C1の状態でバックグラ
ウンド吸収を求め、前者から後者の値を引いて真の吸光
度を求めている。しかしながらこの方式では申)の状態
あるいは(C)の状態でも完全に自己反転していないた
め試料による吸収が生じることがあり、若干の誤差を含
むことになる。The conventional bank ground absorption correction method using the S-H method described above usually involves lighting up the HCL with direct current, as shown in Fig. 3(B) (
Determine the sum of the absorbance due to the sample and the absorbance due to the background in the state shown in a), then turn on a large current pulse at regular intervals to determine the background absorption in the state shown in (b) or (C1), and from the former. The true absorbance is determined by subtracting the latter value.However, with this method, absorption by the sample may occur even in state (A) or state (C), as it is not completely self-reversing. It will be included.
ここで提案するHCLは、第2 (C)図の(e)と(
d)で示されるようなスペクトル線形状を有する2種類
の発光が可能なランプである。(d)で試料による吸収
中バックグラウンド吸収を、(d)が完全に自己反転し
た形状の(e)でバックグラウンド吸収のみを測定でき
、補正の精度が向上する。The HCL proposed here consists of (e) and (
The lamp is capable of emitting two types of light having the spectral line shapes shown in d). The background absorption during absorption by the sample can be measured in (d), and only the background absorption can be measured in (e), which is a completely self-inverted version of (d), improving the accuracy of correction.
去施勇 以下本発明の実施例を第3〜5図を参照して説明する。Isamu Gose Embodiments of the present invention will be described below with reference to FIGS. 3 to 5.
上述した第2(C)図の発光スペクトル線(elと(d
)を発光可能とするため、本発明のホローカソードラン
プは第3図のように構成される0本発明のホローカソー
ドランプ1は図示の実施例において同一元素から成る2
つのホローカソード、つまり第1の後段ホローカソード
C1と第2の前段ホローカソードC2を備え、両ホロー
カソードC1とC2はランプ1の光軸に沿って一定距離
を隔て縦列状に配置されている。前段ホローカソードC
2は中空状で、後段ホローカソードC1から生じた光が
その中空部を通る透過型に構成し、光は矢印のごとく図
中右方向に取り出される。Kl、に2はそれぞれのカソ
ード、Al、A2はそれぞれのアノードで、第2のアノ
ードの配置法、個数、形状は図示側以外にもいろいろ変
更し得る。また図中点線で示したSは所望により前段ホ
ローカソードC1の前後に置かれる透明な遮へい板で、
発光スペクトル線の自己反転に寄与する原子蒸気を閉じ
込めるのに有効であるため設ける方が好ましい。The above-mentioned emission spectrum lines (el and (d) in Fig. 2(C)
), the hollow cathode lamp of the present invention is constructed as shown in FIG.
The lamp includes two hollow cathodes, that is, a first rear stage hollow cathode C1 and a second front stage hollow cathode C2, and both the hollow cathodes C1 and C2 are arranged in a column along the optical axis of the lamp 1 with a certain distance between them. Front stage hollow cathode C
Reference numeral 2 has a hollow shape, and the light emitted from the rear hollow cathode C1 passes through the hollow part of the transmissive type, and the light is taken out in the right direction in the figure as shown by the arrow. Kl and 2 are respective cathodes, and Al and A2 are respective anodes, and the arrangement method, number, and shape of the second anodes can be changed in various ways other than those shown in the drawings. Further, S indicated by a dotted line in the figure is a transparent shielding plate placed before and after the front stage hollow cathode C1 as desired.
It is preferable to provide this because it is effective in confining atomic vapors that contribute to self-inversion of emission spectrum lines.
次に第4図のタイミングチャートを参照して動作を説明
する。まず第4(a)図に示すように後段ホ 、ローカ
ソードC1は適当なタイミングコントロールユニットか
らのパルス信号により、一定間隔で大電流パルス点灯さ
れる。その発光スペクトル線のうち第4(d)図に示し
た1つ置きの(1)と(3)がそのまま測定用の光源と
して使われる。Next, the operation will be explained with reference to the timing chart of FIG. First, as shown in FIG. 4(a), the low cathode C1 of the rear stage is lit with large current pulses at regular intervals by a pulse signal from an appropriate timing control unit. Among the emission spectrum lines, every other line (1) and (3) shown in FIG. 4(d) are used as they are as a light source for measurement.
一方、HCLを大電流パルス点灯させると、発光終了後
数100μsec程度はホローカソード内あるいはその
前後に大量の原子蒸気が滞在している。On the other hand, when the HCL is turned on with a large current pulse, a large amount of atomic vapor remains within the hollow cathode or before and after the hollow cathode for several hundred microseconds after the end of the light emission.
