JPS63119509A - Resin magnet structure - Google Patents
Resin magnet structureInfo
- Publication number
- JPS63119509A JPS63119509A JP26598786A JP26598786A JPS63119509A JP S63119509 A JPS63119509 A JP S63119509A JP 26598786 A JP26598786 A JP 26598786A JP 26598786 A JP26598786 A JP 26598786A JP S63119509 A JPS63119509 A JP S63119509A
- Authority
- JP
- Japan
- Prior art keywords
- magnet
- resin
- resin magnet
- binder
- magnet structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明はコンピュータ周辺機、プリンタなどの制御用、
駆動用として用いられる所謂永久磁石回転子などに使用
される樹脂磁石構造体に関する。[Detailed Description of the Invention] Industrial Application Field The present invention is for controlling computer peripherals, printers, etc.
The present invention relates to a resin magnet structure used in a so-called permanent magnet rotor used for driving purposes.
更に詳しくはFe−B−R系(イ1し、RはNdまたは
/およびPr)磁石素材と結合剤との複合物で、支持部
材を一体成形した樹脂磁石構造体に関する。More specifically, the present invention relates to a resin magnet structure in which a support member is integrally molded with a composite of a Fe-B-R type (I1, R is Nd or/and Pr) magnet material and a binder.
従来の技術
本発明の対象となる樹脂磁石構造体の樹脂磁石の形状は
通常リング状、p:I筒状、或はC形状などの環状であ
り、一方の支持部材はリング状9円筒状2円柱状である
。2. Description of the Related Art The resin magnet of the resin magnet structure to which the present invention is applied usually has an annular shape such as a ring shape, a p:I cylindrical shape, or a C shape, and one support member has a ring shape 9 cylindrical shape 2 It is cylindrical.
RCo5.R(Co、Cu、Fe、M)n(但しRはS
m、Ceなどの希土類元素、Mは周期律表の■族、V族
、■族、■族に属する元素の一種または2種以北の絹み
合わせ、nは一般に5〜9の整数)などで例示される希
土類コバルトの焼結磁石は環状に形成し、該形状の半径
方向へ磁気異方化させることが極めて難しい。その主な
理由は焼結過程において異方性に基づく膨張率に差が生
じるためであり、特に薄肉環状磁石の場合には等方性に
て対応するほかない。このために本来ならば20〜30
M G Oe発現する高度な磁気性能もFI M G
Oe程度に低下してしまう。更に高度な寸法精度が要
求される永久磁石回転子の場合には焼結後に研削加工が
必要であるから水溜りが悪く、SmやCoを主成分とす
ることも加えて経済性において性能とのバランスに乏し
い。そのうえ焼結磁石は機械的に脆弱であるから、その
一部が脱離、飛散或は他の部材に移着し易い。このこと
は例えば永久磁石回転子の機能維持や信頼性の確保に重
大な影響を及ぼすものである。RCo5. R(Co, Cu, Fe, M)n (where R is S
Rare earth elements such as m, Ce, M is a combination of one or more elements belonging to group ■, group V, group ■, group ■ of the periodic table, n is generally an integer from 5 to 9), etc. The rare earth cobalt sintered magnet exemplified by is formed into an annular shape, and it is extremely difficult to make the magnetic anisotropy in the radial direction of the shape. The main reason for this is that there is a difference in expansion coefficient due to anisotropy during the sintering process, and especially in the case of thin-walled annular magnets, isotropy is the only solution. For this reason, it should be 20 to 30
The advanced magnetic performance developed by M G Oe is also FI M G
This decreases to about Oe. Furthermore, in the case of permanent magnet rotors, which require a high degree of dimensional accuracy, grinding is required after sintering, which causes water retention, and since the main components are Sm and Co, there is a problem in terms of economy and performance. lack of balance. Moreover, since sintered magnets are mechanically fragile, a portion of them is easily detached, scattered, or transferred to other members. This has a serious effect on, for example, maintaining the function and ensuring reliability of the permanent magnet rotor.
