JPS63120925A - Frp taper plate spring - Google Patents
Frp taper plate springInfo
- Publication number
- JPS63120925A JPS63120925A JP26708786A JP26708786A JPS63120925A JP S63120925 A JPS63120925 A JP S63120925A JP 26708786 A JP26708786 A JP 26708786A JP 26708786 A JP26708786 A JP 26708786A JP S63120925 A JPS63120925 A JP S63120925A
- Authority
- JP
- Japan
- Prior art keywords
- frp
- core material
- length
- resin
- leaf spring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920005989 resin Polymers 0.000 claims abstract description 38
- 239000011347 resin Substances 0.000 claims abstract description 38
- 239000011159 matrix material Substances 0.000 claims abstract description 20
- 239000011162 core material Substances 0.000 claims description 45
- 239000000463 material Substances 0.000 claims description 14
- 239000012783 reinforcing fiber Substances 0.000 claims description 11
- 230000007423 decrease Effects 0.000 claims description 5
- 241000748122 Pericome caudata Species 0.000 claims description 4
- 230000000694 effects Effects 0.000 abstract description 5
- 239000000835 fiber Substances 0.000 abstract description 3
- 238000000034 method Methods 0.000 description 8
- 238000009661 fatigue test Methods 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 238000005336 cracking Methods 0.000 description 2
- 238000009730 filament winding Methods 0.000 description 2
- LFVLUOAHQIVABZ-UHFFFAOYSA-N Iodofenphos Chemical compound COP(=S)(OC)OC1=CC(Cl)=C(I)C=C1Cl LFVLUOAHQIVABZ-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F1/00—Springs
- F16F1/36—Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
- F16F1/366—Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers made of fibre-reinforced plastics, i.e. characterised by their special construction from such materials
- F16F1/368—Leaf springs
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Springs (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、例えば自動車の懸架用ばね等に使用されるF
RPテーパ板ばねに関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to F
Regarding RP taper leaf spring.
繊維強化合成樹脂(FRP)製の板ばねを製造する場合
、例えば周知のフィラメントワインディング法(FW法
)においては、マトリックス樹脂を含浸させた一方向連
続強化繊維束を、マンドレルに連続的に巻取るようにし
ている。この方法はFRP板ばねを能率良く生産できる
が、マトリックス樹脂に対する強化繊維の含を率を一定
にするためには、横断面積が長手方向に一定の板ばねし
か成形することができない。すなわち、全長にわたって
等幅で等厚の板ばねか、板幅と板厚とが互いに関連し合
って変化する特殊な形状の板ばねしか成形できない。When manufacturing a leaf spring made of fiber-reinforced synthetic resin (FRP), for example, in the well-known filament winding method (FW method), a unidirectional continuous reinforcing fiber bundle impregnated with a matrix resin is continuously wound around a mandrel. That's what I do. Although this method can efficiently produce FRP leaf springs, in order to maintain a constant content of reinforcing fibers in the matrix resin, only leaf springs with a constant cross-sectional area in the longitudinal direction can be formed. That is, only leaf springs with the same width and thickness over the entire length, or leaf springs with a special shape in which the plate width and plate thickness vary in relation to each other, can be formed.
そこで、マトリックス樹脂と強化繊維とからなるFRP
材の内部に、端部側の厚みが漸減するような形状の芯材
を埋設することが考えられた。すなわち第4図に例示さ
れるFRPテーパ板ばねaのように、FRP材すの内部
に芯材Cを埋設することによって、板幅が全長にわたっ
て等しくかつ長手方向に板厚の変化するFRPテーパ板
ばねaが得られる。上記芯材Cは予め所定の形状に成形
しておき、FRP材すを成形する工程の途中で芯材Cが
挿入される。Therefore, FRP consisting of matrix resin and reinforcing fibers
One idea was to embed a core material inside the material with a shape that gradually decreases in thickness on the end side. In other words, by embedding the core material C inside the FRP material, like the FRP tapered leaf spring a shown in FIG. Spring a is obtained. The core material C is previously molded into a predetermined shape, and the core material C is inserted during the process of molding the FRP material.
