JPS6312189B2 - - Google Patents
Info
- Publication number
- JPS6312189B2 JPS6312189B2 JP55092785A JP9278580A JPS6312189B2 JP S6312189 B2 JPS6312189 B2 JP S6312189B2 JP 55092785 A JP55092785 A JP 55092785A JP 9278580 A JP9278580 A JP 9278580A JP S6312189 B2 JPS6312189 B2 JP S6312189B2
- Authority
- JP
- Japan
- Prior art keywords
- polyester
- woven
- long fibers
- hollow
- fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000835 fiber Substances 0.000 claims description 95
- 229920000728 polyester Polymers 0.000 claims description 89
- 239000004744 fabric Substances 0.000 claims description 41
- -1 sulfonic acid compound Chemical class 0.000 claims description 26
- 239000003795 chemical substances by application Substances 0.000 claims description 20
- 239000012510 hollow fiber Substances 0.000 claims description 15
- 229910052751 metal Inorganic materials 0.000 claims description 12
- 239000002184 metal Substances 0.000 claims description 12
- 125000000524 functional group Chemical group 0.000 claims description 11
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 11
- 238000010438 heat treatment Methods 0.000 claims description 10
- 125000000962 organic group Chemical group 0.000 claims description 10
- 125000003118 aryl group Chemical group 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 230000002040 relaxant effect Effects 0.000 claims description 5
- 239000012670 alkaline solution Substances 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 4
- 125000001931 aliphatic group Chemical group 0.000 claims description 3
- 150000002739 metals Chemical class 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 239000011574 phosphorus Substances 0.000 claims description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims description 3
- 239000011148 porous material Substances 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 20
- 229910052708 sodium Inorganic materials 0.000 description 14
- 239000011734 sodium Substances 0.000 description 14
- 238000010521 absorption reaction Methods 0.000 description 11
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 9
- 229910052700 potassium Inorganic materials 0.000 description 8
- 238000002156 mixing Methods 0.000 description 6
- 239000011591 potassium Substances 0.000 description 6
- 210000004243 sweat Anatomy 0.000 description 6
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 5
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 4
- 239000003513 alkali Substances 0.000 description 4
- 229910052783 alkali metal Inorganic materials 0.000 description 4
- 150000001340 alkali metals Chemical class 0.000 description 4
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 4
- 150000001342 alkaline earth metals Chemical class 0.000 description 4
- 125000000217 alkyl group Chemical group 0.000 description 4
- 206010061592 cardiac fibrillation Diseases 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- WOZVHXUHUFLZGK-UHFFFAOYSA-N dimethyl terephthalate Chemical compound COC(=O)C1=CC=C(C(=O)OC)C=C1 WOZVHXUHUFLZGK-UHFFFAOYSA-N 0.000 description 4
- 230000002600 fibrillogenic effect Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 208000016261 weight loss Diseases 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 150000003460 sulfonic acids Chemical class 0.000 description 3
- 230000004580 weight loss Effects 0.000 description 3
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 229940077388 benzenesulfonate Drugs 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 150000003018 phosphorus compounds Chemical class 0.000 description 2
- 238000006068 polycondensation reaction Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000001488 sodium phosphate Substances 0.000 description 2
- 239000002759 woven fabric Substances 0.000 description 2
- UUWJHAWPCRFDHZ-UHFFFAOYSA-N 1-dodecoxydodecane;phosphoric acid Chemical compound OP(O)(O)=O.CCCCCCCCCCCCOCCCCCCCCCCCC UUWJHAWPCRFDHZ-UHFFFAOYSA-N 0.000 description 1
- NKXLVBDPWMIQHI-UHFFFAOYSA-N 2,5-bis(2-hydroxyethoxy)benzenesulfonic acid Chemical compound OCCOC1=CC=C(OCCO)C(S(O)(=O)=O)=C1 NKXLVBDPWMIQHI-UHFFFAOYSA-N 0.000 description 1
- HTXMGVTWXZBZNC-UHFFFAOYSA-N 3,5-bis(methoxycarbonyl)benzenesulfonic acid Chemical compound COC(=O)C1=CC(C(=O)OC)=CC(S(O)(=O)=O)=C1 HTXMGVTWXZBZNC-UHFFFAOYSA-N 0.000 description 1
- KUEAXNDTBSKPSJ-UHFFFAOYSA-N 3-(2-hydroxyethoxycarbonyl)benzenesulfonic acid Chemical compound OCCOC(=O)C1=CC=CC(S(O)(=O)=O)=C1 KUEAXNDTBSKPSJ-UHFFFAOYSA-N 0.000 description 1
- QXNVGIXVLWOKEQ-UHFFFAOYSA-N Disodium Chemical compound [Na][Na] QXNVGIXVLWOKEQ-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- CVUIZWFQMUFZSL-UHFFFAOYSA-K P(=O)([O-])([O-])[O-].C[Mn+3] Chemical compound P(=O)([O-])([O-])[O-].C[Mn+3] CVUIZWFQMUFZSL-UHFFFAOYSA-K 0.000 description 1
- RECMVHGLUHDCTK-UHFFFAOYSA-K P(=O)([O-])([O-])[O-].[Na+].COC.[Na+].[Na+] Chemical compound P(=O)([O-])([O-])[O-].[Na+].COC.[Na+].[Na+] RECMVHGLUHDCTK-UHFFFAOYSA-K 0.000 description 1
- SIHFZSASJWRZQM-UHFFFAOYSA-N P(O)(O)O.COC Chemical compound P(O)(O)O.COC SIHFZSASJWRZQM-UHFFFAOYSA-N 0.000 description 1
- 229920001283 Polyalkylene terephthalate Polymers 0.000 description 1
- GYSRYFZMSPUCLA-UHFFFAOYSA-H [Mg+2].P(=O)([O-])([O-])[O-].C(CCCCCCCCCCC)OCCCCCCCCCCCC.P(=O)([O-])([O-])[O-].[Mg+2].[Mg+2] Chemical compound [Mg+2].P(=O)([O-])([O-])[O-].C(CCCCCCCCCCC)OCCCCCCCCCCCC.P(=O)([O-])([O-])[O-].[Mg+2].[Mg+2] GYSRYFZMSPUCLA-UHFFFAOYSA-H 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 125000002877 alkyl aryl group Chemical group 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-M benzenesulfonate Chemical compound [O-]S(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-M 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- VSGNNIFQASZAOI-UHFFFAOYSA-L calcium acetate Chemical compound [Ca+2].CC([O-])=O.CC([O-])=O VSGNNIFQASZAOI-UHFFFAOYSA-L 0.000 description 1
- 239000001639 calcium acetate Substances 0.000 description 1
- 235000011092 calcium acetate Nutrition 0.000 description 1