一方、希土類コバルト樹脂磁石の場合にはマトリクスで
ある樹脂が半径方向へ磁気異方化した希土類コバルトの
膨張率の差を吸収してくれるために半径方向へ磁気異方
化した磁石が得られる。例えば射出成形タイプの希土類
コバルト樹脂磁石をアキシャル方向へ磁気異方化した場
合には最大エネルギー積で8〜10MGOeの磁石が容
易に得られる。しかも焼結晶に比べて密度が概ね30%
軽減され、且つ高度な寸法精度が確保され、機械的に脆
弱な点も改善されるから環状磁石、特に薄肉環状磁石と
しては焼結磁石に比べてより好ましいものと言える。On the other hand, in the case of rare earth cobalt resin magnets, the matrix resin absorbs the difference in expansion coefficient of the rare earth cobalt, which is magnetically anisotropic in the radial direction, so that a magnet with magnetic anisotropy in the radial direction can be obtained. For example, when an injection molded rare earth cobalt resin magnet is made magnetically anisotropic in the axial direction, a magnet with a maximum energy product of 8 to 10 MGOe can be easily obtained. Moreover, the density is approximately 30% compared to fired crystals.
It can be said that it is more preferable as an annular magnet, especially a thin annular magnet, than a sintered magnet because it reduces the weight, ensures a high degree of dimensional accuracy, and improves mechanical fragility.
発明が解決しようとする問題点
しかし、上記希土類コバルト樹脂磁石であっても環状磁
石の小形化、軽量化には十分に対処できない欠点があっ
た。以下にその理由を説明する。Problems to be Solved by the Invention However, even the above-mentioned rare earth cobalt resin magnets have the disadvantage that they cannot sufficiently reduce the size and weight of annular magnets. The reason is explained below.
一般に希土類コバルトを半径方向へ磁気異方化する手段
としては例えば特開昭57−170501号公報に記載
されているようにキャビティを取り囲んで磁性体ヨーク
と非磁性体ヨークとを組み合わせ、且つ外側に磁化コイ
ルを配置した金型を用いるか、或はまた該キャビティの
外周に磁化コイルを埋設した金型を用いる。かかる方法
はキャビティ内に所定の磁界の強さを発生させるために
高電圧大電流型の電源を用い、且つ起磁力を大とするこ
とか行われている。しかし金型の外周からヨークによっ
て磁化コイルで励磁した磁束をキャビティ内に有効に集
束さ・せるため磁路長を長くせざるを得す、特に小形の
環状磁石の場合には起磁力のかなりの部分が漏洩磁束と
して消費されてしまう。従って半径方向の磁気異方化は
該磁石の形状によっては十分に成されない場合があり、
定性的には本発明が実用例として挙げる永久磁石回転子
のような場合には高性能を維持し、且つ小形化、或は軽
量化に十分に対処できるものとは言えなかった。Generally, as a means to make rare earth cobalt magnetically anisotropic in the radial direction, for example, as described in Japanese Patent Application Laid-Open No. 57-170501, a magnetic yoke and a non-magnetic yoke are combined surrounding a cavity, and the outside A mold in which a magnetizing coil is arranged is used, or a mold in which a magnetizing coil is embedded in the outer periphery of the cavity is used. In this method, a high voltage, large current type power source is used to generate a predetermined magnetic field strength within the cavity, and the magnetomotive force is increased. However, in order to effectively focus the magnetic flux excited by the magnetizing coil from the outer periphery of the mold into the cavity using the yoke, the magnetic path length must be made long.Especially in the case of a small annular magnet, the magnetomotive force is considerably large. A portion of the magnetic flux is consumed as leakage magnetic flux. Therefore, magnetic anisotropy in the radial direction may not be achieved sufficiently depending on the shape of the magnet.
Qualitatively, it cannot be said that in the case of a permanent magnet rotor, which is used as a practical example of the present invention, it is not possible to maintain high performance and to sufficiently cope with miniaturization or weight reduction.