従って上記FRPテーパ板ばねaは、芯材Cの長さノ0
に相当する部分の横断面積が長さ方向に変化し、板端部
dは横断面積が一定になる。すなわち芯材Cの全長ノ0
とテーパ部の長さが互いに一致している。Therefore, the FRP tapered leaf spring a has a core C length of 0.
The cross-sectional area of the portion corresponding to d changes in the length direction, and the cross-sectional area of the plate end d remains constant. In other words, the total length of core material C is 0
and the length of the taper portion match each other.
ところが上述した従来のFRPテーパ板ばねaの疲労試
験を行なってみると、芯材Cを使わないものに比べて早
期に破壊することが確認された。However, when a fatigue test was conducted on the above-mentioned conventional FRP tapered leaf spring a, it was confirmed that it broke earlier than one that did not use the core material C.
破壊は主に芯材Cの端部付近で生じ、その原因を追及し
たところ、芯材Cの先端の尖ったところがFRP材すの
内側から「くさび」のように食込むことにより、ここが
破壊の起点になりやすいことが判った。The breakage mainly occurred near the end of the core material C, and when we investigated the cause, we found that the sharp tip of the core material C cut into the FRP material from the inside like a "wedge", causing the breakage here. It was found that this can easily be the starting point.
従って本発明では、FRPテーパ板ばねの耐久性を向上
させるために次のような構造を採用した。Therefore, in the present invention, the following structure is adopted in order to improve the durability of the FRP tapered leaf spring.
すなわち本発明は、マトリックス樹脂と強化繊維とから
なるFRP材の内部に、端部側の厚みが漸減する帯状の
芯材を埋設することによって長手方向に横断面積が変化
するテーパ部を形成するようにしたFRPテーパ板ばね
において、上記芯材の先端側に、上記マトリックス樹脂
のみを硬化させた樹脂部分を設けたことを特徴とするも
のである。That is, the present invention forms a tapered part whose cross-sectional area changes in the longitudinal direction by embedding a belt-shaped core material whose thickness gradually decreases on the end side inside an FRP material made of matrix resin and reinforcing fibers. The FRP tapered leaf spring is characterized in that a resin portion in which only the matrix resin is cured is provided on the tip side of the core material.
上記樹脂部分は、芯材の両端を尖らないように切断する
とともに芯材の切取られた部分にマトリックス樹脂を充
填させることにより形成される。The resin portion is formed by cutting both ends of the core material so that they are not sharp, and filling the cut portions of the core material with a matrix resin.
上記FRPテーパ板ばねによれば、芯材の外側をくるん
でいるFRP材のマトリックス樹脂がFRP材と一体に
硬化し、この樹脂部分の存在によって芯材の先端がFR
P材に食込むことが防止される。すなわち樹脂部分が芯
材先端の「くさび」効果を和らげ、FRPテーパ板ばね
の耐久性の向上につながる。According to the above FRP tapered leaf spring, the matrix resin of the FRP material wrapping around the outside of the core material hardens together with the FRP material, and the presence of this resin portion causes the tip of the core material to become FR.
This prevents it from digging into the P material. In other words, the resin part softens the "wedge" effect at the tip of the core material, leading to improved durability of the FRP tapered leaf spring.
第1図および第2図に示された一実施例において、FR
Pテーパ板ばね1は全長にわたって板幅が実質的にほぼ
同等である。このFRPテーパ板ばね1は、長さ方向中
央部1aが長さItにわたって等厚でかつ平坦である。In one embodiment shown in FIGS. 1 and 2, the FR
The P-taper leaf spring 1 has substantially the same leaf width over its entire length. This FRP tapered leaf spring 1 has a central portion 1a in the longitudinal direction that has a constant thickness and is flat over the length It.
