JPS63120113A - Pitch carbon fiber - Google Patents
Pitch carbon fiberInfo
- Publication number
- JPS63120113A JPS63120113A JP26388086A JP26388086A JPS63120113A JP S63120113 A JPS63120113 A JP S63120113A JP 26388086 A JP26388086 A JP 26388086A JP 26388086 A JP26388086 A JP 26388086A JP S63120113 A JPS63120113 A JP S63120113A
- Authority
- JP
- Japan
- Prior art keywords
- pitch
- fibers
- strength
- modulus
- yarn
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920000049 Carbon (fiber) Polymers 0.000 title claims description 22
- 239000004917 carbon fiber Substances 0.000 title claims description 21
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims description 11
- 238000010438 heat treatment Methods 0.000 claims abstract description 22
- 238000002074 melt spinning Methods 0.000 claims abstract description 5
- 238000003763 carbonization Methods 0.000 claims description 33
- 238000012545 processing Methods 0.000 abstract description 15
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 12
- 230000001590 oxidative effect Effects 0.000 abstract description 7
- 229910052799 carbon Inorganic materials 0.000 abstract description 6
- 239000011261 inert gas Substances 0.000 abstract description 5
- 238000009987 spinning Methods 0.000 abstract description 5
- 238000010000 carbonizing Methods 0.000 abstract description 2
- 239000000835 fiber Substances 0.000 description 66
- 239000011295 pitch Substances 0.000 description 35
- 238000000034 method Methods 0.000 description 19
- 239000003795 chemical substances by application Substances 0.000 description 12
- 239000011337 anisotropic pitch Substances 0.000 description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- 238000004513 sizing Methods 0.000 description 8
- 238000005452 bending Methods 0.000 description 7
- 239000013078 crystal Substances 0.000 description 7
- 229910002804 graphite Inorganic materials 0.000 description 6
- 239000010439 graphite Substances 0.000 description 6
- 239000007788 liquid Substances 0.000 description 5
- 229910052786 argon Inorganic materials 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 238000009941 weaving Methods 0.000 description 4
- 238000004804 winding Methods 0.000 description 4
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000004744 fabric Substances 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 239000003610 charcoal Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 206010011878 Deafness Diseases 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- CREMABGTGYGIQB-UHFFFAOYSA-N carbon carbon Chemical compound C.C CREMABGTGYGIQB-UHFFFAOYSA-N 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 238000004523 catalytic cracking Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 231100000895 deafness Toxicity 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 210000005069 ears Anatomy 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 208000016354 hearing loss disease Diseases 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000009940 knitting Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000011302 mesophase pitch Substances 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000011331 needle coke Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910052573 porcelain Inorganic materials 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Chemical Or Physical Treatment Of Fibers (AREA)
- Inorganic Fibers (AREA)
Abstract
Description
【発明の詳細な説明】
(イ)産業上の利用分野
本発明はピッチから得られる高性能を有する炭素繊維に
関する。さらに詳しくは炭素分子の結晶および配向Ki
織が不完全であり、しかも弛緩状態での熱処理により結
晶および配向組織が成長して強度および弾性率が大幅に
向上する能力を有する炭素m維に関する。DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to carbon fibers having high performance obtained from pitch. For more details, crystallization and orientation of carbon molecules Ki
The present invention relates to carbon m-fibers that have an imperfect weave and have the ability to grow crystals and oriented structures by heat treatment in a relaxed state, thereby significantly improving strength and elastic modulus.
本発明はピッチから得られる炭素繊維のうち、炭化程度
が低い状態で加工が容易なものであり、炭化程度が高い
ものより低コストであるため、加工ロスと生じても製品
コストにひびく割合が小さい利点を有する。Among the carbon fibers obtained from pitch, the present invention is easy to process with a low degree of carbonization, and is less expensive than carbon fibers with a high degree of carbonization, so even if processing loss occurs, the proportion of product cost will be reduced. Has a small advantage.
本発明の炭素m!iは炭化程度の高いものに比べて曲率
半径の小さい曲げに対して丈夫であり、しかもその曲げ
た部分が後段の炭化処理により応力緩和し、その曲げた
部分の耐摩耗性、耐屈曲性および耐スクラッチ性が優れ
ている特徴を有する。Carbon m of the present invention! i is more durable against bending with a small radius of curvature than those with a high degree of carbonization, and the stress of the bent part is relaxed by the subsequent carbonization process, improving the wear resistance, bending resistance, and It has excellent scratch resistance.
(ロ)従来の技術
高軟化点のピッチを熔融紡糸して得た繊維の表面を酸化
させて不融化した後、不活性雰囲気中で炭化し、炭素繊
維を得る方法は特公昭41−15728号に開示されて
いる。この方法はたしかに優れたピッチ系炭素IIIの
製造法であるが、開示さねている方法によると、高弾性
率の繊維を得るには炭化の際に緊張状態を保つ必要があ
る。不融化したピッチm維は極めて脆いため、緊張状層
で把持することか困難であり、この方法によって高弾性
率繊維を得ることは事実上不可能と考えられる。(b) Conventional technology A method of obtaining carbon fibers by oxidizing the surface of fibers obtained by melt-spinning pitch with a high softening point to make them infusible, and then carbonizing them in an inert atmosphere is disclosed in Japanese Patent Publication No. 15728/1983. has been disclosed. This method is certainly an excellent method for producing pitch-based carbon III, but according to the disclosed method, it is necessary to maintain tension during carbonization in order to obtain fibers with a high modulus of elasticity. Since the infusible pitch m fibers are extremely brittle, it is difficult to hold them in a tensioned layer, and it is considered virtually impossible to obtain high modulus fibers by this method.