一方、上記のような永久磁石回転子に使用される環状磁
石は例えばトルク・イナーシャ比の関係から薄肉環状形
状が望ましく、多相励磁であれば単体磁石ではなくて励
磁側に対応する部位にのみ薄肉環状磁石を設ける所謂分
割磁石構造が望ましい。このような分割された磁石構造
の場合には環状磁石に直接軸を固定するよりも支持部材
を介在させて分割された環状磁石と軸とを固定する場合
が多いつここで支持部材と分割された環状磁石とは機械
的な嵌合によるか、もしくは外部から接着剤を充填して
同着するなどの方法が一般である。On the other hand, the annular magnet used in the above-mentioned permanent magnet rotor is preferably a thin annular shape due to the torque/inertia ratio, and in the case of multi-phase excitation, it is not a single magnet, but only the part corresponding to the excitation side. A so-called split magnet structure in which thin-walled annular magnets are provided is desirable. In the case of such a divided magnet structure, rather than fixing the shaft directly to the annular magnet, it is often the case that the divided annular magnet and the shaft are fixed with a support member interposed between them. Generally, the annular magnets are attached by mechanical fitting or by filling adhesive from the outside.
従って機械的な嵌合を行った場合には環状磁石が損壊す
る危険が太き(、また接着(4)定の場合には接着剤が
流入する空隙が必要なことから支持部材と環状磁石との
接合強度や寸法精度或は作業性に難点があり、このよう
な観点からのアッセンブル性の改善が求められていた。Therefore, if mechanical fitting is performed, there is a risk of damage to the annular magnet (and in the case of adhesive (4), there is a need for a gap for the adhesive to flow between the supporting member and the annular magnet). There are problems with bonding strength, dimensional accuracy, and workability, and improvements in assembleability have been desired from these points of view.
本発明は上記高性能を維持しつつ小形化・軽量化とアッ
センブル性の改善が望まれる永久磁石回転子に使用され
るような樹脂磁石構造体にかかり、当該樹脂磁石によっ
て支配される性能を維持しつつ、小形・ut化への対応
力とアッセンブル往きを兼備した樹脂磁石構造体を提供
しようとする。ものである。The present invention relates to a resin magnet structure used in a permanent magnet rotor that is desired to be smaller, lighter, and easier to assemble while maintaining the above-mentioned high performance, and maintains the performance dominated by the resin magnet. At the same time, we aim to provide a resin magnet structure that is compatible with miniaturization and UT and is easy to assemble. It is something.
問題点を解決するための手段
本発明は小形化を指向する永久磁石回転子に使用される
ような樹脂磁石構造体に関するもので、支持部材を磁石
素材と結合剤との複合物で一体成形したものである。Means for Solving the Problems The present invention relates to a resin magnet structure used in a permanent magnet rotor aimed at miniaturization, in which the supporting member is integrally molded from a composite of a magnet material and a binder. It is something.
作用。Action.
熱重合性樹脂成形材料の成形品等より成る支持部材を金
型キャビティへ設置し、磁石素材と結合剤との複合物を
圧縮した後、結合剤を重合硬化することにより一体化す
る。これにより、樹脂磁石によって支配される特性を維
持しつつ小形化、高性能化が図れる。A supporting member made of a molded article of a thermopolymerizable resin molding material or the like is installed in the mold cavity, the composite of the magnet material and the binder is compressed, and then the binder is polymerized and hardened to be integrated. This makes it possible to achieve smaller size and higher performance while maintaining the characteristics dominated by the resin magnet.
実施例 以下、本発明を添付図面を参照して説明する。Example The present invention will now be described with reference to the accompanying drawings.
第1図は本発明で言う樹脂磁石構造体の一例を示す斜視
図である。図中1は支持部材で、外周部には樹脂磁石と
の係合部1′が設けられている。FIG. 1 is a perspective view showing an example of the resin magnet structure referred to in the present invention. In the figure, reference numeral 1 denotes a support member, and an engaging portion 1' with a resin magnet is provided on the outer peripheral portion.