両側の部分1bは長さノ2にわたって端部側の厚みが漸
減する形状をなしている。この明細書では、中央部1a
と両側の部分1bを合わせた長さく、e+ +2122
)の領域をテーパ部と呼ぶ。長さJ!1の部分は図示例
のように平坦の場合もあるが、この明m書ではこの場合
も含めてテーパ部と称する。The portions 1b on both sides have a shape in which the thickness on the end side gradually decreases over the length 2. In this specification, the central portion 1a
The combined length of the parts 1b on both sides is e+ +2122
) is called the taper part. Length J! Although the portion 1 may be flat as shown in the illustrated example, in this specification, this portion is also referred to as a tapered portion.
板端部ICは長さ!!3にわたって横断面積が一定であ
る。更に詳しくは、第2図に示されるように板端部IC
は、僅かに曲率のついた部位IC′(長さ、17t)と
、はぼ完全に平坦な形状の先端側の部位IC′ (長さ
)5)とからなる。The board end IC is long! ! The cross-sectional area is constant over 3. More specifically, as shown in FIG.
consists of a slightly curved portion IC' (length, 17t) and a completely flat distal portion IC' (length) 5).
板端部ICには、板ばね1を自動車の車体等に連結する
ために、図示しない目玉部材が取付けられる。この目玉
部材は、ボルトやナツト等の固定用部材によって板端部
ICに締付けられるため、本実施例のように板端部1c
が平坦に形成されている方が、締付けによる局部応力の
上昇が発生せず、割れの防止につながる。また、板ばね
1の中央部1aにはボルトやナツト等の固定用部材によ
ってアクスルハウジング等が取付けられるため、本実施
例のように中央部1aが平坦に形成されている方が、割
れを防止する上で存利である。A center member (not shown) is attached to the plate end IC in order to connect the plate spring 1 to an automobile body or the like. This eyepiece member is tightened to the plate end IC by a fixing member such as a bolt or nut, so as in this embodiment, the plate end 1c
If it is formed flat, there will be no increase in local stress due to tightening, which will help prevent cracking. Furthermore, since the axle housing and the like are attached to the center portion 1a of the leaf spring 1 using fixing members such as bolts and nuts, it is better to form the center portion 1a flat as in this embodiment to prevent cracking. It is a matter of survival.
上記FRPテーパ板ばね1は、FRP材2の内部に帯状
の芯材3を埋設したものである。FRP材2は、板ばね
1の長手方向に引き揃えた一方向連続強化繊維と、これ
ら繊維間を埋めるマトリックス樹脂とからなる。そして
マトリックス樹脂に対する強化繊維の含有率が長手方向
の全域にわたって実質的に等しくなるように、例えばフ
ィラメントワインディング法によって成形される。The FRP tapered leaf spring 1 has a strip-shaped core material 3 embedded inside an FRP material 2. The FRP material 2 is composed of unidirectional continuous reinforcing fibers aligned in the longitudinal direction of the leaf spring 1 and a matrix resin that fills the spaces between these fibers. Then, it is molded, for example, by a filament winding method so that the reinforcing fiber content with respect to the matrix resin is substantially equal over the entire longitudinal direction.
一方、芯材3は、その長さ方向中央部3aが長さノ1に
わたって等厚かつ平坦である。両側の部分3bは長さ1
6にわたって端部側の厚みが漸減するテーパ形状をなし
ている。かつ芯材3の両端面4は、尖らないように適当
な厚みのところで板厚方向に切断され、各端面4は平ら
となっている。On the other hand, the core material 3 has a central portion 3a in the longitudinal direction that is uniform in thickness and flat over a length of 1. Parts 3b on both sides have a length of 1
It has a tapered shape in which the thickness on the end side gradually decreases over 6. In addition, both end surfaces 4 of the core material 3 are cut in the thickness direction at an appropriate thickness so as not to be sharp, and each end surface 4 is flat.