この問題点を解決するために、特公昭49−8634号
、特開昭49−19127号などに開示されているよう
に光学異方性ピッチを用いる方法が提案された。In order to solve this problem, a method using optical anisotropic pitch has been proposed, as disclosed in Japanese Patent Publication No. 49-8634, Japanese Patent Application Laid-Open No. 49-19127, etc.
光学異方性ピッチは易炭化、易黒鉛化材料であり、高強
度、高弾性率の炭素繊維の原料としてすぐれた性質を示
す、とくに炭化の際に緊張状態に置く必要がないため、
コスト的にも品質的にも有利な方法と考えられる。Optically anisotropic pitch is an easily carbonizable and graphitizable material, and exhibits excellent properties as a raw material for high-strength, high-modulus carbon fibers, especially since it does not need to be placed under tension during carbonization.
This method is considered to be advantageous in terms of both cost and quality.
光学異方性ピッチからの炭素繊維は、容易に高強度、高
弾性率にすることが可能である半面、加工時に折れるな
ど傷付き易い問題点を有している。このような問題点は
詭い繊維には多かれ少なかれ存在し、ガラスm維やPA
N系炭素炭素繊維では潤滑性と集束性を付与するため、
サイジング剤を塗布している。光学異方性ピッチからの
炭素繊維の場合、易黒鉛化性がわざわいしてサイジング
剤をはじく傾向があり、均一に塗布出来ないため潤滑性
も集束性も不足する問題点がある。Although carbon fibers made from optically anisotropic pitch can easily be made to have high strength and high modulus of elasticity, they have the problem of being easily damaged, such as being broken during processing. These problems exist to a greater or lesser extent with fibers such as glass m fibers and PA fibers.
N-based carbon carbon fiber provides lubricity and cohesiveness,
Applying sizing agent. In the case of carbon fibers made from optically anisotropic pitch, they tend to be easily graphitized and tend to repel sizing agents, and because they cannot be applied uniformly, there are problems in that they lack lubricity and cohesiveness.
この問題点を解決するために特開昭60−21911号
では、不融化1!t400〜650℃で軽度に炭イヒ処
理する方法を開示している。この方法は炭素繊維の弾性
率を小さく保ち、傷付き難くするためにはある程度有効
であるが、炭化が軽度であり過ぎるため。In order to solve this problem, Japanese Patent Application Laid-Open No. 60-21911 proposes infusibility 1! Discloses a method of mild charcoal treatment at 400 to 650°C. Although this method is somewhat effective in keeping the elastic modulus of carbon fibers low and making them less susceptible to damage, the carbonization is too mild.
形態および寸法安定性が不十分である問題点を有してい
る。It has the problem of insufficient shape and dimensional stability.
(ハ)発明が解決しようとする問題点
本発明は光学異方性ピッチもしくはそれと近似の炭化特
性を有する高軟化点のピッチから製造される炭素繊維の
、脆さ、潤滑性の不足および集束性の不足を解決するこ
とを目的とする。(c) Problems to be Solved by the Invention The present invention addresses the brittleness, lack of lubricity, and cohesiveness of carbon fibers manufactured from optically anisotropic pitch or pitch with a high softening point that has carbonization characteristics similar to the optically anisotropic pitch. The aim is to solve the shortage of
本発明はピッチ繊維の炭化条件3緩和して作った、強度
および弾性率の小さい、しかも加工性の良好な炭素繊維
である。ピッチ繊維の炭化は不活性立回気中の熱処理に
より一般に行われており、通常t、zoo℃以上の温度
で高強度になるまで行われ、高弾性率を要求する場合に
は2,000℃以上の温度で熱処理されるが、そのよう
な高強度、高弾性率の炭素繊維は加工性が良好でなく、
より低温で炭化することが好ましいことがわかった。The present invention is a carbon fiber made by relaxing pitch fiber carbonization conditions, which has low strength and elastic modulus, and has good processability. Carbonization of pitch fibers is generally carried out by heat treatment in an inert atmosphere, and is usually carried out at a temperature of 2,000°C or higher until high strength is achieved, and if a high modulus of elasticity is required, the temperature is increased to 2,000°C. Carbon fibers with such high strength and high modulus of elasticity do not have good workability, although they are heat treated at temperatures above
It has been found that carbonization at a lower temperature is preferable.
(ニ)問題点を解決する手段
本発明は高軟化点のピッチを熔融紡糸したのか6゜
伸度が0.3〜8.0%、弾性率がキ→H〜40.OO
Okgf/a−”であり、該炭素繊維が弛緩状態での熱
処理によりkgf/l”以上に上昇する能力を有するこ
とを特徴とするピッチ系炭素繊維である。(d) Means for solving the problems In the present invention, pitch with a high softening point is melt-spun, and the elongation at 6° is 0.3 to 8.0%, and the modulus of elasticity is K→H to 40. OO
This pitch-based carbon fiber is characterized in that it has the ability to increase to kgf/l'' or more by heat treatment in a relaxed state.