2は支持部材1の外周に磁石素材と結合剤との複合物を
圧縮成形することによって一体化した樹脂磁石構造体で
あり、2′は樹脂磁石である。3は支持部材]と樹脂磁
石2′とを一体化した樹脂磁石構造体2を2個並置して
軸4でアッセンブルした永久磁石回転子である。例示の
如く、樹脂磁石2′は励磁コイルに対向する任意の部位
に設けることができる。このような永久磁石回転子3は
、例えば樹脂磁石外周面を多極着磁せしめて第2図のよ
うな斜視図で示される所謂PM型パルスモータとして実
用に供せられる。但し、図中1は本発明に係る支持部材
、2は支持部材1と樹脂磁石2′とを一体化して構成し
た樹脂磁石構造体、3は樹脂磁石構造体2を軸4でアッ
センブルした永久磁石回転子である。界磁部は外ヨーク
6a、6bと互いに背中合わせに接合された2個の内ヨ
ーク5と、それ等の間に収容される励磁コイル7a。2 is a resin magnet structure integrated by compression molding a composite of a magnet material and a binder on the outer periphery of the support member 1, and 2' is a resin magnet. Reference numeral 3 denotes a permanent magnet rotor in which two resin magnet structures 2, each of which is made up of a support member] and a resin magnet 2', are arranged side by side and assembled around a shaft 4. As illustrated, the resin magnet 2' can be provided at any location facing the excitation coil. Such a permanent magnet rotor 3 is put into practical use as a so-called PM type pulse motor shown in a perspective view as shown in FIG. 2 by, for example, magnetizing the outer peripheral surface of a resin magnet with multiple poles. However, in the figure, 1 is a support member according to the present invention, 2 is a resin magnet structure formed by integrating the support member 1 and a resin magnet 2', and 3 is a permanent magnet in which the resin magnet structure 2 is assembled with a shaft 4. It is a rotor. The field portion includes outer yokes 6a and 6b, two inner yokes 5 joined back to back, and an excitation coil 7a housed between them.
7bとを備えている。このような所ffPM型パルスモ
ータは1パルス電流に対応する励磁コイルの起磁力によ
って1ステツプ角だけ永久磁石回転子が変位する動作を
行うものである。7b. In such an ffPM type pulse motor, the permanent magnet rotor is displaced by one step angle by the magnetomotive force of the excitation coil corresponding to one pulse current.
次に本発明で言う支持部材1とは、少なくとも無機質充
填剤を65体積%以上含有する熱重合性樹脂成形材料の
成形品である。ここで熱重合性樹脂成形材料とはエポキ
シ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、シ
リコーン樹脂などとアルミナ、水酸化アルミニウム、シ
リカ、溶融石英ガラス、硅酸ジルコニウム、炭酸カルシ
ウム。Next, the support member 1 referred to in the present invention is a molded article of a thermopolymerizable resin molding material containing at least 65% by volume of an inorganic filler. Here, thermopolymerizable resin molding materials include epoxy resin, unsaturated polyester resin, phenol resin, silicone resin, etc., alumina, aluminum hydroxide, silica, fused silica glass, zirconium silicate, and calcium carbonate.
ガラス繊維などの充填剤、或は脂肪酸金属塩類脂肪酸エ
ステル類、脂肪酸アミドヴなどの各種滑剤、その他顔料
など必要に応じて加える各種添加剤から成る多成分系の
複合材料である。特に本発明では無機質充填剤を65体
積%以上とする。この理由は支持部材1が磁石素材と結
合剤との複合物の圧縮時の機械的圧力に抗し得るもので
あって、且つ樹脂磁石構造体の信頼性を確保するに必要
だからである。第3図は溶融石英ガラスを無機質充填剤
とし、エポキシ樹脂を熱重合性樹脂として使用した成形
材料の曲げ弾性率、熱膨張率、熱伝導帛をもとの無機質
充填剤の体積%に対して示す特性図である。無機質充填
剤が65体積%を越えると弾性率は顕著に高位となり、
熱膨張も銅(1,7X1.0”C−’)、鉄(1,、O
X 1. O”C’)とほぼ同じとなるから磁石素材と
結合剤との複合物を圧縮した際の機械的圧力に抗し、且
つ樹脂磁石構造体の信頼性を確保し得る領域となるので
ある。It is a multi-component composite material consisting of fillers such as glass fibers, various lubricants such as fatty acid metal salts, fatty acid esters, fatty acid amide, and various additives added as necessary, such as pigments. In particular, in the present invention, the content of the inorganic filler is 65% by volume or more. The reason for this is that the support member 1 is capable of resisting mechanical pressure when the composite of the magnet material and the binder is compressed, and is necessary to ensure the reliability of the resin magnet structure. Figure 3 shows the flexural modulus, thermal expansion coefficient, and thermal conductivity of a molding material using fused silica glass as an inorganic filler and epoxy resin as a thermopolymerizable resin, relative to the volume percent of the original inorganic filler. FIG. When the inorganic filler exceeds 65% by volume, the elastic modulus becomes significantly high,
Thermal expansion is also
X1. Since it is almost the same as O''C'), it is a region that can withstand the mechanical pressure when the composite of the magnet material and the binder is compressed and can ensure the reliability of the resin magnet structure.