- 229960005147 calcium acetate Drugs 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- ZPWVASYFFYYZEW-UHFFFAOYSA-L dipotassium hydrogen phosphate Chemical compound [K+].[K+].OP([O-])([O-])=O ZPWVASYFFYYZEW-UHFFFAOYSA-L 0.000 description 1
- 235000019797 dipotassium phosphate Nutrition 0.000 description 1
- 229910000396 dipotassium phosphate Inorganic materials 0.000 description 1
- 229910000397 disodium phosphate Inorganic materials 0.000 description 1
- 235000019800 disodium phosphate Nutrition 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 239000004137 magnesium phosphate Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002074 melt spinning Methods 0.000 description 1
- 150000004682 monohydrates Chemical class 0.000 description 1
- 229910000401 monomagnesium phosphate Inorganic materials 0.000 description 1
- 235000019785 monomagnesium phosphate Nutrition 0.000 description 1
- 229910000403 monosodium phosphate Inorganic materials 0.000 description 1
- 235000019799 monosodium phosphate Nutrition 0.000 description 1
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N phenylbenzene Natural products C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- LWIHDJKSTIGBAC-UHFFFAOYSA-K potassium phosphate Substances [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000009991 scouring Methods 0.000 description 1
- KYIIISJHLCLNLK-UHFFFAOYSA-M sodium methoxy(phenyl)phosphinate Chemical compound [Na+].COP([O-])(=O)C1=CC=CC=C1 KYIIISJHLCLNLK-UHFFFAOYSA-M 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000035900 sweating Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 238000005809 transesterification reaction Methods 0.000 description 1
- WVLBCYQITXONBZ-UHFFFAOYSA-N trimethyl phosphate Chemical compound COP(=O)(OC)OC WVLBCYQITXONBZ-UHFFFAOYSA-N 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Landscapes
- Knitting Of Fabric (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
- Artificial Filaments (AREA)
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
- Multicomponent Fibers (AREA)
- Woven Fabrics (AREA)
Description
本発明は、ポリエステル系繊維織編物およびそ
の製造方法に関する。
ポリエステル、特にポリエチレンテレフタレー
ト、ポリブチレンテレフタレートの如きポリアル
キレンテレフタレート及びこれらを主体とするポ
リエステル繊維は種々の優れた特性を有している
ため広く織編物に使用されている。
しかし、これら従来のポリエステル繊維による
織編物は、ドライ感、ボリユーム感に乏しく更
に、親水性でない為、天然繊維の絹、麻、綿及び
毛等の織編物の着心地に一歩も二歩もゆずらざる
を得ず、これらに近づける努力がなされている。
最近、ポリエステル繊維織編物の生産・加工技
術の進歩により、織編物の風合、外観面では天然
繊維織編物にかなり近いものが得られるようにな
つてきたが、ドライな表面タツチ、ボリユーム感
ある肌ざわり優れた吸水性等の点では依然として
大きい差があつて天然繊維織編物とポリエステル
繊維織編物との着心地感の決定的な差異の1つに
なつている。
ここに言うドライ感とは、例えば絹繊維織編物
等が有する特有のドライ感を言いポリエステル繊
維織編物が持つヌメリ感に対するものであるが、
現在のところ定量的測定は困難であり、一般に織
編物業者の触感によつているのが普通である。
かくの如く、その測定は困難であるが、織編物
の性質、及び着心地を決定する上で極めて重要な
要素である。
又、ボリユーム感とは、例えば毛繊維織編物等
が有する特有のボリユーム感を言いポリエステル
繊維織編物が持つ平担な薄さに対するものであ
る。このボリユーム感は特に織編物の性質、及び
肌ざわりを中心とした着心地感の優劣を左右す
る。
更に、吸水性とは、衣服の着心地を左右する極
めて重要な要素である。
即ち、多量に汗をかいた場合などポリエステル
繊維等疎水性繊維布帛では、その汗は布帛に吸収
されず皮膚の上に溜り、布帛も濡れた状態になつ
ているため肌に密着し、べとつき、まとわりつき
等の欠点を有していた。従つて、ポリエステル繊
維に吸水性を附与し、上記欠点を解消することは
合成繊維織編物誕生以来の永年の夢であつた。
本発明の目的は、ポリエステル繊維織編物の上
記欠点を改良し、優れたドライ感、豊かなボリユ
ーム感、優れた吸水性を与えるポリエステル長繊
維織編物およびその製造方法を提供せんとするも
のである。
即ち、本発明は、2種以上のポリエステル系長
繊維からなる混繊糸条であつて、該ポリエステル
系長繊維の少なくとも1種が中空繊維からなり、
該中空繊維はその横断面に散在し、且つ、その繊
維軸方向に配列する微細孔を有し、該微細孔の直
径が0.01〜3μm、その長さが該直径の50倍以下で
少なくともその一部が中空部まで連通している中
空繊維を、前記混繊糸の主として外層部に配置せ
しめた混繊糸から成ることを特徴とするポリエス
テル系繊維織編物にあり、かゝる織編物を得るに
は、例えば、2種以上のポリエステル系長繊維を
混繊した糸条であつて、該ポリエステル系長繊維
の少なくとも1種が下記一般式()で表わされ
る有機スルフオン酸化合物を共重合した変性ポリ
エステル、下記一般式()で表わされるリン化
合物及び下記一般式()で表わされるスルホン
酸化合物よりなる群から選ばれた少なくとも一種
の微細孔形成剤を配合せしめた断面中空形状の長
繊維からなり、該ポリエステル系長繊維の少なく
とも他の一種が前記微細孔形成剤配合のポリエス
テル系長繊維の熱収縮率より大なる熱収縮率を有
する長繊維からなる混繊糸を弛緩熱処理して後、
織編成するか、若しくは、織編成して後、弛緩熱
処理するかし、しかる後該織編物をアルカリ性溶
液で処理することを特徴とするポリエステル系織
編物の製造方法。
〔式中、Aは3価の芳香族基又は脂肪族炭化水素
基、Xはエステル形成性官能基、Yはエステル形
成性官能基又は水素原子、M1は金属又は水素原
子を示す。〕
〔式中、Vは一価の有機基、Zは―OV′、OM5又
は一価の有機基(但しV′は一価の有機基、M5は
金属)、M2は金属、mは0又は1を示す。〕
〔式中、Wは水素原子又はエステル形成性官能
基、M3及びM4は金属、nは1又は2を示す。〕
以下、本発明を詳細に説明する。
本発明において言う混繊糸条とは、微細孔を有
する中空ポリエステル繊維を外層部に配置せしめ
たものである。
この混繊糸の内層部には、普通ポリエステル繊
維、微細孔を有するポリエステル繊維を配置せし
めるが、外層部に配置される中空ポリエステル繊
維と同じく中空断面を有し、且つ、微細孔を有す
るポリエステル繊維であつてもよいが、この場合
は、内層部に配置される中空ポリエステル繊維が
外層部に配置されるものより大なる繊度を有して
いることが好ましい。
本発明において言う中空ポリエステル繊維の形
態は、繊維軸方向に連続したポリマー層が存在す
れば、その外形(即ち、断面の外周形状)及び中
空部の形状は如何なるものでもよく、例えば中空
ポリエステル繊維の外形及び中空部の形状が円型
であるもの、外形の各辺が凸なる多角型状で中空
部が円型の中空断面を有するもの、外形が円型状
で中空部が多角型状のもの、外形中空部共に異型
のもの、さらには、該中空部が2〜4の複数個あ
るものなどが挙げられる。またかかる中空ポリエ
ステル繊維の外径の大きさには制限がない。
かかる中空ポリエステル繊維の中空率、すなわ
ち見掛けの繊維全断面積に対する中空部の断面積
の割合は5〜50%の範囲であることが望ましい。
中空率が5%未満であるとその吸水性能が低下し
本発明の目的である織編物が得られない。又、中
空率が50%を越えると中空部が潰れ易くなり、一
旦潰れると吸水性能が低下するようになるので好
ましくない。
又、本発明に使用する中空ポリエステル繊維
は、横断面に散在し、且つ、繊維軸方向に配列し
た微細孔を有するものである。前記の微細孔は、
該中空断面の全体に散在していてもよいし、又、
断面のある部分に散在しているものでもよいが、
少なくとも一部の微細孔が相互に連通しており、
繊維全体として結果的に中空繊維の外壁と内壁が
微細孔を介して連続的、若しくは断続的に通じて
いるものである。この微細孔が繊維横断面におい
て、前記のごとく散在し、その少なくとも1部が
中空部まで連通しているか否かは繊維横断面を
3000倍程度に拡大して観察することが出来る。さ
らに、微細孔の連通状態を確認する最も簡便で容
易な方法は、長さ数センチメートル(通常5cm)
の単糸を通常の顕微鏡で100倍程度の倍率で観察
しながら、この単糸の中程に水(染色水であれば
より好ましい)を一滴たらせば、その水が中空部
に達するか否かにより容易に確認できる。本発明
に使用する中空ポリエステル繊維の場合には、前
記のようにたらした水は、瞬時にして中空部に達
するのが観察される。
第1図は、本発明に使用する中空繊維の外形の
顕微鏡写真を示す図である。第1図に示されるご
とく、前記の微細孔は繊維軸方向に配列されてい
るものであり、繊維外形、特に表面にフイブリル
は見られない。かかる微細孔の大きさは、その直
径が0.01〜3μm、その長さが該直径の50倍以下で
あることが望ましい。この微細孔の直径が
0.01μm未満であると吸水性の効果が低下し易く、
直径が3μmを超えると充分な繊維強度が得られな
い。また、微細孔の長さがその直径の50倍を超え
て長くなると他の条件を全て満足しても、繊維の
強度及び耐フイブリル性が低くなるので好ましく
ない。
かかる微細孔を有する繊維は次のようにして得
られる。即ちポリエステル系組成物に微細孔形成
剤を配合せしめて溶融紡糸し、得られたポリエス
テル系繊維をアルカリ性溶液で処理し、該添加剤
を除去することにより得ることが出来る。
ここで使用する微細孔形成剤としては、下記一
般式()で表わされる有機スルホン酸化合物を
共重合させた変性ポリエステルが好ましく使用さ
れる。
式中、Aは3価の芳香族基又は脂肪族炭化水素
基であり、なかでも芳香族基が好ましい。M1は
金属又は水素原子であり、特にアルカリ金属又は
アルカリ土類金属が好ましい。Xはエステル形成
性官能基であり、その具体例としては