したがってこの期間中に同一の原子の共鳴線を入射させ
るそれらの原子蒸気によって自己吸収が生じ、きれいな
自己反転が得られる点に着目し、第4(b)図に示すよ
うに前段ホローカソードC2を後段ホローカソードC1
の発光タイミングのうち残りの1つ置きのタイミング(
2)と(4)より所定時間(数100μsec以下)早
い時点で大電流パルス点灯する。これによって第4(C
)図に示すように、前段ホローカソードC2内及びその
前後には原子蒸気が残留している。従って、後段ホロー
カソードC1はその原子蒸気が残っている間に大電流パ
ルス点灯されることになり、その発光スペクトル線は原
子蒸気で吸収され、HCLからは第4(d)図の(2)
と(4)に示すように完全に自己反転した発光スペクト
ル線が得られ、これがバックグラウンド補正用の光源と
して使われる。第4(d)図の(1)、 (3)と(2
)。Therefore, we focused on the fact that during this period self-absorption occurs due to the atomic vapors incident on the resonance line of the same atom, and clean self-reversal can be obtained. Rear stage hollow cathode C1
The remaining every other timing of the light emission timing (
A large current pulse is turned on at a predetermined time (several 100 μsec or less) earlier than 2) and (4). This results in the fourth (C
) As shown in the figure, atomic vapor remains in the front stage hollow cathode C2 and before and after it. Therefore, the latter hollow cathode C1 will be lit with a large current pulse while the atomic vapor remains, and the emission spectrum line will be absorbed by the atomic vapor, and the line (2) in Fig. 4(d) will be emitted from the HCL.
As shown in (4), a completely self-inverted emission spectrum line is obtained, which is used as a light source for background correction. (1), (3) and (2) in Figure 4(d)
).
(4)が第3(C)図の(d)と(e)にそれぞれ対応
しているのは明らかであろう、また前段のホローカソー
ドをパルス点灯した際に生じる、自己反転の生じていな
い発光スペクトル線(5)、 (6)は、必要に応じて
測定用光源にすることも可能であるし、信号処理回路の
構成によって、無視することも可能である。It is clear that (4) corresponds to (d) and (e) in Figure 3 (C), respectively, and there is no self-reversal that occurs when the hollow cathode in the previous stage is pulse-lit. The emission spectrum lines (5) and (6) can be used as a measurement light source if necessary, or can be ignored depending on the configuration of the signal processing circuit.
次に、本発明のホローカソードランプを原子吸光光度計
に適用した場合の一例を第5図に示す。Next, FIG. 5 shows an example in which the hollow cathode lamp of the present invention is applied to an atomic absorption spectrophotometer.
第1図と同じく、HCLlからの測定光と補正光が原子
化部3に照射され、サンプルまたはバックグラウンドで
吸収された光が分光器4を経て検出器5に入る。タイミ
ンクコントロールユニット7がHCL 1の発光タイミ
ングと、2チヤネルのボックスカー積分器8,9の切換
タイミングを制御する。つまりヰ★出器5からの電気信
号は、後段ホローカソードC1の発光に同期して切換え
られるボックスカー積分器8.9へ交互に入力し、例え
ばボックスカー積分器8が試料吸収とバックグラウンド
吸収を含む信号を積分し、他方ボックスカー積分器9が
補正用のバンクグラウンド吸収だけを含んだ信号を積分
する。信号処理部6で両ボックスカー積分器8.9から
の出力差を演算して、試料吸収だけに関するデータが得
られる。図示例では2チャネル方式としたが、3チヤネ
ルのボックスカー積分器構成として、光のバックグラウ
ンド吸収と別の発光間における検出器および信号処理回
路のバックグラウンドノイズの減算も行なうことができ
る。As in FIG. 1, the measurement light and correction light from HCL1 are irradiated onto the atomization unit 3, and the light absorbed by the sample or background passes through the spectrometer 4 and enters the detector 5. A timing control unit 7 controls the light emission timing of the HCL 1 and the switching timing of the two-channel boxcar integrators 8 and 9. In other words, the electrical signal from the generator 5 is alternately input to the boxcar integrator 8.9, which is switched in synchronization with the light emission from the subsequent hollow cathode C1. The boxcar integrator 9 integrates the signal containing only the correction background absorption. The signal processing unit 6 calculates the output difference from both boxcar integrators 8.9, and data relating only to sample absorption is obtained. In the illustrated example, a two-channel system is used, but a three-channel boxcar integrator configuration can also be used to subtract the background noise of the detector and signal processing circuit between the background absorption of light and another emission.