次に本発明で言う磁石素材とは液体急冷Fe−R−B系
(但しRはNdまたは/およびPr)である。このもの
は例えば標準的な原子組成Fee+。Next, the magnet material referred to in the present invention is a liquid quenched Fe-R-B system (where R is Nd or/and Pr). For example, this has a standard atomic composition Fee+.
Nd+3.8eで代表され、且つ液体急冷法によって製
造されたものである。例えばFe−R−8溶融合金をA
rガス雰囲気中にてオリフィス並びにロールを介して急
冷リボン片としたものを連室粉砕して得られる肉厚的1
0〜30μm長手方向数士ないし、数百μmの板状粒子
を言う。この粒子は非晶質相に極めて微細なFe−R−
B三元系磁石用が点在するミクロ構造を有するもので磁
気的には等方性のものである。このような液体急冷Fe
−R−8は急冷リボン片を得る際に非晶質状態とし、然
るのち結晶化温度以上に加熱せしめることによりFe−
R−B系三元系磁石相を析出せしめる製造R歴であって
も、或はまた急冷時に直接最終的なミクロ構造とする製
造履歴であっても差し支えない。更には液体急冷Fe−
R−Bの保磁力が発現する基本的なミクロ構造を損なわ
ない範囲でSi、A1.Mo、Co、Zr、Pd、Y。It is represented by Nd+3.8e and was manufactured by a liquid quenching method. For example, Fe-R-8 molten alloy is
Thick-walled 1 obtained by crushing quenched ribbon pieces through an orifice and rolls in a continuous chamber in an r gas atmosphere
It refers to plate-shaped particles with a length of 0 to 30 μm in the longitudinal direction of several tens to hundreds of μm. These particles have extremely fine Fe-R-
It has a microstructure dotted with B ternary magnets and is magnetically isotropic. Such liquid quenched Fe
-R-8 is made into an amorphous state when obtaining a quenched ribbon piece, and then heated to a temperature higher than the crystallization temperature to form Fe-
It does not matter whether the production history is R in which the R-B ternary magnet phase is precipitated or the production history is in which the final microstructure is formed directly during quenching. Furthermore, liquid quenched Fe-
Si, A1. Mo, Co, Zr, Pd, Y.
Tbなど他の元素の混在があっても差し支えない。There is no problem even if other elements such as Tb are mixed.
特にFe−R−B系においてFeの一部をCoや重希土
類元素の1種または2種以上で置換することにより熱安
定性を改善することは本発明の対象である樹脂磁石構遺
体の耐環境性を確保するための有効な手段となる場合も
ある。In particular, in the Fe-R-B system, it is possible to improve the thermal stability of the resin magnet structure by replacing a part of Fe with one or more of Co and heavy rare earth elements. In some cases, it can be an effective means to ensure environmental friendliness.
次に本発明で言う結合剤とは、少なくとも分子鎖内にイ
ソシアナート基と反応し得る活性水素を有する重合体と
イソシアネート再生体とからなる。Next, the binder referred to in the present invention consists of a polymer having at least an active hydrogen in its molecular chain that can react with an isocyanate group and an isocyanate regenerant.
先ず分子中にイソシアナート基と反応し得る活性水素を
有する重合体において、活性水素を有する基として伶]
えば−OH,−COOH,−NHCO−。First, in a polymer having an active hydrogen that can react with an isocyanate group in the molecule, the active hydrogen-containing group is
For example -OH, -COOH, -NHCO-.