The present invention relates to a polyester fiber woven or knitted fabric and a method for producing the same. Polyesters, particularly polyalkylene terephthalates such as polyethylene terephthalate and polybutylene terephthalate, and polyester fibers mainly composed of these polyesters have various excellent properties and are therefore widely used in woven and knitted fabrics. However, these conventional woven and knitted fabrics made from polyester fibers lack a dry and voluminous feel, and are not hydrophilic. Efforts are being made to get closer to these without getting the same results. Recently, due to advances in production and processing technology for polyester fiber woven and knitted materials, it has become possible to obtain woven and knitted materials that are quite similar to natural fiber woven and knitted materials in terms of texture and appearance, but with a dry surface touch and a sense of volume. There is still a large difference in terms of texture, water absorption, etc., and this is one of the decisive differences in comfort between natural fiber woven and knitted fabrics and polyester fiber woven and knitted fabrics. The dry feeling mentioned here refers to the unique dry feeling that silk fiber woven and knitted fabrics have, for example, and is in contrast to the slimy feeling that polyester fiber woven and knitted fabrics have.
Quantitative measurement is difficult at present, and is generally based on the touch of the fabric manufacturer. Although it is difficult to measure, it is an extremely important element in determining the properties and comfort of woven or knitted fabrics. Moreover, the volume feeling refers to the unique volume feeling that woolen fiber woven and knitted fabrics have, for example, and is in contrast to the flat and thinness that polyester fiber woven and knitted fabrics have. This sense of volume particularly affects the properties of woven or knitted fabrics and the comfort level centered on the texture. Furthermore, water absorbency is an extremely important factor that affects the comfort of clothing. That is, when using hydrophobic fiber fabrics such as polyester fibers when sweating a lot, the sweat is not absorbed by the fabric and accumulates on the skin, and the fabric is also wet, so it sticks to the skin and becomes sticky. It had drawbacks such as clinging. Therefore, it has been a long-standing dream since the birth of synthetic fiber woven and knitted fabrics to impart water absorbency to polyester fibers and eliminate the above-mentioned drawbacks. An object of the present invention is to improve the above-mentioned drawbacks of polyester fiber woven and knitted fabrics, and to provide a polyester long fiber woven and knitted fabric that provides an excellent dry feel, rich volume feel, and excellent water absorption, and a method for producing the same. . That is, the present invention provides a mixed yarn consisting of two or more types of polyester long fibers, at least one of the polyester long fibers consisting of hollow fibers,
The hollow fiber has micropores scattered in its cross section and arranged in the fiber axis direction, the diameter of the micropores is 0.01 to 3 μm, the length is 50 times the diameter or less, and at least one of the micropores is 0.01 to 3 μm in diameter. A polyester fiber woven or knitted fabric is characterized in that it consists of a mixed fiber yarn in which hollow fibers, the hollow fibers of which are connected to the hollow portion, are arranged mainly in the outer layer of the mixed fiber yarn, and such a woven or knitted fabric is obtained. For example, the modified yarn is a yarn made by blending two or more types of polyester long fibers, and at least one of the polyester long fibers is copolymerized with an organic sulfonic acid compound represented by the following general formula (). Consisting of long fibers with a hollow cross section and blended with at least one type of micropore-forming agent selected from the group consisting of polyester, a phosphorus compound represented by the following general formula (), and a sulfonic acid compound represented by the following general formula (). , after subjecting a blended yarn consisting of long fibers in which at least one of the polyester long fibers has a heat shrinkage rate greater than the heat shrinkage rate of the polyester long fibers containing the micropore-forming agent, to a relaxing heat treatment;
1. A method for producing a polyester woven or knitted fabric, which comprises woven or knitted, or subjected to relaxation heat treatment after woven or knitted, and then treated with an alkaline solution. [Wherein, A is a trivalent aromatic group or an aliphatic hydrocarbon group, X is an ester-forming functional group, Y is an ester-forming functional group or a hydrogen atom, and M 1 is a metal or a hydrogen atom. ] [In the formula, V is a monovalent organic group, Z is -OV', OM 5 or a monovalent organic group (where V' is a monovalent organic group, M 5 is a metal), M 2 is a metal, and m is a Indicates 0 or 1. ] [Wherein, W is a hydrogen atom or an ester-forming functional group, M 3 and M 4 are metals, and n is 1 or 2. ] Hereinafter, the present invention will be explained in detail. The mixed fiber yarn referred to in the present invention is one in which hollow polyester fibers having micropores are arranged in the outer layer portion. In the inner layer of this mixed yarn, normal polyester fibers and polyester fibers with micropores are arranged, but like the hollow polyester fibers arranged in the outer layer, polyester fibers with a hollow cross section and micropores are used. However, in this case, it is preferable that the hollow polyester fibers disposed in the inner layer have a larger fineness than those disposed in the outer layer. The shape of the hollow polyester fiber referred to in the present invention may be any shape as long as there is a continuous polymer layer in the fiber axis direction. Those whose outer shape and hollow part are circular, those whose outer shape is polygonal with convex sides and whose hollow part has a circular hollow cross section, and those whose outer shape is circular and whose hollow part is polygonal. , those having irregularly shaped hollow portions, and those having a plurality of 2 to 4 hollow portions. Furthermore, there is no limit to the outer diameter of such hollow polyester fibers. The hollowness ratio of such hollow polyester fibers, that is, the ratio of the cross-sectional area of the hollow portion to the total apparent cross-sectional area of the fibers, is preferably in the range of 5 to 50%.