本発明のピッチ系炭素繊維は好ましくは高軟化点のピッ
チを熔融紡糸した後、不融化処理および炭化処理するに
際し、紡糸したピ・7チ繊維を搬送用ベルトに載せて2
00〜400℃の酸化性雰囲気中に連続的に導入して該
ピッチ繊維を不融化させ。The pitch-based carbon fiber of the present invention is preferably prepared by melt-spinning pitch with a high softening point, and then carrying out the infusibility treatment and carbonization treatment by placing the spun P-7C fiber on a conveying belt.
The pitch fibers are continuously introduced into an oxidizing atmosphere at 00 to 400°C to make them infusible.
の加工に移す。Transfer to processing.
本発明において高軟化点のビ・ンチとは光学異方性ピッ
チのような易黒鉛化性ピッチである。易黒鉛化性ピッチ
は乾留によってニードルコークスを生じ、またピッチ1
a雄の炭化時に、無緊張の炭化においても高弾性率の炭
素繊維を生じる。易黒鉛化性ピッチには光学異方性ピッ
チのほかに、これと近似の黒鉛化性を示すドーマント
メソフェース ピッチやプリメソフェース炭素質が含ま
れる。In the present invention, the high softening point pitch is an easily graphitized pitch such as an optically anisotropic pitch. Easily graphitizable pitch produces needle coke by carbonization, and pitch 1
When a-male is carbonized, carbon fibers with a high elastic modulus are produced even when carbonized without tension. In addition to optically anisotropic pitch, graphitizable pitch also includes dormant that exhibits graphitizability similar to optically anisotropic pitch.
Contains mesophase pitch and pre-mesophase carbonaceous materials.
j−
本発明の炭T:繊維は強度がn〜250kgf /va
m’ 、伸度が0.3〜8.0%、弾性率が←÷H〜4
0,000kgf/mm:テ150kgf/am”以上
、弾性率が40.OOQkgf/m+++以上に上昇す
る能力を有する0強度がこの範囲より小さくなると加工
時にt!!維が傷付き易くなるので好ましくない0強度
がこの範囲より大きくなると製品の中のil! &iが
ループを形成している部分の耐摩耗性が低下するので好
ましくない0強度は好ましくは一!’)〜50kgr/
m+a’である。伸度がこの範囲より小さぐなると加工
時に繊維が傷付き易くなるので好ましくない、伸度がこ
の範囲より大きくなると製品の形態および寸法安定性が
悪くなるので好ましくない、伸度は好ましくは0.6〜
5.0%である。弛緩状聾での熱処理による強度の上昇
および弾性率の上昇は、易黒鉛化ピッチでは通常見られ
る現象であるが、強度上昇がこの範囲より小さいもので
は製品の耐疲労性、耐酸化性が劣るので好ましくない。j- Charcoal T of the present invention: the fiber has a strength of n to 250 kgf/va
m', elongation is 0.3~8.0%, elastic modulus is ←÷H~4
0,000kgf/mm: TE 150kgf/am" or more, the elastic modulus has the ability to increase to 40.OOQkgf/m+++ or more. If the strength is less than this range, the t!! fiber will be easily damaged during processing, which is not preferable. If the 0 strength is greater than this range, the wear resistance of the part of the product where il!&i forms a loop will decrease, which is not desirable.
m+a'. If the elongation is smaller than this range, the fibers will be easily damaged during processing, which is undesirable. If the elongation is larger than this range, the shape and dimensional stability of the product will deteriorate, which is not preferable. The elongation is preferably 0. 6~
It is 5.0%. An increase in strength and an increase in elastic modulus due to heat treatment in flaccid deafness is a phenomenon that is normally observed in easily graphitized pitch, but if the increase in strength is smaller than this range, the fatigue resistance and oxidation resistance of the product will be poor. So I don't like it.
また強度上昇がこの範囲より小さいものでは熱処理によ
ってサイジング剤をはじくようになる傾向が小さく、本
発明の方法を用いる必要性が小さい。If the increase in strength is smaller than this range, there is little tendency for the sizing agent to be repelled by heat treatment, and there is little need to use the method of the present invention.
熱処理による強度上昇率は好ましくは1.2〜20倍で
あり、上昇後の強度は好ましくは200〜450kgr
/++++”である0弾性率上昇がこの範囲より小さい
ものでは耐疲労性、耐酸化性が劣り、加工時の寸法変化
が大きいので好ましくない、熱処理による弾性率上昇率
は好ましくは1.2〜25倍であり、上昇後の弾性率は
好、ましくは40,000〜100,000kgf/m
s’である。The strength increase rate by heat treatment is preferably 1.2 to 20 times, and the strength after increase is preferably 200 to 450 kgr.
/+++++", which is less than this range, is undesirable because fatigue resistance and oxidation resistance are poor, and dimensional changes during processing are large. The rate of increase in elastic modulus due to heat treatment is preferably 1.2 to 1.2. 25 times, and the elastic modulus after rising is preferably 40,000 to 100,000 kgf/m
It is s'.