−NHCOO+、−NHCONH−、−NH2゜−8H
,及び活性メチレン等が挙げられ、これ等を分子鎖中に
有するものであれば如何なる重合体であってもよい。特
に活性水素を有する基としては−OH,−NHCO−を
有するものが好ましい。-NHCOO+, -NHCONH-, -NH2゜-8H
, active methylene, etc., and any polymer may be used as long as it has these in its molecular chain. In particular, as the group having active hydrogen, those having -OH and -NHCO- are preferable.
例えば分子鎖内に水酸基を有するポリエステル。For example, polyester that has hydroxyl groups in its molecular chain.
ポリエーテルエステル、ポリエーテル、ポリエステルイ
ミド、エポキシ樹脂などがあり、更にポリエステルアミ
ドイミド、ポリアミド、ポリアミドイミド、ポリウレタ
ン等のアミド基を有するものがある。分子鎖内にイソシ
アナートと反応し得る活性水素を有するポリエーテルと
しては、例えばビスフェノール類とエピクロルヒドリン
或は置換エピクロルヒドリンより得られるものがあり次
の一般式で示される。Examples include polyether ester, polyether, polyester imide, and epoxy resin, and there are also those having an amide group such as polyester amide imide, polyamide, polyamide imide, and polyurethane. Examples of polyethers having active hydrogens in their molecular chains that can react with isocyanates include those obtained from bisphenols and epichlorohydrin or substituted epichlorohydrin, and are represented by the following general formula.
ここでR1は−8−、−〇−、−8o−、−3O2−或
は−CH2−CH2CH2−、−C(CH3)2−など
−CpH2p (pは整数)で示されるものであり、R
2は−H或は−CH3,−C2H5等の−CqH2q
+ 1(qは整数)で示されるものである。これ等の中
で特に好ましいのはR1が(CH3)2−、R2が−H
であるビスフェノールAとエピクロルヒドリンの縮合に
より得られる重合体である。尚、これ等は共重合体であ
っても差し支えない。また、一方のイソシアナート再生
体とはイソシアナート化合物、例えばP−フェニレンジ
イソシアナート、m−フェニレンジイソシアナート、2
・4トリレンジイソシアナート、2・6トリレンジイソ
シアナート。Here, R1 is represented by -CpH2p (p is an integer) such as -8-, -〇-, -8o-, -3O2- or -CH2-CH2CH2-, -C(CH3)2-, and R
2 is -H or -CqH2q such as -CH3, -C2H5
+1 (q is an integer). Among these, R1 is (CH3)2- and R2 is -H
It is a polymer obtained by the condensation of bisphenol A and epichlorohydrin. Note that these may also be copolymers. In addition, one isocyanate regenerated product is an isocyanate compound such as P-phenylene diisocyanate, m-phenylene diisocyanate, 2
・4-tolylene diisocyanate, 2.6-tolylene diisocyanate.
P−P’ジフェニレンジイソシアナート、P−P’ジフ
ェニルメタンジイソシアナート、P−P’ジフェニルエ
ーテルジイソシアナート、P−P’ジフェニルスルホン
ジイソシアナート等のイソシアナート化合物に活性水素
化合物を付加し、イソシアナート化合物再生体としたも
のである。更には前記イソシアナート化合物とトリカル
ボン酸無水物、テトラカルボン酸無水物等と反応したア
ミド或はイミド環導入イソシアナート化合物のイソシア
ナート基に活性水素化合物を付加した再生体を言う。但
し、イソシアナート基に付加し再生体を形成する活性水
素化合物とはアミン、酸性亜硫酸塩、第3級アルコール
、ラクタム、エノール、オキシム、メルカプタン、α・
ピロリドン、フェノール、mクレゾール、キシレノール
等を言う。Adding an active hydrogen compound to an isocyanate compound such as P-P' diphenylene diisocyanate, P-P' diphenylmethane diisocyanate, P-P' diphenyl ether diisocyanate, P-P' diphenylsulfone diisocyanate, This is a regenerated isocyanate compound. Furthermore, it refers to a regenerated product obtained by adding an active hydrogen compound to the isocyanate group of an amide or imide ring-introduced isocyanate compound obtained by reacting the isocyanate compound with tricarboxylic anhydride, tetracarboxylic anhydride, or the like. However, active hydrogen compounds that add to isocyanate groups to form regenerated products include amines, acidic sulfites, tertiary alcohols, lactams, enols, oximes, mercaptans, α-
Pyrrolidone, phenol, m-cresol, xylenol, etc.