If the hollowness ratio is less than 5%, the water absorption performance will decrease and the woven or knitted fabric which is the object of the present invention cannot be obtained. In addition, if the hollowness ratio exceeds 50%, the hollow portion tends to collapse, and once it collapses, the water absorption performance decreases, which is not preferable. Further, the hollow polyester fiber used in the present invention has micropores scattered in the cross section and arranged in the fiber axis direction. The aforementioned micropores are
They may be scattered throughout the hollow cross section, or
It may be scattered in a certain part of the cross section, but
at least some of the micropores are in communication with each other,
As a result, the outer wall and inner wall of the hollow fiber as a whole communicate with each other continuously or intermittently through micropores. These micropores are scattered in the cross section of the fiber as described above, and whether or not at least one part of them communicates with the hollow part is determined by the cross section of the fiber.
It can be observed at a magnification of about 3000 times. Furthermore, the simplest and easiest way to check the communication state of micropores is to check the length of several centimeters (usually 5 cm).
While observing a single filament with a normal microscope at a magnification of about 100 times, if you place a drop of water (preferably dyed water) in the middle of this single filament, you can see whether the water reaches the hollow part or not. This can be easily confirmed. In the case of the hollow polyester fiber used in the present invention, it is observed that the water dropped as described above instantly reaches the hollow portion. FIG. 1 is a diagram showing a microscopic photograph of the outer shape of the hollow fiber used in the present invention. As shown in FIG. 1, the micropores are arranged in the axial direction of the fiber, and no fibrils are observed in the outer shape of the fiber, especially on the surface. As for the size of such micropores, it is desirable that the diameter is 0.01 to 3 μm and the length is 50 times or less the diameter. The diameter of this micropore is
If it is less than 0.01μm, the water absorption effect tends to decrease,
If the diameter exceeds 3 μm, sufficient fiber strength cannot be obtained. Furthermore, if the length of the micropores becomes longer than 50 times the diameter thereof, even if all other conditions are satisfied, the strength and fibrillation resistance of the fiber will decrease, which is not preferable. Fibers having such micropores can be obtained as follows. That is, it can be obtained by blending a micropore-forming agent into a polyester composition, melt-spinning the resulting polyester fiber, and treating the resulting polyester fiber with an alkaline solution to remove the additive. As the micropore-forming agent used here, a modified polyester obtained by copolymerizing an organic sulfonic acid compound represented by the following general formula () is preferably used. In the formula, A is a trivalent aromatic group or an aliphatic hydrocarbon group, with aromatic groups being particularly preferred. M 1 is a metal or a hydrogen atom, and particularly preferably an alkali metal or an alkaline earth metal. X is an ester-forming functional group, and specific examples thereof include
【式】(―CH2
)―aOH、―O(CH2)―b〔―O(CH2)b〕―dOH、
[Formula] (-CH 2 )- a OH, -O(CH 2 )- b [-O(CH 2 ) b ]- d OH,
【式】
(但し、Rは低級アルキル基又はフエニル基、a
及びdは1以上の整数、bは2以上の整数であ
る)等をあげることができる。YはXと同一若し
くは異なるエステル形成性官能基又は水素原子を
示し、なかでもエステル形成性官能基であること
が好ましい。かかる有機スルホン酸化合物のなか
でも特に好ましい具体例として3,5―ジ(カル
ボメトキシ)ベンゼンスルホン酸ナトリウム(又
はカリウム)、1,8―ジ(カルボメトキシ)ナ
フタレン―3―スルホン酸ナトリウム(又はカリ
ウム)、2,5―ビス(ヒドロキシエトキシ)ベ
ンゼンスルホン酸ナトリウム(又はカリウム)等
をあげることができる。
かかる有機スルホン酸化合物を共重合した変性
ポリエステルを製造するには、前述したポリエス
テルの合成が完了する以前の任意の段階で、好ま
しくは第1段階の反応が終了する以前の任意の段
階で有機スルホン酸化合物を添加すればよい。こ
の際の有機スルホン酸化合物の使用量は、変性ポ
リエステルを構成するテレフタル酸を主とする二
官能性カルボン酸成分(有機スルホン酸成分を除
く)に対して2〜16モル%となる範囲の量が好ま
しい。この変性ポリエステルのポリエステルに対
する配合量は、ポリエステル100重量部に対して
変性ポリエステル5〜100重量部となる割合が好
ましい。
また、微細孔形成剤としては、上記変性ポリエ
ステル以外にも、下記一般式()又は()で
表わされるリン化合物又はスルホン酸化合物も好
ましい。
式中、M2は金属であり、特にアルカリ金属、
アルカリ土類金属、Mn1/2、Co1/2又はZn1/2が
好ましく、なかでもLi、Na、K、Ca1/2、Mg1/
2が特に好ましい。mは0又は1である。Vは一
価の有機基であり、具体的にはアルキル基、アリ
ール基、アルキルアリール基、アリールアルキル
基又は〔―(―CH2)―lO〕―pR″(但しR″は水素原
子、
アルキル基又はフエニル基、lは2以上の整数、
pは1以上の整数)等が好ましい。Zは―OH、
―OV′、―OM5又は一価の有機基であり、V′は
上記Vの定義と同様であつて、V′とVとは同一
でも異なつていてもよく、M5は上記M2の定義と
同様であつて、M5とM2とは同一でも異なつてい
てもよい。また一価の有機基としては、上記Vに
おける有機基の定義と同様であつて、Vと同一で
も異なつていてもよい。
かかるリン化合物の好ましい具体例としてはリ
ン酸モノメチルジナトリウム、リン酸ジメチルモ
ノナトリウム、リン酸モノフエニルジカリウム、