本発明の炭素!!1M1は、好ましくは比重が1.35
〜1.95、電気比抵抗が5X10−’〜5Ω・ell
、含有する黒鉛結晶の積J’AHさLe(002)が8
〜45人、黒鉛結晶の面間隔d0゜2が3.45〜3.
68人、熱処理によって高強度高弾性率化した後の黒鉛
結晶の積層厚さLc(002)が36Å以上で猜層厚さ
Le(002)の増加が5Å以上、黒鉛結晶の面間隔d
0゜、が3.55Å以下である。最も好ましくは比重が
1.40〜1.65、電気比抵抗が1×10−2〜5×
IQ−1Ω・cll、f!%処理によって高強度高弾性
率化した後の黒鉛結晶の積M厚さLc(002)が70
〜240人、環8Ω結晶の面間隔d0゜、が3゜36〜
3.44人である。Carbon of the invention! ! 1M1 preferably has a specific gravity of 1.35
~1.95, electrical specific resistance is 5X10-'~5Ω・ell
, the product of graphite crystals contained J'AH Le (002) is 8
~45 people, the interplanar spacing d0゜2 of the graphite crystal is 3.45~3.
68 people, the stacking thickness Lc (002) of the graphite crystal after heat treatment to achieve high strength and high elastic modulus is 36 Å or more, the increase in the layer thickness Le (002) is 5 Å or more, and the interplanar spacing d of the graphite crystal
0° is 3.55 Å or less. Most preferably, the specific gravity is 1.40 to 1.65 and the electrical resistivity is 1 x 10-2 to 5 x.
IQ-1Ω・cll, f! The product M thickness Lc (002) of the graphite crystal after high strength and high elasticity modulus treatment is 70
~240 people, the interplanar spacing d0° of the ring 8Ω crystal is 3°36~
3.44 people.
本発明においては好ましくは高軟化点のピッチを熔融紡
糸した後、−旦巻き取るかあるいは巻き取らずして、得
られたピッチia !Iを搬送用ベル1−に載せて20
0〜400℃の酸化性雰囲気中に連続的に導入して該ピ
ッチ繊維を不融化させ、引き続いて搬送用ベルトに載せ
て400〜1800℃の不活性ガス雰囲気中で、該ピッ
チm維の強度が一6゛〜250kgf/++a12、伸
度が0.3〜8.0%になるまで炭化処理を行った後、
次段の加工に移行する。油剤およびサイジング剤は紡糸
後、要すればさらに不融化後に付与する。これらの薬剤
の存在は、炭化後にこれらがなくなっていても繊維の巻
き取り、あるいは種々の加工時に取り汲い性を改善する
効果がある。この理由は明らかでないが、炭化装置の種
類によって取り汲い性が異なることから、炭化前に与え
られた繊維の配列形態が炭化処理中に保たれるか否かが
原因である可能性が大きい。In the present invention, preferably, after melt-spinning pitch with a high softening point, the obtained pitch ia! Place I on the transport bell 1-20
The pitch fibers are continuously introduced into an oxidizing atmosphere at 0 to 400°C to infusible, and then placed on a conveying belt in an inert gas atmosphere at 400 to 1800°C to evaluate the strength of the pitch fibers. 16゛~250kgf/++a12、After performing carbonization treatment until the elongation becomes 0.3~8.0%,
Move on to the next stage of processing. The oil agent and sizing agent are applied after spinning and, if necessary, after infusibility. The presence of these agents has the effect of improving the ease of winding the fibers or during various processing, even if they are absent after carbonization. The reason for this is not clear, but since the take-up performance differs depending on the type of carbonization equipment, it is highly likely that the cause is whether the fiber arrangement form given before carbonization is maintained during the carbonization process. .
炭化時にピッチ2a ilを耐熱性ボビンに巻いて処理
したもの、ケンス中で処理したもの、ベルトに載せて処
理したものを比較した。これらは強度、伸度および弾性
率では大差ない値を示したが、巻き取り、!1.mWな
どの加工に際してベルトに載せて処理したらのの集束性
が優れていた。Comparisons were made between those processed by winding Pitch 2a il around a heat-resistant bobbin during carbonization, those processed in a can, and those processed by being placed on a belt. These showed similar values in strength, elongation, and elastic modulus, but the winding! 1. When processed by placing it on a belt during processing such as mW, the convergence was excellent.
紡糸後のピッチ繊維を搬送用ベルトに載せる様式は、形
成された繊維層が、すでに形成された繊維層の中に後か
ら載せられた繊維が潜り込んで形成されるような$a
tffの順番の逆転が形成されない様式であれば、どの
ようなものでも良い、搬送用ベルトに載せられた繊維が
、振動や気流によって移動しないように、搬送用ベルト
は多孔質のものとし、背面から吸引して4J1維をベル
トに圧着することが好ましい、搬送用ベルトに送り込ま
れる繊維は、ベルト面に垂直に近い方向から送り込まれ
ると、ベルトの孔やすでに形成されたA1維層の中に突
き刺さることがあるので、走行するm 維を円運動、8
の字運動など種々のパターンで揺動させて、ベルト面と
繊維が送り込まれる方向とのなす角度を小さくすること
が好ましい、繊)ffとベルトが衝突する際に、ショッ
クでrrf4JJIされることがあり、繊維の順番の逆
転の原因になったり、炭化後の加工において欠点を生じ
る原因になる。これを避けるため、油剤およびサイジン
グ剤とともに、水など多量の揮発性液体を付着させたり
、高粘度の液体を付着させることが好ましい。The method of placing the pitch fibers after spinning on the conveying belt is such that the formed fiber layer is formed by the fibers placed later slipping into the already formed fiber layer.