芯材3の全長(、i’t +2Js )は、前述したテ
ーパ部の全長()1+212)よりも短い。芯材3の材
質および成形方法は問わないが、本実施例の芯材3はマ
トリックス樹脂と強化繊維とからなる。The total length (, i't +2Js) of the core material 3 is shorter than the total length ()1+212) of the taper portion described above. Although the material and molding method of the core material 3 are not limited, the core material 3 of this embodiment is made of a matrix resin and reinforcing fibers.
芯材3は、FRPR2O3形する前に予め上記形状に成
形されている。従って芯材3は、FRPR2O3形する
工程の途中でFRPR2O3入される。芯材3のマトリ
ックス樹脂はFRPR2O3トリックス樹脂と同じでも
よいが、本実施例では双方のマトリックス樹脂を互いに
異ならせている。The core material 3 is previously formed into the above shape before being formed into the FRPR2O3 shape. Therefore, the core material 3 is inserted into the FRPR2O3 during the process of forming the FRPR2O3. The matrix resin of the core material 3 may be the same as the FRPR2O3 trix resin, but in this embodiment both matrix resins are different from each other.
芯材3の先端側、すなわち端面4から板端部IC方向に
わたって、マトリックス樹脂のみからなる部分5が設け
られている。この樹脂部分5は、FRPR2O3形時に
使われるマトリックス樹脂が強化繊維の間からしみ出て
硬化したものである。A portion 5 made only of matrix resin is provided on the tip side of the core material 3, that is, from the end surface 4 to the direction of the plate end IC. This resin portion 5 is made by hardening the matrix resin used in the FRPR2O3 type seeping out from between the reinforcing fibers.
従ってこの樹脂部分5はFRPR2O3体に硬化してい
るが強化繊維は実質的に含有していない。Therefore, although this resin portion 5 is hardened into a FRPR2O3 body, it does not substantially contain reinforcing fibers.
換言すると、FRPテーパ板ばね1のテーパ部の長さく
Jt+212)に対応して、上述した芯材3と樹脂部分
5が設けられている。In other words, the above-described core material 3 and resin portion 5 are provided corresponding to the length Jt+212) of the tapered portion of the FRP tapered leaf spring 1.
下表は、芯材3の長さIt +2is )を4種類に変
化させた場合の疲労試験結果である。テーパ部の長さく
ノ1+2ノ2)は600Mである。応力振幅は45±1
5Q f / u 2で変位は一定とした。The table below shows the fatigue test results when the length It +2is ) of the core material 3 was changed into four types. The length of the tapered portion is 600M. Stress amplitude is 45±1
The displacement was kept constant at 5Q f/u 2.
疲労試験結果
上表において、芯材長さが800 mの時には従来品(
第4図)と同様に芯材長さがテーパ部の全長800 m
と一致するため、樹脂部分5は実質的に存在しない。芯
材長さが540Bの場合は、樹脂部分5の長さは両側で
合計60mとなり、片側30111+となる。In the above table of fatigue test results, when the core length is 800 m, the conventional product (
Similar to Figure 4), the core length is 800 m in total length of the tapered part.
Therefore, the resin portion 5 is substantially absent. When the core length is 540B, the total length of the resin portion 5 on both sides is 60 m, which is 30111+ on one side.
樹脂部分5の長さは長過ぎても短か過ぎても良くない。The length of the resin portion 5 is neither too long nor too short.
上表の例から、芯材長さはテーパ部の全長800 rr
uxに対して、500〜540 rtmが適当である。From the example in the table above, the core material length is the total length of the taper part 800 rr
For ux, 500-540 rtm is suitable.
しかし厳密に言うと、芯材長さが500uの時には折損
回数が1.0万回という低い結果も混じっているから、
望ましくは芯材長さは540M付近、すなわちテーパ部
全長の90%付近とするのがよい。芯材3の材質と成形
方法は問わないが、一方向連続強化繊維とマトリックス
樹脂で成形したFRP製の芯材が最も耐久性に優れてい
た。However, to be precise, when the core length is 500u, the number of breakages is as low as 10,000 times.