リン酸モノメチルモノマグネシウム、リン酸モノ
メチルマンガン、ポリオキシエチレン(EO 5モ
ル付加)ラウリルエーテルホスフエートカリウム
塩(但し、EO 5モル付加とは、エチレンオキサ
イド5モル付加を意味し、以下同様の意味を示
す)、ポリオキシエチレン(EO 5モル付加)ラ
ウリルエーテルホスフエートマグネシウム塩、ポ
リオキシエチレン(EO 50モル付加)メチルエー
テルホスフエートナトリウム塩、亜リン酸モノエ
チルジカリウム、亜リン酸ジフエニルモノナトリ
ウム、ポリオキシエチレン(EO 50モル付加)メ
チルエーテルホスフアイトジナトリウム、フエニ
ルホスホン酸モノメチルモノナトリウム、ノニル
ベンゼンホスホン酸モノメチルモノカリウム、フ
エニルホスフイン酸モノメチルモノナトリウム等
をあげることができる。
式中、M3及びM4は金属であり、M3としては
特にアルカリ金属、アルカリ土類金属、Mn1/2、
Co1/2又はZn1/2が好ましく、なかでもLi、Na、
K、Ca1/2、Mg1/2が特に好ましく、M4として
は特にアルカリ金属又はアルカリ土類金属が好ま
しく、なかでもLi、Na、K、Ca1/2、Mg1/2が
特に好ましく、M3及びM4は同一でも異なつてい
てもよい。nは1又は2である。Wは水素原子又
はエステル形成性官能基であり、エステル形成性
官能基としては―COOR(但し、Rは水素原
子、炭素数1〜4のアルキル基又はフエニル基)
又は―CO〔―O(―CH2)l〕―pOH(但し、lは2以上
の整数、pは1以上の整数)等が好ましい。
かかるスルホン酸化合物の好ましい具体例とし
ては3―カルボメトキシ・ベンゼンスルホン酸ナ
トリウム―5―カルボン酸ナトリウム、3カルボ
メトキシ・ベンゼンスルホン酸ナトリウム―5―
カルボン酸カリウム、3―カルボメトキシ・ベン
ゼンスルホン酸カリウム―5―カルボン酸カリウ
ム、3―ヒドロキシエトキシカルボニル・ベンゼ
ンスルホン酸ナトリウム―5―カルボン酸ナトリ
ウム、3―カルボキシ・ベンゼンスルホン酸ナト
リウム―5―カルボン酸ナトリウム、3―ヒドロ
キシエトキシカルボニル・ベンゼンスルホン酸
Na―5―カルボン酸Mg1/2、ベンゼンスルホン
酸Na―3,5―ジカルボン酸Na、ベンゼンスル
ホン酸Na―3,5―ジカルボン酸Mg1/2等をあ
げることができる。
上記リン化合物又はスルホン酸化合物の配合量
は、添加すべきポリエステルを構成する酸成分に
対し0.3〜15モル%の範囲が適当であり、0.5〜5
モル%の範囲が好ましい。
かゝる微細孔形成剤を配合せしめたポリエステ
ル繊維を紡糸するに際しては、所望の中空繊維が
得られるような紡糸口金を用いる。例えば外形及
び中空部の形状が円型の中空繊維を得るために
は、通常紡糸口金として、円型スリツトの一部が
閉じた馬蹄型の開口部をもつものが得られる。
次に、微細孔を有するポリエステル繊維を混繊
糸の外層部に分布せしめた糸条は、上記の微細孔
形成剤配合ポリエステル繊維か又は、あらかじめ
該微細孔形成剤配合ポリエステル繊維をアルカリ
性溶液で処理することにより微細孔を有するポリ
エステル繊維の熱収縮率を小とし、これらの繊維
よりは大なる熱収縮率を有するポリエステル繊維
とを公知の方法で混繊し、しかる後に、弛緩熱処
理等により、熱収縮率大なるポリエステル繊維を
より収縮せしめ、該熱収縮率大なるポリエステル
繊維を主として糸の内層部に配置せしめ、熱収縮
小なるポリエステル繊維を主として糸の外層部に
配置せしめることにより得ることができる。
前記の微細孔形成剤配合ポリエステル繊維、若
しくは、微細孔を有する中空ポリエステル繊維と
の混繊は、公知の方法により行うことができる
が、この場合、混用割合としては、糸条の内層部
に配置される繊維を10〜80重量%、好ましくは20
〜60重量%とし、微細孔形成剤配合ポリエステル
繊維若しくは、微細孔を有する中空ポリエステル
繊維を90〜20重量%好ましくは80〜40重量%の範
囲で混繊することが好ましい。
尚、前記の弛緩熱処理は、混繊糸の状態で行つ
てもよく、又、該混繊糸を公知の手段により各種
の織編物に織編成した後、該弛緩熱処理を施して
もよい。
この弛緩熱処理の温度は90〜170℃の範囲にあ
ることが好ましくスチーム、又は熱水中での弛緩
状態で行う方法でよい。
上記のようにして得られる織編物が、微細孔形
成剤配合のまゝのポリエステル繊維からなる場合
は、該織編物をアルカリ性化合物の水溶液で処理
して、前記の微細孔形成剤の少なくとも一部を溶
解、除去せしめることにより、微細孔を有するポ
リエステル繊維を得ることができ、これを用いて
本発明の織編物を得ることができるのである。ア
ルカリ性化合物の水溶液で、該微細孔形成剤配合
ポリエステル繊維の該微細孔形成剤の少なくとも
一部を溶解・除去せしめることは、混繊前に行な
うこともできるが、上記のように織編物とした後
に、該微細孔形成剤を除去する処理を行なう方法
の方が作業上は好ましい。
かくして得られる本発明のポリエステル系繊維
織編物は、該織編物構成糸条の外層部には、微細
孔を有し、且つ、該微細孔が中空部まで連通して
いる中空ポリエステル繊維を分布せしめることが
できるのである。
以上のように、微細孔を有する中空ポリエステ
ル繊維を織編物構成糸条の外層部に配置せしめる
ことにより、着用時に該微細孔を通して皮膚上の
汗を迅速に吸収し、該微細孔と連通している中空
部に滞溜させると共に、この滞溜した汗を該織編
物の反皮膚接触側に放散させるのである。かゝる
迅速なる吸汗特性は、優れた着心地感を該織編物
に付与し得るのである。特に本発明に用いる微細
孔を有する中空断面繊維は、その横断面に散在す
る微細孔の少なくとも一部が連続的・断続的に中
空部まで連通しているので、上記の作用を大とす
るのである。
又、上記の微細孔は、スルホン酸金属塩を添加
配合せしめた変性ポリエステルから得られるた
め、他の添加剤を配合せしめたポリエステルに見
られるような着用中の摩耗によるフイブリル化が
発生し難い。特に、他の添加剤配合ポリエステル
による微細孔の直径が0.01〜0.4μmで長さは直径
の200倍以上にも達し、フイブリル化の原因とな
つているが、本発明において用いる微細孔形成剤
配合の変性ポリエステルでは、直径が略0.01〜
3μm、長さは直径の50倍以下の微細孔であつて、
上記の他の添加剤配合ポリエステルとは微細孔の
形状において明らかに相違し、このことにより、
繊維強度及び耐フイブリル性が非常に優れている
点である。
又、本発明の織編物は、それを構成している混
繊糸条の外層部に配置されている中空ポリエステ
ル繊維の微細孔により、強いドライ感を有するこ
とである。又、熱収縮率の大きい繊維と熱収縮率
の小さい微細孔形成剤配合ポリエステル繊維とを
混繊し、弛緩熱処理するものであるから、得られ
た織編物にボリユーム感を付与せしめることが出
来るので、上記ドライ感と共に、優れた肌ざわり
を提供することができるのである。
以下、実施例により説明する。
実施例
テレフタル酸ジメチル197部、エチレングリコ
ール124部、3―カルボメトキシ・ベンゼンスル
ホン酸Na―5―カルボン酸Na4部(テレフタル
酸ジメチルに対し1.3モル%)、酢酸カルシウム・
1水塩0.118部を精留塔付ガラスフラスコに入れ、
常法に従つてエステル交換反応を行ない、理論量
のメタノールが留出した後反応生成物を精留塔付
重縮合用フラスコに入れ、安定剤としてトリメチ
ルホスフエート0.112部及び重縮合触媒として三
酸化アンチモン0.079部を加え、温度280℃で、常
圧下20分、30mmHgの減圧下15分反応させた後高
真空下で80分間反応させた。最終内圧は0.38mm
Hgであり得られた変性ポリマーの極限粘度は
0.600、軟化点は258℃であつた。反応終了後変性
ポリマーを常法に従いチツプ化した。
このチツプを常法により乾燥し、紡糸口金に
0.005mm、径0.6mmである円型スリツトの2個所が
閉じた円弧状の開口部をもつものを使用し常法に
従つて紡糸し、外径と内径の比が2:1の中空繊
維(中空率25%)を作つた。この原糸は300デニ
ール/24フイラメントであり、この原糸を用い常
法に従つて延伸倍率4.0倍で延伸し75デニール/
24フイラメントのマルチフイラメントを得た。こ
のマルチフイラメントの沸水収縮率は8%であつ
た。この微細孔形成剤配合変性ポリエステルマル
チフイラメントを沸水収縮率が14%、円型断面ブ
ライト50/12フイラメントの普通ポリエステルマ
ルチフイラメント糸を混繊し経緯とも120T/M
の追撚を施し、経密度28本/cm、緯密度25本/cm
の平組織規格で平織物を製織しボイル・オフ(96
℃、12分)で精練リラツクスし、170℃30秒の条
件で経緯ともオーバーフイードしてプレセツトし
た後、アルカリ減量(98℃、アルカリ濃度20g/
のバス内で30分間処理)で15%減量を行つた。
比較用として従来のアルカリ減量加工したポリエ
ステルの平織物を作りこれと比較すると第1表の
通りとなる。
本実施例の織物のドライ感は第1表からわかる
ように静摩擦係数と動摩擦係数の差μs―μdが従
来のポリエステル織物よりはるかに大きく、織物
表面のひつかかりという表面タツチのドライ感が
出ている。
これは収縮率の異なる二種の糸を混繊すること
により単繊維の配列が乱されることと織物になつ
た後熱処理され二種の繊維の収縮差が顕在化し、
より単繊維が乱されること及び微細孔を有する中
空繊維が外層部に配置せしめられることに起因し
ている。
又ボリユーム感は織物の嵩性で表現されるが、
これは収縮率の異なる二種の糸の混繊糸という糸
構造とアルカリ減量処理により本発明糸は大きい
繊維間空〓が生じていることにある。
又吸水性については吸水速度、吸水率で表わさ
れるが、微細孔を有する中空繊維が混繊糸の主と
して外層部に配置されることにより毛細管現象に
より微細孔より吸収された水分は連通孔により中
空部に移動する。したがつて第1表から明らかな
ように従来のポリエステル織物より、はるかに速
い吸水速度、大きい吸水率を有すると同時にふく
らみとドライタツチを有している。[Formula] (However, R is a lower alkyl group or a phenyl group, a