原子螢光分光光度計の場合にも、光の検出方向が励起光
に対しである角度を有するだけでシステムの構成及び動
作は同様である。その他、−iの科学計測用の近接2波
長光源等にも本発明のホローカソードランプを適用でき
るのは勿論である。In the case of an atomic fluorescence spectrophotometer, the system configuration and operation are similar except that the light detection direction has a certain angle with respect to the excitation light. In addition, it goes without saying that the hollow cathode lamp of the present invention can also be applied to a close two-wavelength light source for -i scientific measurements.
又里q羞果
以上述べたように本発明によれば、全く新しいタイプの
ホローカソードランプによって完全に自己反転した発光
スペクトル線を得ることができ、別個の光源や大がかり
な装置を必要とせずバックグラウンドや散乱による影響
を高い精度で補正可能な原子吸光/螢光光度計用の光源
が得られる。As described above, according to the present invention, completely self-inverted emission spectrum lines can be obtained using a completely new type of hollow cathode lamp, and a back-up light source can be used without the need for a separate light source or large-scale equipment. A light source for atomic absorption/fluorophotometers that can compensate for the effects of ground and scattering with high accuracy can be obtained.
第1図は原子吸光法を説明するためのブロック図、第2
(A)〜(B)図は原子吸光測定に用いる光源とホロー
カソードからの発光スペクトル線を示す図、第3図は本
発明によるホローカソードランプの構成を示す斜視図、
第4図はホローカソードランプの動作を説明するための
タイミングチャート、第5図は本ホローカソードランプ
を適用した原子吸光分光光度計の構成を示すブロック図
である。
1・・・ホローカソードランプ、3・・・原子化部、4
・・・分光器、5・・・検出器、6・・・信号処理部、
7・・・タイミングコントロールユニッ)、8.9・・
・ボックスカー積分器、C1・・・後段ホローカソード
、C2・・・前段ホローカソード、S・・・遮へい板。
出 願 人 日本分光工業株式会社代 理 人
丸 山 幸 雄第 1 図
=” (C) =”
(A) (B)
第 3 6
第 4 図
手続補正書
昭和62年2月18日
昭和61年特許願第269039号
2、発明の名称
ホローカソードラング及び該ランプを
光源とした原子吸光/螢光分光光度計
3、補正をする者
事件との関係 特許出願人
住所 東京都八王子市石川町2967番地の5住所 東
京都港区高輪3丁目25番27−1208号昭和62年
1月7日(同年1月27日)6、補正の対象
明細書
7、補正の内容
(1)明細書15頁11行を下記の通シ補正いたします
。
「を示す図、第20図は本発明の原子吸光測定て用いる
光源とホローカソードからの発光スペクトル線を示す図
、第3図は本発明によるホローカソード」Figure 1 is a block diagram to explain the atomic absorption method, Figure 2 is a block diagram to explain the atomic absorption method.
(A) to (B) are diagrams showing emission spectrum lines from a light source and a hollow cathode used for atomic absorption measurement, and FIG. 3 is a perspective view showing the configuration of a hollow cathode lamp according to the present invention.
FIG. 4 is a timing chart for explaining the operation of the hollow cathode lamp, and FIG. 5 is a block diagram showing the configuration of an atomic absorption spectrophotometer to which the present hollow cathode lamp is applied. 1... Hollow cathode lamp, 3... Atomization section, 4
... Spectrometer, 5... Detector, 6... Signal processing section,
7...timing control unit), 8.9...
・Boxcar integrator, C1... Rear stage hollow cathode, C2... Front stage hollow cathode, S... Shielding plate. Applicant: JASCO Corporation Agent
Yukio Maruyama No. 1 Figure =” (C) =” (A) (B) No. 3 6 No. 4 Amendment to Figure Procedures February 18, 1988 Patent Application No. 269039, 1988 2, Title of Invention Hollow Cathode Lang and Atomic Absorption/Fluorescence Spectrophotometer 3 Using the Lamp as a Light Source, Relationship with the Amendment Case Patent Applicant Address: 2967-5 Ishikawa-cho, Hachioji-shi, Tokyo 3-25 Takanawa, Minato-ku, Tokyo No. 27-1208 January 7, 1988 (January 27 of the same year) 6, Specification subject to amendment 7, Contents of amendment (1) Page 15, line 11 of the specification will be amended as follows. 20 is a diagram showing the light source used for atomic absorption measurement of the present invention and emission spectrum lines from the hollow cathode, and Figure 3 is a diagram showing the hollow cathode according to the present invention.''