Any type of belt may be used as long as it does not cause a reversal of the order of tff.The conveyor belt should be porous so that the fibers placed on the conveyor belt do not move due to vibrations or air currents. It is preferable to press the 4J1 fibers onto the belt by suction from the belt.If the fibers are fed into the conveying belt from a direction close to perpendicular to the belt surface, they will be sucked into the holes of the belt or into the already formed A1 fiber layer. Since it may pierce, move the running m fiber in a circular motion, 8
It is preferable to make the angle between the belt surface and the direction in which the fibers are fed smaller by swinging them in various patterns such as a cross-shaped motion. This may cause the order of fibers to be reversed or cause defects in processing after carbonization. In order to avoid this, it is preferable to attach a large amount of volatile liquid such as water or a highly viscous liquid together with the oil and sizing agent.
搬送用ベルトに載せたとッチua維は、酸化性雰囲気の
中で200〜400℃に加熱して不融化する。加熱温度
は一定であるよりも、入口では200’C付近の低温で
あり、徐々に昇温して出口では400°C付近の高温と
することが好ましい、入口温度が高すぎるとピッチが融
点に達して、繊維が融着する。入口付近では酸化速度が
大きいので、それによる発熱でピッチが融着することが
ある。要すれば入口付近の酸化性ガス濃度を低くする。The UA fibers placed on the conveyor belt are heated to 200 to 400° C. in an oxidizing atmosphere to make them infusible. Rather than keeping the heating temperature constant, it is preferable to keep the temperature low at the inlet, around 200°C, and gradually increase the temperature to a high temperature around 400°C at the exit.If the inlet temperature is too high, the pitch will reach the melting point. The fibers are fused together. Since the oxidation rate is high near the entrance, the resulting heat generation may cause the pitch to fuse. If necessary, lower the oxidizing gas concentration near the inlet.
不融化時間は繊維の太さによって異なる。The infusibility time varies depending on the thickness of the fiber.
不融1ヒを終わったピッチ繊維は極めて門いので、繊維
に力を加えるような処理をすることは出来ない、そのま
ま搬送用ベルトに載せて炭化装置に送入する。この間に
油剤やサイジング剤を霧状にして付与することは可能で
ある。Pitch fibers that have undergone infusibility are extremely fragile and cannot be subjected to any treatment that applies force to the fibers; they are simply placed on a conveyor belt and sent to a carbonization device. During this time, it is possible to apply an oil agent or a sizing agent in the form of a mist.
炭化は400〜1800℃の不活性雰囲気中で、ピッ千
fa El ノ強度がH〜250kgr/+m” 、伸
度が0.3〜8.0%になるまでの処理を行う、炭化処
理の初期は、400℃付近の温度で酸化性雰囲気の不活
性ガスによる置換から始めることが好ましい、不活性ガ
スによる置換が不十分である場合、歳雄がやせたり、強
度上昇が不十分となるなどの問題を生じる。処理時間は
繊維の太さによって異なるが、初期には10〜b囲気の
不活性ガスによる置換を行い、終期には数秒ないし数百
秒の間一定温度に保つことが好ましい。Carbonization is carried out in an inert atmosphere at a temperature of 400 to 1800°C until the pitch strength is H to 250 kgr/+m and the elongation is 0.3 to 8.0%. It is preferable to start by replacing the oxidizing atmosphere with an inert gas at a temperature of around 400°C.If the replacement with an inert gas is insufficient, there may be problems such as thinning of the toshio or insufficient increase in strength. The treatment time varies depending on the thickness of the fibers, but it is preferable to replace the process with an inert gas atmosphere of 10 to 100 ml at the initial stage, and to maintain the temperature at a constant temperature for several seconds to several hundred seconds at the final stage.
得られたm維は引き続きボビン等に巻き取って次段の加
工を行うことができる。また引き続きさらに炭化を進め
て高強度、高弾性率の炭素繊維とすることができる。ま
たさらに高温で処理して黒鉛繊維とすることができる。The obtained m-fiber can be subsequently wound onto a bobbin or the like and subjected to the next stage of processing. Furthermore, carbonization can be further progressed to produce carbon fibers with high strength and high modulus of elasticity. Furthermore, it can be processed at a higher temperature to produce graphite fibers.
引き続き炭化を進めるに当たっては、繊維に緊張を与え
ながら行うことができ、強度、弾性率を大きくすること
ができる。The subsequent carbonization can be carried out while applying tension to the fibers, thereby increasing the strength and elastic modulus.