and d is an integer of 1 or more, b is an integer of 2 or more), etc. Y represents an ester-forming functional group or a hydrogen atom that is the same as or different from X, and is preferably an ester-forming functional group. Particularly preferred examples of such organic sulfonic acid compounds include sodium (or potassium) 3,5-di(carbomethoxy)benzenesulfonate, sodium (or potassium) 1,8-di(carbomethoxy)naphthalene-3-sulfonate, ), sodium (or potassium) 2,5-bis(hydroxyethoxy)benzenesulfonate, and the like. In order to produce a modified polyester obtained by copolymerizing such an organic sulfonic acid compound, the organic sulfonic acid compound is added at any stage before the synthesis of the polyester described above is completed, preferably at any stage before the first stage reaction is completed. An acid compound may be added. The amount of the organic sulfonic acid compound to be used in this case is in the range of 2 to 16 mol% based on the difunctional carboxylic acid component (excluding the organic sulfonic acid component) mainly consisting of terephthalic acid that constitutes the modified polyester. is preferred. The amount of the modified polyester to be blended with the polyester is preferably 5 to 100 parts by weight of the modified polyester per 100 parts by weight of the polyester. In addition to the above-mentioned modified polyester, phosphorus compounds or sulfonic acid compounds represented by the following general formula () or () are also preferable as the micropore-forming agent. where M 2 is a metal, especially an alkali metal,
Alkaline earth metals, Mn1/2, Co1/2 or Zn1/2 are preferred, especially Li, Na, K, Ca1/2, Mg1/2
2 is particularly preferred. m is 0 or 1. V is a monovalent organic group, specifically an alkyl group, an aryl group, an alkylaryl group, an arylalkyl group, or [-(-CH 2 )- l O]- p R'' (where R'' is a hydrogen atom ,
an alkyl group or a phenyl group, l is an integer of 2 or more,
p is an integer of 1 or more), etc. are preferred. Z is-OH,
-OV', -OM 5 or a monovalent organic group, V' is the same as the definition of V above, V' and V may be the same or different, and M 5 is the same as M 2 above. It is the same as the definition of M 5 and M 2 may be the same or different. Further, the monovalent organic group is the same as the definition of the organic group in V above, and may be the same as or different from V. Preferred specific examples of such phosphorus compounds include monomethyl disodium phosphate, dimethyl monosodium phosphate, monophenyl dipotassium phosphate,
Monomethyl monomagnesium phosphate, monomethylmanganese phosphate, polyoxyethylene (addition of 5 moles of EO), potassium lauryl ether phosphate (however, the addition of 5 moles of EO means the addition of 5 moles of ethylene oxide, and the same meaning shall apply hereinafter). ), polyoxyethylene (5 moles of EO added) lauryl ether phosphate magnesium salt, polyoxyethylene (50 moles of EO added) methyl ether phosphate sodium salt, monoethyl dipotassium phosphite, diphenyl monosodium phosphite, Examples include disodium polyoxyethylene (50 moles of EO added) methyl ether phosphite, monosodium monomethyl phenylphosphonate, monopotassium monomethyl nonylbenzenephosphonate, monosodium monomethyl phenylphosphinate, and the like. In the formula, M 3 and M 4 are metals, and M 3 particularly includes alkali metals, alkaline earth metals, Mn1/2,
Co1/2 or Zn1/2 is preferred, especially Li, Na,
Particularly preferred are K, Ca1/2, and Mg1/2; particularly preferred are alkali metals and alkaline earth metals as M4 ; particularly preferred are Li, Na, K, Ca1/2, and Mg1/ 2 ; M 4 may be the same or different. n is 1 or 2. W is a hydrogen atom or an ester-forming functional group, and the ester-forming functional group is -COOR (wherein, R is a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or a phenyl group)
or -CO[-O( -CH2 ) l ] -pOH (where l is an integer of 2 or more, p is an integer of 1 or more), etc. are preferred. Preferred specific examples of such sulfonic acid compounds include sodium 3-carbomethoxybenzenesulfonate-5-sodium carboxylate, sodium 3-carbomethoxybenzenesulfonate-5-
Potassium carboxylate, Potassium 3-carbomethoxybenzenesulfonate-5-carboxylate, Sodium 3-hydroxyethoxycarbonyl benzenesulfonate-5-sodium carboxylate, Sodium 3-carboxybenzenesulfonate-5-carboxylic acid Sodium, 3-hydroxyethoxycarbonyl benzenesulfonic acid
Examples include Mg1/2 of Na-5-carboxylate, Na-3,5-dicarboxylate Na-benzenesulfonate, and Mg1/2 of Na-3,5-dicarboxylate benzenesulfonate. The appropriate amount of the phosphorus compound or sulfonic acid compound to be added is in the range of 0.3 to 15 mol%, based on the acid component constituting the polyester to be added, and 0.5 to 5 mol%.