Desirably, the length of the core material is around 540M, that is, around 90% of the total length of the tapered portion. Although the material and molding method for the core material 3 are not limited, the FRP core material molded from unidirectional continuous reinforcing fibers and matrix resin was the most durable.
なお第3図に示された実施例のように、芯材3の端面4
の形状を厚み方向に円弧または円弧に近い曲面に仕上げ
てもよい。この場合、端面4に角部が無くなるため更に
良い結果が期待できる。Note that as in the embodiment shown in FIG. 3, the end surface 4 of the core material 3
The shape may be finished into a circular arc or a curved surface close to a circular arc in the thickness direction. In this case, even better results can be expected since there are no corners on the end face 4.
本発明によれば、芯材を用いることにより長手方向に板
厚の変化する部分を形成するようにしたFRPテーパ板
ばねにおいて、芯材の長さあるいは芯材端部の形状を従
来品と異ならせるという簡単な対策によって、FRPテ
ーパ板ばねの耐久性を大幅に向上させることができる。According to the present invention, in an FRP tapered leaf spring that uses a core material to form a portion whose thickness changes in the longitudinal direction, the length of the core material or the shape of the end of the core material is different from that of conventional products. The durability of the FRP tapered leaf spring can be greatly improved by a simple measure such as increasing the thickness.
第1図は本発明の−・実施例を示すFRPテーパ板ばね
の断面図、第2図は第1図に示された板ばねの端部の拡
大断面図、第3図は本発明の他の実施例を示すFRPテ
ーパ板ばねの端部の断面図、第4図は従来のテーパ板ば
ねを示す断面図である。
1・・・FRPテーパ板ばね、2・・・F RP 材、
3・・・芯材。
出願人代理人 弁理士 鈴江武彦
第1図
1C
第3図Fig. 1 is a sectional view of an FRP tapered leaf spring showing an embodiment of the present invention, Fig. 2 is an enlarged sectional view of the end of the leaf spring shown in Fig. 1, and Fig. 3 is an embodiment of the invention. FIG. 4 is a cross-sectional view of an end portion of an FRP tapered leaf spring showing an embodiment of the present invention, and FIG. 4 is a cross-sectional view showing a conventional tapered leaf spring. 1...FRP taper leaf spring, 2...FRP material,
3... Core material. Applicant's agent Patent attorney Takehiko Suzue Figure 1 1C Figure 3
Claims (3)
の内部に、端部側の厚みが漸減する帯状の芯材を埋設す
ることによって長手方向に横断面積が変化するテーパ部
を形成するようにしたFRPテーパ板ばねにおいて、 上記芯材の先端側に、上記マトリックス樹脂のみを硬化
させた樹脂部分を設けたことを特徴とするFRPテーパ
板ばね。(1) A tapered part whose cross-sectional area changes in the longitudinal direction is formed by embedding a strip-shaped core material whose thickness gradually decreases on the end side inside the FRP material made of matrix resin and reinforcing fibers. An FRP tapered leaf spring, characterized in that a resin portion in which only the matrix resin is cured is provided on the tip side of the core material.
くしたことを特徴とする特許請求の範囲第1項記載のF
RPテーパ板ばね。(2) F according to claim 1, characterized in that the length of the core material is shorter than the length of the tapered part.
RP taper leaf spring.
に形成されていることを特徴とする特許請求の範囲第2
項記載のFRPテーパ板ばね。(3) The end face of the core material in the longitudinal direction is formed in an arc shape in the thickness direction.