Claims (4)
カソードを同一のホローカソードランプ内にその光軸に
沿って縦列状に配置し、前段のホローカソードが中空で
後段のホローカソードランプからの光が前段ホローカソ
ードの中空部を透過するように構成したことを特徴とす
るホローカソードランプ。(1) A plurality of hollow cathodes made of the same element or the same component are arranged in a column along the optical axis within the same hollow cathode lamp, and the hollow cathode at the front stage is hollow and the light from the hollow cathode lamp at the rear stage is hollow. A hollow cathode lamp characterized in that a hollow cathode lamp is configured to transmit through a hollow part of a front stage hollow cathode.
空間に閉じ込める透明な遮へい板を前段のホローカソー
ドの前後に設けたことを特徴とする特許請求の範囲第1
項のホローカソードランプ。(2) Claim 1 characterized in that transparent shielding plates are provided before and after the hollow cathode at the front stage to confine the atomic vapor generated at the hollow cathode at the rear stage in a certain space.
Hollow cathode lamp.
カソードを同一のホローカソードランプ内にその光軸に
沿って縦列状に配置し、前段のホローカソードが中空で
後段のホローカソードランプからの光が前段ホローカソ
ードの中空部を透過するように構成したホローカソード
ランプを光源として用い、上記複数のホローカソードを
大電流パルス点灯させ、前段または後段ホローカソード
の大電流パルス点灯で生じた発光スペクトル線を測定光
源とする一方、後段ホローカソードからの発光スペクト
ル線を前段ホローカソードの大電流パルス点灯によって
生じた原子蒸気により自己反転させ、この自己反転した
発光スペクトル線を原子吸光分析のバックグラウンド補
正光源又は原子螢光分析の散乱補正用光源としたことを
特徴とする原子吸光/螢光分光光度計。(3) A plurality of hollow cathodes made of the same element or the same component are arranged in a column along the optical axis within the same hollow cathode lamp, so that the hollow cathode in the front stage is hollow and the light from the hollow cathode lamp in the rear stage is hollow. Using a hollow cathode lamp configured to transmit light through the hollow part of the hollow cathode at the front stage as a light source, the plurality of hollow cathodes mentioned above are lit with high current pulses, and the emission spectrum lines generated by the high current pulse lighting of the hollow cathodes at the front stage or the rear stage are measured. is used as the measurement light source, and the emission spectrum line from the latter hollow cathode is self-inverted by the atomic vapor generated by the large current pulse lighting of the former hollow cathode, and this self-inverted emission spectrum line is used as the background correction light source for atomic absorption analysis. Or an atomic absorption/fluorescence spectrophotometer characterized in that it is used as a light source for scattering correction in atomic fluorescence analysis.
段のホローカソードを所定の間隔で時分割大電流パルス
点灯して生ぜしめることを特徴とする特許請求の範囲第
3項の原子吸光/螢光分光光度計。(4) Self-reversal of the emission spectrum line is caused by time-division large current pulse lighting of the hollow cathodes at predetermined intervals at predetermined intervals. Optical spectrophotometer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61269039A JPH0797045B2 (en) | 1986-11-12 | 1986-11-12 | Hollow cathode lamp and atomic absorption / fluorescence spectrophotometer using the lamp as a light source |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61269039A JPH0797045B2 (en) | 1986-11-12 | 1986-11-12 | Hollow cathode lamp and atomic absorption / fluorescence spectrophotometer using the lamp as a light source |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63122922A true JPS63122922A (en) | 1988-05-26 |
JPH0797045B2 JPH0797045B2 (en) | 1995-10-18 |
Family
ID=17466822
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61269039A Expired - Lifetime JPH0797045B2 (en) | 1986-11-12 | 1986-11-12 | Hollow cathode lamp and atomic absorption / fluorescence spectrophotometer using the lamp as a light source |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0797045B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002019385A1 (en) * | 2000-09-01 | 2002-03-07 | Hamamatsu Photonics K.K. | Hollow cathode lamp, atomic absorption analyzer, and atomic fluorescence analyzer |
WO2002019384A1 (en) * | 2000-09-01 | 2002-03-07 | Hamamatsu Photonics K.K. | Hollow cathode lamp, atomic absorption analyzer, and atomic fluorescence analyzer |
WO2002021570A1 (en) * | 2000-09-01 | 2002-03-14 | Hamamatsu Photonics K.K. | Hollow cathode lamp, atomic absorption analyzer, and atomic fluorescence analyzer |