得られた繊維を搬送用ベルトの上からボビン等に巻き取
ったり、次段の高温処理に送る場合、ローラー等により
引っ張ることが必要である。この際、lfi送用ベルト
上の繊維層を逆転させた後、引き出して張力を加え、直
線状に形を修正してやることが好ましい、搬送用ベルト
上の繊維層を逆転させるためには、種々の方法が考えら
れるが、m離層の上に第二のベルトを接触させ、両方の
ベルトで繊維層を挟んで上下を反転させた後、第二のベ
ルト上に繊維層を載せ、その上から得られた繊維を引き
出す方法が最も好ましい。When the obtained fibers are wound onto a bobbin or the like on a conveyor belt or sent to the next stage of high temperature treatment, it is necessary to pull them with a roller or the like. At this time, it is preferable to reverse the fiber layer on the LFI transport belt, then pull it out and apply tension to correct the shape into a straight line.In order to reverse the fiber layer on the transport belt, various methods can be used. One possible method is to bring a second belt into contact with the delamination layer, sandwich the fiber layer between both belts, turn it upside down, then place the fiber layer on the second belt, and then Most preferred is the method of drawing out the obtained fibers.
得られた繊維に張力と与える場合、炭素繊維の弾性率は
他の繊維に比べて非常に大きいので、通常の張力付与装
互では張力の均一化が困難である。流体の粘性により抵
抗を与えることが好ましく、油剤やサイジング剤を含ん
だ液を通して抵抗を午えることがとくに好ましい、この
除液は講や管の巾を流して置くことが好ましい。When tension is applied to the obtained fibers, it is difficult to equalize the tension using a normal tension application device, since the elastic modulus of carbon fiber is much larger than that of other fibers. It is preferable to provide resistance through the viscosity of the fluid, and it is particularly preferable to provide resistance by passing a liquid containing an oil or sizing agent. It is preferable to remove this liquid by running it across the width of the tube or pipe.
このようにして得られた繊維は高度に炭化を進めた1l
iiと異なり、弾性率が小さく、油剤やサイジング剤の
ような液体に濡れやすく、集束性が罎れており、製織や
製編などの小さい曲率半径で曲げる工程を有する加工に
対して優れた加工性を有する。また炭化を進めた11維
よりも低コストであるため、加工ロスの多い製品の場合
非常に有利である。また加工に際して歪みの緩和が起こ
るため、小さい曲率半径で曲げた部分の耐1り耗性やη
(疲労性が擾れている。また摩耗により毛羽だち難く、
耐屈曲性や耐スクラッチ性も優れている。The fiber thus obtained was highly carbonized.
Unlike ii, it has a small elastic modulus, is easily wetted by liquids such as oil and sizing agents, and has poor convergence, making it excellent for processes that involve bending with a small radius of curvature, such as weaving and knitting. have sex. Also, since it costs less than carbonized 11 fibers, it is very advantageous for products that require a lot of processing loss. In addition, since strain relaxation occurs during processing, the abrasion resistance of parts bent with a small radius of curvature and η
(Fatigue resistance has deteriorated. Also, it is difficult to fuzz due to wear,
It also has excellent bending resistance and scratch resistance.
好ましくはこのような後加工を行った後、本実施例 1
熱接触分解(FCC)残油の初層404℃終溜560℃
(常圧[1)の溶分にメタンガスを送入しながら420
℃で2時間熱処理し、さらに320℃で18時間加熱し
てメソフェースを成長させ比重差によりメンフェースを
沈降分離した。このピッチは光学異方性成分を96%合
有し、キノリンネ溶分47%、トルエン不溶分82%、
を含有していた。Preferably, after such post-processing, the present example 1 thermal catalytic cracking (FCC) residual oil is heated to an initial layer of 404°C and a final distillate of 560°C.
(While feeding methane gas into the dissolved substance at normal pressure [1),
The mixture was heat-treated at 320° C. for 2 hours, and further heated at 320° C. for 18 hours to grow mesophase, which was separated by sedimentation based on the difference in specific gravity. This pitch contains 96% optically anisotropic components, 47% quinoline soluble content, 82% toluene insoluble content,
It contained.
このピッチを出口に拡張部を有する紡糸孔より紡出し、
油剤のエマルジョンを常法により塗布した11270m
1分で引き取り、搬送mベルトの上に螺旋状の軌跡を描
くように、揺動させながら堆猜させた。This pitch is spun from a spinning hole with an expanded part at the exit,
11270m coated with oil emulsion using conventional method
It was picked up in 1 minute and was allowed to boil while being rocked so as to draw a spiral trajectory on the conveyor m-belt.
引き続き入口200℃、出口400℃の炉の中で、昇温
速度20℃/分で空気による酸化処理を行い、不融化し
た。炉から出た繊維に油剤をエアゾール状で付与した後
、炭化炉に送入した。炉の入口の温度は450℃で、6
00℃になるまでは5℃/分、800℃になるまでは2
0℃7分で昇温しながら、雰囲気の不活性ガスによるU
laを行った。その後100℃/分の昇温速度で95
0℃まで昇温し、45秒間950℃で処理を行った後、
炉から取り出し、搬送用ベルトと第二のペルーtΩ・C
躊であった。Subsequently, in a furnace with an inlet temperature of 200°C and an outlet temperature of 400°C, oxidation treatment was performed with air at a heating rate of 20°C/min to make it infusible. After applying an oil agent in the form of an aerosol to the fibers coming out of the furnace, the fibers were sent to a carbonization furnace. The temperature at the inlet of the furnace is 450℃, 6
5℃/min until it reaches 00℃, 2℃ until it reaches 800℃
While heating at 0°C for 7 minutes, U
I went to la. After that, the temperature was increased to 95°C at a heating rate of 100°C/min.