FRP taper leaf spring described in section.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61267087A JPH0745889B2 (en) | 1986-11-10 | 1986-11-10 | FRP taper leaf spring |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61267087A JPH0745889B2 (en) | 1986-11-10 | 1986-11-10 | FRP taper leaf spring |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63120925A true JPS63120925A (en) | 1988-05-25 |
JPH0745889B2 JPH0745889B2 (en) | 1995-05-17 |
Family
ID=17439860
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61267087A Expired - Lifetime JPH0745889B2 (en) | 1986-11-10 | 1986-11-10 | FRP taper leaf spring |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0745889B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5576990B2 (en) * | 2011-09-15 | 2014-08-20 | 株式会社ジーエイチクラフト | Leaf spring for railcar bogie |
JP2016520769A (en) * | 2013-03-15 | 2016-07-14 | ゴードン ホールディングス、インク.Gordon Holdings, Inc. | High-strength and lightweight composite leaf spring and its manufacturing method |
US9657799B2 (en) | 2013-03-15 | 2017-05-23 | Polyone Corporation | Suspension sub-assembly |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5652637A (en) * | 1979-10-05 | 1981-05-11 | Kato Hatsujo Kaisha Ltd | Leaf spring made of fiber-reinforced resin and manufacture thereof |
JPS5732917A (en) * | 1980-08-07 | 1982-02-22 | Toyota Motor Corp | Manufacture of fiber-reinforced plastic leaf spring |
-
1986
- 1986-11-10 JP JP61267087A patent/JPH0745889B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5652637A (en) * | 1979-10-05 | 1981-05-11 | Kato Hatsujo Kaisha Ltd | Leaf spring made of fiber-reinforced resin and manufacture thereof |
JPS5732917A (en) * | 1980-08-07 | 1982-02-22 | Toyota Motor Corp | Manufacture of fiber-reinforced plastic leaf spring |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5576990B2 (en) * | 2011-09-15 | 2014-08-20 | 株式会社ジーエイチクラフト | Leaf spring for railcar bogie |
JP2016520769A (en) * | 2013-03-15 | 2016-07-14 | ゴードン ホールディングス、インク.Gordon Holdings, Inc. | High-strength and lightweight composite leaf spring and its manufacturing method |
US9597938B2 (en) | 2013-03-15 | 2017-03-21 | Polyone Corporation | High strength, light weight composite leaf spring and method of making |
US9657799B2 (en) | 2013-03-15 | 2017-05-23 | Polyone Corporation | Suspension sub-assembly |
Also Published As
Publication number | Publication date |
---|---|
JPH0745889B2 (en) | 1995-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR880701123A (en) | Golf club bag and its manufacturing method | |
KR102787699B1 (en) | Fiber-reinforced resin molded product and compression molding method thereof | |
JPS61274036A (en) | Structural rod and reinforced structural member | |
US4885865A (en) | Graphite fiber reinforced rod construction | |
JP2884465B2 (en) | Terminal fixing structure of FRP reinforcement | |
JPS63120925A (en) | Frp taper plate spring | |
JPH0132058B2 (en) | ||
JP2768387B2 (en) | Rod structure | |
JPH0489346A (en) | Concrete reinforcing member and its production | |
JPS6135232A (en) | Manufacture of structural irregular-shaped reinforcing material | |
JPS63317320A (en) | Manufacture of fishing pole | |
JPH0441198Y2 (en) | ||
JPH0296044A (en) | Joint construction of fiber-reinforced resin reinforcing wire and reinforcing bar | |
JP3130648B2 (en) | Method of manufacturing concrete reinforcement | |
JPS61149631A (en) | Frp tapered leaf spring | |
JPS61119826A (en) | Frp plate spring device | |
JP2696939B2 (en) | Anchoring body for prestressed concrete | |
JPS61502770A (en) | A reinforcing ply constructed at least in part by a three-dimensional woven fabric having a cross-section of variable width. | |
JP7280214B2 (en) | Strand rod connection method and strand rod connection structure | |
JPS60203763A (en) | Anchoring of tension material for prestressed concrete | |
JPS61257562A (en) | Reinforcing material for cement hardened article | |
JPS61144435A (en) | Frp tapered leaf spring | |
JPS63139735A (en) | Fiber-reinforced resin rod | |
JP2000225648A (en) | Fiber-reinforced connecting member and method of manufacturing the same | |
JPS61278634A (en) | Fiber-reinforced resin leaf spring and manufacturing method thereof |