JP2007335130A (en) * | 2006-06-13 | 2007-12-27 | Orc Mfg Co Ltd | Ultraviolet continuous spectrum lamp and lighting device |
CN108760650A (en) * | 2018-05-25 | 2018-11-06 | 北京海光仪器有限公司 | A kind of more lamp position rotary lighthouses are to photosystem |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5199093A (en) * | 1976-01-26 | 1976-09-01 | Hamamatsu Tv Co Ltd | SUPEKUTORUHODENKAN |
-
1986
- 1986-11-12 JP JP61269039A patent/JPH0797045B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5199093A (en) * | 1976-01-26 | 1976-09-01 | Hamamatsu Tv Co Ltd | SUPEKUTORUHODENKAN |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002019385A1 (en) * | 2000-09-01 | 2002-03-07 | Hamamatsu Photonics K.K. | Hollow cathode lamp, atomic absorption analyzer, and atomic fluorescence analyzer |
WO2002019384A1 (en) * | 2000-09-01 | 2002-03-07 | Hamamatsu Photonics K.K. | Hollow cathode lamp, atomic absorption analyzer, and atomic fluorescence analyzer |
WO2002021570A1 (en) * | 2000-09-01 | 2002-03-14 | Hamamatsu Photonics K.K. | Hollow cathode lamp, atomic absorption analyzer, and atomic fluorescence analyzer |
JP2007335130A (en) * | 2006-06-13 | 2007-12-27 | Orc Mfg Co Ltd | Ultraviolet continuous spectrum lamp and lighting device |
CN108760650A (en) * | 2018-05-25 | 2018-11-06 | 北京海光仪器有限公司 | A kind of more lamp position rotary lighthouses are to photosystem |
CN108760650B (en) * | 2018-05-25 | 2023-10-13 | 北京海光仪器有限公司 | Multi-lamp-position rotary lighthouse light focusing system |
Also Published As
Publication number | Publication date |
---|---|
JPH0797045B2 (en) | 1995-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4750837A (en) | Fluorometer with reference light source | |
Steiner | Excited states of proteins and nucleic acids | |
US4802768A (en) | Two light source reference system for a fluorometer | |
Van Hoek et al. | Artefact and distortion sources in time correlated single photon counting | |
KR890005498A (en) | Spectrophotometer | |
JPS63122922A (en) | Hollow cathode lamp and atomic absorption/fluorescence spectrophotometer having said lamp as light source | |
EP0241268A2 (en) | Improved pulse light system fluorometer | |
Treytl et al. | Spatial differentiation of optical emission in Q-switched laser-induced plasmas and effects on spectral line analytical sensitivity | |
Richardson et al. | A comparison of different experimental configurations in pulsed laser induced molecular fluorescence | |
Anfinrud et al. | Fluorescence depolarization of rhodamine 6G in glycerol: A photon-counting test of three-dimensional excitation transport theory | |
Marshall et al. | Multi-element atomic fluorescence spectroscopy: Stimulation of atomic fluorescence of mixtures of bismuth, mercury, selenium and tellurium; cadmium and zinc; gallium and indium by means of multi-element microwaveexcited electrode less discharge tubes | |
Laws et al. | THE TIME‐RESOLVED PHOTON‐COUNTING FLUOROMETER AT THE NATIONAL SYNCHROTRON LIGHT. SOURCE | |
Fotiou et al. | Performance of a Hadamard transform photothermal deflection imager with continuous wave laser illumination | |
US4523096A (en) | Liquid chromatography apparatus | |
JPS62278436A (en) | Fluorescence light measuring method and apparatus | |
Brodie et al. | Zeeman effect in flame atomic absorption spectrometry | |
JPH0574185B2 (en) | ||
US3937576A (en) | Illumination system for an atomic absorption spectral photometer | |
Human et al. | Analysis of metals using a glow-discharge source with a fluorescent atomic vapour as spectral-line isolator | |
Snyder et al. | Single photon counting lifetime measurements of weak, long-lived samples | |
JP3790363B2 (en) | Glow discharge optical emission spectrometer | |
Ishiwata et al. | Optical-optical double resonance spectroscopy of the 1g (3P2)-A 3Π (1u)-X 1Σg+ transition of Cl2 | |
Maier et al. | The à 2 Π 3/2 â†� X 2 Π 3/2 laser-excitation spectra of iodoacetylene and deuteroiodoacetylene cations | |
JPS56114746A (en) | Direct analyzing method for molten metal with pulse laser light | |
US3475099A (en) | Apparatus for spectrochemical analysis |