After raising the temperature to 0°C and processing at 950°C for 45 seconds,
Take out from the furnace, transfer belt and second peru tΩ・C
I was hesitant.
この繊維を2800℃のアルゴン中で2分間処理したと
ころ、強度288kgf/am’、伸度0.4%、弾性
率78 、OOOkgr/am’ノXi 強度、 寓弾
性QX w!維となった。When this fiber was treated in argon at 2800°C for 2 minutes, it had a strength of 288 kgf/am', an elongation of 0.4%, an elastic modulus of 78, an OOO kgr/am' strength, and an elasticity of QX w! It became a maintenance.
アルゴン中での熱処理前後の繊維を用いてその製織性を
調べた。平織りの場合には両者の差はぼ著で無かったが
、二重織りでは熱処理前の繊維が製織し易く、多軸織り
や三次元織りでは熱処理後の繊維の製繊が困難であった
。The weavability of the fibers was investigated before and after heat treatment in argon. In the case of plain weave, the difference between the two was not significant, but with double weave, the fibers before heat treatment were easy to weave, and with multiaxial weave and three-dimensional weave, it was difficult to weave the fibers after heat treatment.
アルゴン中での熱処理前後の繊維を平織りしたものの性
能を調べた。熱処理前の繊維の織物はアルゴン中で熱処
理して比較した0両者とも強度、伸度、弾性率について
はほとんど差がなかったが繊維で熱処理したものはやや
嵩高く、摩耗時に毛羽たち易い傾向があり、耐屈曲性、
耐スクラッチ性がやや劣り、耳部の耐摩耗性が大福に劣
っていた。The performance of plain weave fibers before and after heat treatment in argon was investigated. The fiber fabrics before heat treatment were heat treated in argon and compared. There was almost no difference in strength, elongation, and elastic modulus between the two, but the heat treated fiber fabrics were slightly bulkier and tended to fuzz easily when worn. Yes, bending resistance,
The scratch resistance was slightly inferior, and the abrasion resistance of the ears was inferior to Daifuku.
比較例 1
実施例 1の紡糸後のピッチm維をアルミナ磁器製のボ
ビンに巻き取り、実施例 1とほぼ同様の昇温条件で不
融化及び炭化処理をおこなった。Comparative Example 1 The spun pitch m fiber of Example 1 was wound around an alumina porcelain bobbin, and subjected to infusibility and carbonization treatment under substantially the same temperature raising conditions as in Example 1.
得られた繊維の強度、伸度、弾性率、結晶の状態は実施
例 1と大差無かったが、製織性は大幅に劣り、多軸m
物や三次元織物の製織は困難であった。The strength, elongation, elastic modulus, and crystalline state of the obtained fibers were not significantly different from those in Example 1, but the weavability was significantly inferior, and the multiaxial m
Weaving objects and three-dimensional fabrics was difficult.
比較例 2
実施例 1の紡糸後のピッチ繊維を耐熱合金製のケンス
に取り、実施−1とほぼ同様の昇温条件で不融化及び炭
化処理をおこなった。得られたm維の強度、伸度、弾性
率、結晶の状態は実施例 1と大差無かったが、ケンス
から取り出すことが難しく、製繊性の評価は困難であっ
た。Comparative Example 2 The spun pitch fibers of Example 1 were placed in a can made of a heat-resistant alloy, and subjected to infusibility and carbonization treatment under substantially the same heating conditions as in Example-1. The strength, elongation, elastic modulus, and crystalline state of the obtained m-fibers were not significantly different from those in Example 1, but it was difficult to take them out of the can, making it difficult to evaluate the fiber-making properties.
実施例 2
実施例 1と同じピッチを用い、同じ紡糸条明細書の序
言(内容に変更なし)
件で紡糸し、搬送用ベルト上に積層した状態で不融化処
理した繊維を、炭化炉の最高塩度を変えて炭化処理した
後、同様にして巻き取り、製織により加工性を評価した
。Example 2 Using the same pitch as in Example 1, the fibers were spun with the same preface (no change in content) in the spinning specification and were infusible treated while stacked on a conveyor belt. After carbonization treatment with varying salinity, processability was evaluated by winding and weaving in the same manner.
その結果を#!1表に示す。# the result! It is shown in Table 1.
#41表 炭化温廖を費え九−維の件賀、製織性実施例
3
実施例 1の炭化後の繊維を1.5%の延伸を与えるよ
うな緊張下に、1700℃で更に炭化を行った。得られ
た繊維の強度は279kgr/as’ 、弾性率は62
、OOOkgf/as”で弛緩状態で熱処理したものに
比べて、はるかに高強度高弾性率であった。Table #41 Weaving performance example 3 of carbonized fibers after carbonization The fibers of Example 1 were further carbonized at 1700°C under tension giving 1.5% elongation. went. The obtained fiber has a strength of 279 kgr/as' and an elastic modulus of 62.
, OOO kgf/as'' in a relaxed state, it had much higher strength and higher elastic modulus.
(;l: )発明の効果
本発明のピッチ系炭素繊維は炭化程度が品いものより加
工が容易であり、低コストである0本発明の炭素m&l
Iは炭化程度が高いものに比べて。(;l:) Effects of the Invention The pitch-based carbon fiber of the present invention has a higher degree of carbonization, is easier to process, and is lower in cost.