A mole % range is preferred. When spinning polyester fibers blended with such a micropore-forming agent, a spinneret that can yield the desired hollow fibers is used. For example, in order to obtain a hollow fiber having a circular outer shape and hollow part shape, a spinneret having a partially closed horseshoe-shaped opening is usually used as a spinneret. Next, the yarn in which polyester fibers having micropores are distributed in the outer layer of the mixed fiber yarn is either the above-mentioned polyester fiber containing a micropore-forming agent, or the polyester fiber containing the micropore-forming agent is previously treated with an alkaline solution. By doing so, the heat shrinkage rate of the polyester fibers having micropores is reduced, and the polyester fibers having a higher heat shrinkage rate than these fibers are mixed by a known method, and then heat treatment is performed such as relaxation heat treatment. It can be obtained by further shrinking polyester fibers with a high shrinkage rate, arranging the polyester fibers with a high heat shrinkage ratio mainly in the inner layer of the thread, and arranging the polyester fibers with a low heat shrinkage ratio mainly in the outer layer of the thread. . The blending with the above-mentioned micropore-forming agent-containing polyester fibers or hollow polyester fibers having micropores can be carried out by a known method, but in this case, the blending ratio is as follows: 10 to 80% by weight of fibers, preferably 20
-60% by weight, and preferably 90-20% by weight, preferably 80-40% by weight, of polyester fibers containing a micropore-forming agent or hollow polyester fibers having micropores. The above-mentioned relaxing heat treatment may be performed on the mixed yarn, or the relaxing heat treatment may be performed after the mixed yarn is knitted into various woven or knitted fabrics by known means. The temperature of this relaxation heat treatment is preferably in the range of 90 to 170°C, and may be carried out in a relaxed state in steam or hot water. When the woven or knitted fabric obtained as described above is made of polyester fibers containing a micropore-forming agent, the woven or knitted fabric is treated with an aqueous solution of an alkaline compound to remove at least a portion of the micropore-forming agent. By dissolving and removing the polyester fibers, polyester fibers having micropores can be obtained, which can be used to obtain the woven or knitted fabric of the present invention. Dissolving and removing at least a portion of the micropore-forming agent from the micropore-forming agent-containing polyester fibers with an aqueous solution of an alkaline compound can be performed before blending, but as described above A method in which the micropore-forming agent is subsequently removed is preferred from the viewpoint of operation. The thus obtained polyester fiber woven or knitted fabric of the present invention has hollow polyester fibers having micropores and in which the micropores are connected to the hollow portion distributed in the outer layer of the yarns constituting the woven or knitted fabric. It is possible. As described above, by arranging the hollow polyester fibers having micropores in the outer layer of the yarn constituting the woven or knitted fabric, sweat on the skin is quickly absorbed through the micropores when worn, and communicates with the micropores. This method allows the sweat to accumulate in the hollow part where the sweat is present, and also radiates this accumulated sweat to the side of the woven or knitted fabric that is not in contact with the skin. Such rapid sweat absorption properties can impart excellent wearing comfort to the woven or knitted fabric. In particular, the hollow cross-section fiber having micropores used in the present invention has at least a portion of the micropores scattered in its cross section communicating continuously or intermittently to the hollow portion, which enhances the above effect. be. Furthermore, since the above-mentioned micropores are obtained from a modified polyester blended with a sulfonic acid metal salt, fibrillation due to wear during wear, which occurs with polyester blended with other additives, is unlikely to occur. In particular, the micropores produced by polyester containing other additives have a diameter of 0.01 to 0.4 μm and a length of more than 200 times the diameter, which causes fibrillation, but the micropore-forming agent used in the present invention For modified polyester, the diameter is approximately 0.01 ~
A micropore with a length of 3μm or less than 50 times the diameter,
It is clearly different from the other additive-blended polyesters mentioned above in the shape of the micropores, and due to this,
It has excellent fiber strength and fibrillation resistance. Further, the woven or knitted fabric of the present invention has a strong dry feel due to the micropores of the hollow polyester fibers arranged in the outer layer of the mixed yarn forming the woven or knitted fabric. In addition, since fibers with a high heat shrinkage rate and polyester fibers containing a micropore-forming agent with a low heat shrinkage rate are mixed and subjected to relaxation heat treatment, it is possible to impart a sense of volume to the resulting woven or knitted fabric. , it is possible to provide the above-mentioned dry feeling as well as excellent texture. Examples will be explained below. Example 197 parts of dimethyl terephthalate, 124 parts of ethylene glycol, 4 parts of sodium 3-carbomethoxybenzenesulfonate-5-carboxylate (1.3 mol% based on dimethyl terephthalate), calcium acetate.
Put 0.118 parts of monohydrate into a glass flask with a rectifier,
The transesterification reaction was carried out according to a conventional method, and after the theoretical amount of methanol had been distilled off, the reaction product was placed in a polycondensation flask with a rectification column, and 0.112 parts of trimethyl phosphate as a stabilizer and trioxide as a polycondensation catalyst were added. 0.079 part of antimony was added, and the mixture was reacted at a temperature of 280° C. for 20 minutes under normal pressure, 15 minutes under reduced pressure of 30 mmHg, and then reacted for 80 minutes under high vacuum. Final internal pressure is 0.38mm
The intrinsic viscosity of the modified polymer obtained with Hg is
0.600, and the softening point was 258°C. After the reaction was completed, the modified polymer was made into chips according to a conventional method. The chips are dried in a conventional manner and used in a spinneret.
Using a circular slit with a diameter of 0.005 mm and a diameter of 0.6 mm, which has arc-shaped openings closed at two places, the yarn is spun according to a conventional method to obtain hollow fibers with an outer diameter to inner diameter ratio of 2:1 ( The hollow rate was 25%). This raw yarn is 300 denier/24 filaments, and is drawn to 75 denier/24 filaments using a conventional method at a draw ratio of 4.0 times.
A multifilament of 24 filaments was obtained. The boiling water shrinkage rate of this multifilament was 8%. This modified polyester multifilament containing a micropore forming agent is blended with normal polyester multifilament yarn with a boiling water shrinkage rate of 14% and a circular cross-section of bright 50/12 filaments, and the warp is 120T/M.
The warp density is 28 threads/cm and the weft density is 25 threads/cm.
Plain weave is woven according to the plain weave standard and boiled off (96
After scouring and relaxing at 170°C for 12 minutes and overfeeding and presetting at 170°C for 30 seconds, alkali weight loss (98°C, alkali concentration 20g/
15% weight loss was achieved by 30 minutes treatment in the bath.
For comparison purposes, a conventional polyester plain woven fabric subjected to alkali weight reduction processing was prepared and compared with this, as shown in Table 1. As can be seen from Table 1, the dry feel of the fabric of this example is that the difference between the coefficient of static friction and the coefficient of dynamic friction μs - μd is much larger than that of conventional polyester fabrics, giving a dry feel to the surface of the fabric. There is. This is because the arrangement of the single fibers is disrupted by mixing two types of yarns with different shrinkage rates, and the difference in shrinkage between the two types of fibers becomes apparent when they are heat-treated after being made into a woven fabric.
This is due to the fact that the single fibers are more disturbed and the hollow fibers having micropores are arranged in the outer layer. Also, the feeling of volume is expressed by the bulkiness of the fabric,
This is because the yarn of the present invention has a large interfiber space due to the yarn structure of a mixed yarn of two types of yarns with different shrinkage rates and the alkali weight loss treatment. Water absorption is expressed in terms of water absorption rate and water absorption rate, but since hollow fibers with micropores are arranged mainly in the outer layer of the mixed fiber yarn, water absorbed through the micropores by capillary action is absorbed into the hollow fibers by the communicating pores. Move to section. Therefore, as is clear from Table 1, it has a much faster water absorption rate and larger water absorption rate than conventional polyester fabrics, and at the same time has fullness and dry touch.
【表】
乾燥試料重量
[Table] Dry sample weight
第1図は、本発明の織編物に使用する微細孔を
有するポリエステル繊維の表面状態の例を示す電
子顕微鏡写真の図である。
FIG. 1 is an electron micrograph showing an example of the surface condition of polyester fibers having micropores used in the woven or knitted fabric of the present invention.
Claims (1)
繊糸条であつて、該ポリエステル系長繊維の少な
くとも一種が中空繊維からなり、該中空繊維は、
その横断面に散在し、且つ、その繊維軸方向に配
列する微細孔を有し、該微細孔の直径が0.01〜
3μm、その長さが該直径の50倍以下で少なくとも
その一部が中空部まで連通している中空繊維を、
前記混繊糸の主として外層部に配置せしめた糸条
から成ることを特徴とするポリエステル系繊維織
編物。 2 2種以上のポリエステル系長繊維を混繊した
糸条であつて、該ポリエステル系長繊維の少なく
とも1種が下記一般式()で表わされる有機ス
ルフオン酸化合物を共重合した変性ポリエステ
ル、下記一般式()で表わされるリン化合物及
び下記一般式()で表わされるスルホン酸化合
物よりなる群から選ばれた少なくとも一種の微細
孔形成剤を配合せしめた断面中空形状の長繊維か
らなり、該ポリエステル系長繊維の少なくとも他
の一種が前記微細孔形成剤配合のポリエステル系
長繊維の熱収縮率より大なる熱収縮率を有する長
繊維からなる混繊糸を弛緩熱処理して後、織編成
するか、若しくは、織編成して後、弛緩熱処理す
るかし、しかる後該織編物をアルカリ性溶液で処
理することを特徴とするポリエステル系織編物の
製造方法。 〔式中、Aは3価の芳香族基又は脂肪族炭化水素
基、Xはエステル形成性官能基、Yはエステル形
成性官能基又は水素原子、M1は金属又は水素原
子を示す。〕 〔式中、Vは一価の有機基、Zは―OV′、OM5又
は一価の有機基(但しV′は一価の有機基、M5は
金属)、M2は金属、mは0又は1を示す。〕 〔式中、Wは水素原子又はエステル形成性官能
基、M3及びM4は金属、nは1又は2を示す。〕[Scope of Claims] 1. A mixed yarn consisting of two or more types of polyester long fibers, at least one of the polyester long fibers is a hollow fiber, and the hollow fiber is
It has fine pores scattered in its cross section and arranged in the fiber axis direction, and the diameter of the fine pores is 0.01 to
3μm, the length is 50 times or less the diameter, and at least a part of the hollow fiber is connected to the hollow part,
A polyester fiber woven or knitted fabric characterized by comprising yarns mainly arranged in the outer layer of the mixed yarn. 2 A yarn that is a mixture of two or more types of polyester long fibers, in which at least one type of the polyester long fibers is a modified polyester copolymerized with an organic sulfonic acid compound represented by the following general formula (), The polyester-based polyester is made of long fibers with a hollow cross section and is blended with at least one kind of micropore-forming agent selected from the group consisting of a phosphorus compound represented by the formula () and a sulfonic acid compound represented by the following general formula (). At least one other type of long fibers is subjected to a relaxing heat treatment on a mixed yarn consisting of long fibers having a heat shrinkage rate higher than that of the polyester long fibers containing the micropore-forming agent, and then woven or knitted; Alternatively, a method for producing a polyester woven or knitted material, which comprises woven and knitted, subjected to a relaxation heat treatment, and then treated with an alkaline solution. [Wherein, A is a trivalent aromatic group or an aliphatic hydrocarbon group, X is an ester-forming functional group, Y is an ester-forming functional group or a hydrogen atom, and M 1 is a metal or a hydrogen atom. ] [In the formula, V is a monovalent organic group, Z is -OV', OM 5 or a monovalent organic group (where V' is a monovalent organic group, M 5 is a metal), M 2 is a metal, and m is a Indicates 0 or 1. ] [Wherein, W is a hydrogen atom or an ester-forming functional group, M 3 and M 4 are metals, and n is 1 or 2. ]
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9278580A JPS5721529A (en) | 1980-07-09 | 1980-07-09 | Polyester fiber knitted fabric and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9278580A JPS5721529A (en) | 1980-07-09 | 1980-07-09 | Polyester fiber knitted fabric and method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5721529A JPS5721529A (en) | 1982-02-04 |
JPS6312189B2 true JPS6312189B2 (en) | 1988-03-17 |
Family
ID=14064068
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9278580A Granted JPS5721529A (en) | 1980-07-09 | 1980-07-09 | Polyester fiber knitted fabric and method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5721529A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5795338A (en) * | 1980-12-03 | 1982-06-14 | Teijin Ltd | Polyester type fiber knitted fabric and method |
-
1980
- 1980-07-09 JP JP9278580A patent/JPS5721529A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5721529A (en) | 1982-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS638222B2 (en) | ||
JPS6215655B2 (en) | ||
KR930000255B1 (en) | Moisture-absorbent composite fiber | |
JPH08246237A (en) | Polyester fiber and production of polyester spun yarn | |
JPS6262165B2 (en) | ||
JPS6312189B2 (en) | ||
US5178945A (en) | Polyester fiber having durable water absorbent property | |
JP3157644B2 (en) | Humidity-controlling fiber and method for producing the same | |
JPH0231127B2 (en) | ||
JPS601417B2 (en) | Cotton-like polyester woven and knitted fabric and its manufacturing method | |
JPS6358951B2 (en) | ||
JPS6262182B2 (en) | ||
JP3104891B2 (en) | Hollow composite fiber and method for producing the same | |
JP2653696B2 (en) | Polyester fiber with good water absorption and feeling | |
JPS6189320A (en) | Polyester thick and thin yarn and its production | |
JPS63545B2 (en) | ||
JPH0146618B2 (en) | ||
JP4700238B2 (en) | Polyester false twisted yarn and method for producing the same | |
JPS6358932B2 (en) | ||
KR960005962B1 (en) | Method for the preparation of the hollow type polyester fiber | |
KR100622204B1 (en) | Polytrimethylene terephthalate fiber and its manufacturing method | |
JPH0232381B2 (en) | SHARIAJISOZAINOSEIZOHOHO | |
JP2019183366A (en) | Fabric, manufacturing method thereof, and textile product | |
JPS6335749B2 (en) | ||
JPS62149939A (en) | Light weight heat insulating synthetic fiber structure |