I compared to those with a high degree of carbonization.
曲率半径の小さい曲げに対して丈夫であり、その曲げた
部分が後段の炭化処理によって応力緩和し、その曲げた
部分の耐摩耗性、耐屈曲性および耐スクラッチ性が優れ
ている。It is strong against bending with a small radius of curvature, and the stress of the bent portion is relaxed by the subsequent carbonization treatment, and the bent portion has excellent wear resistance, bending resistance, and scratch resistance.
以上that's all
Claims (1)
び炭化処理を行って得た炭素繊維であり、該炭素繊維の
強度が15〜250kgf/mm^2、伸度が0.3〜
8.0%、弾性率が400〜40,000kgf/mm
^2であり、該炭素繊維が弛緩状態での熱処理により強
度、弾性率とも熱処理前の1.1倍以上に上昇する能力
を有することを特徴とするピッチ系炭素繊維It is a carbon fiber obtained by melt-spinning pitch with a high softening point, followed by infusibility treatment and carbonization treatment, and the carbon fiber has a strength of 15 to 250 kgf/mm^2 and an elongation of 0.3 to 0.3.
8.0%, elastic modulus 400-40,000kgf/mm
^2, and the pitch-based carbon fiber has the ability to increase both strength and elastic modulus by 1.1 times or more than before heat treatment by heat treatment in a relaxed state.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61263880A JP2654613B2 (en) | 1986-11-07 | 1986-11-07 | Method for producing pitch-based carbon fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61263880A JP2654613B2 (en) | 1986-11-07 | 1986-11-07 | Method for producing pitch-based carbon fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63120113A true JPS63120113A (en) | 1988-05-24 |
JP2654613B2 JP2654613B2 (en) | 1997-09-17 |
Family
ID=17395523
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61263880A Expired - Lifetime JP2654613B2 (en) | 1986-11-07 | 1986-11-07 | Method for producing pitch-based carbon fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2654613B2 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5590621A (en) * | 1978-12-26 | 1980-07-09 | Kureha Chem Ind Co Ltd | Production of carbon fiber |
JPS5860019A (en) * | 1981-10-05 | 1983-04-09 | Mitsui Cokes Kogyo Kk | Carbon fiber manufacturing method |
JPS6128020A (en) * | 1984-07-17 | 1986-02-07 | Osaka Gas Co Ltd | Preparation of carbon fiber |
JPS6134224A (en) * | 1984-07-24 | 1986-02-18 | Dainippon Ink & Chem Inc | Manufacturing method of pitch-based high-strength long carbon fiber |
-
1986
- 1986-11-07 JP JP61263880A patent/JP2654613B2/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5590621A (en) * | 1978-12-26 | 1980-07-09 | Kureha Chem Ind Co Ltd | Production of carbon fiber |
JPS5860019A (en) * | 1981-10-05 | 1983-04-09 | Mitsui Cokes Kogyo Kk | Carbon fiber manufacturing method |
JPS6128020A (en) * | 1984-07-17 | 1986-02-07 | Osaka Gas Co Ltd | Preparation of carbon fiber |
JPS6134224A (en) * | 1984-07-24 | 1986-02-18 | Dainippon Ink & Chem Inc | Manufacturing method of pitch-based high-strength long carbon fiber |
Also Published As
Publication number | Publication date |
---|---|
JP2654613B2 (en) | 1997-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2648711B2 (en) | Manufacturing method of pitch-based carbon fiber three-dimensional fabric | |
JPS63120113A (en) | Pitch carbon fiber | |
JPS63303123A (en) | Pitch-based carbon fiber and production thereof | |
JPS63303124A (en) | Pitch-based carbon fiber and production thereof | |
JPS58220821A (en) | Acrylic carbon fiber bundle with high strength and elongation and its production | |
JPS63295715A (en) | Infusible pitch fiber | |
JPS6021911A (en) | Manufacture of carbon fiber product | |
JPS62133123A (en) | Production of carbon fiber and graphite fiber | |
JP4338533B2 (en) | Heat treatment method for oxidized fiber sheet | |
JP2695355B2 (en) | Carbon fiber production method | |
JP2582848B2 (en) | Method for producing pitch-based carbon fiber | |
JP3644271B2 (en) | Method for producing pitch-based carbon fiber | |
JPH0617319A (en) | Method for manufacturing pitch-based carbon fiber | |
JPS63295714A (en) | Production of pitch-based carbon fiber | |
JPS6081320A (en) | Manufacture of carbon fiber | |
JPS6290321A (en) | Method for manufacturing ultra-high elongation carbon material | |
JPS62177220A (en) | Manufacturing method of pitch carbon fiber | |
JPS62184125A (en) | Production of carbon yarn and graphite yarn | |
JPH0726424A (en) | Production of pitch-based carbon fiber | |
JPS62117817A (en) | Production of pitch based carbon fiber | |
JPH0491229A (en) | Method for manufacturing pitch-based carbon fiber | |
JPH03161523A (en) | Pitch-based carbon fiber | |
JPH04257323A (en) | Method for producing pitch-based carbon fiber and graphite fiber | |
JPH0726423A (en) | Production of pitch-based carbon fiber | |
JPH01282340A (en) | Method for supplying oil to pitch fiber |