上記、分子内にイソシアナート基と反応し得る活性水素
を有する重合体とイソシアナート再生体との混合は(イ
ソシアナート基/活性水素)の比で0.6〜1.0が好
ましい。例えば0.6よりも低い場合は架橋密度が低下
して樹脂磁石の熱安定性が低下し易く1.0を越えると
比較的低分子量のイソシアナート再生体が未反応物質と
して結合剤中に残存することにより、例えば樹脂磁石の
熱安定性や寸法精度、耐環境性が低下する場合があるか
らである。The ratio of (isocyanate groups/active hydrogen) of the above-mentioned mixture of the polymer having active hydrogen capable of reacting with isocyanate groups in the molecule and the isocyanate regenerated product is preferably 0.6 to 1.0. For example, if it is lower than 0.6, the crosslinking density will decrease and the thermal stability of the resin magnet will tend to decrease, and if it exceeds 1.0, relatively low molecular weight isocyanate regenerants will remain in the binder as unreacted substances. This is because, for example, the thermal stability, dimensional accuracy, and environmental resistance of the resin magnet may deteriorate.
以下、本発明を実施例により具体的に説明する。Hereinafter, the present invention will be specifically explained with reference to Examples.
但し本発明は実施例によって限定されるものではない。However, the present invention is not limited to the examples.
支持部材1として無機質充填剤含有竜を異にする熱重合
性樹脂成形材料の成形品を用意した。但し支持部材1の
形状は第1図に示すような係合部1′を有するもので外
径5.5+n*、内径3 、0 m 。As the support member 1, molded articles made of thermopolymerizable resin molding materials containing different inorganic fillers were prepared. However, the shape of the support member 1 has an engaging portion 1' as shown in FIG. 1, and has an outer diameter of 5.5+n* and an inner diameter of 3.0 m.
長さ5.9m++である。尚、無機質充填剤は溶融石英
ガラスを使用し、その含有率を55.65,75゜80
体積%とし、一方の熱重合性樹脂には二次転移点150
〜160℃のエポキシ樹脂を使用した。The length is 5.9m++. In addition, fused silica glass is used as the inorganic filler, and its content is 55.65, 75°80.
% by volume, and one thermopolymerizable resin has a secondary transition point of 150.
~160°C epoxy resin was used.
磁石素材はNdo、13 (p60.93. Bo、0
7) 0.87で示す液体急冷Fe−B−R系粒子を用
い、結合剤には分子量約2.900のビスフェノールA
とエビクロリヒドリンとの縮合により得られるポリエー
テルとP−P’−ジフェニルメタンジイソシアナート再
生体(イソシアナート基/活性水素の比は1.0)を用
いた。また磁石素材と結合剤との複合物は磁石素材を9
7重量%とじた。The magnet material is Ndo, 13 (p60.93. Bo, 0
7) Liquid quenched Fe-B-R particles with a molecular weight of 0.87 were used, and bisphenol A with a molecular weight of about 2.900 was used as a binder.
A polyether obtained by the condensation of Ebichlorolihydrin and a regenerated P-P'-diphenylmethane diisocyanate (ratio of isocyanate groups/active hydrogen is 1.0) were used. In addition, the composite of magnet material and binder is
It was bound at 7% by weight.
上記無機質充填剤含有竜を異にする熱重合性樹脂成形材
料の成形品である支持部材を金型キャビティへ挿入し、
磁石素材と結合剤との複合物を4.5〜5.8g/c−
の密度になるまで圧縮した。Inserting the support member, which is a molded product of a thermopolymerizable resin molding material different from the above-mentioned inorganic filler-containing molding material, into the mold cavity,
4.5 to 5.8 g/c- of a composite of magnet material and binder
compressed to a density of
然るのち結合剤を重合硬化せしめて、第1図に示すよう
な樹脂磁石構造体を得た。但し、第2図に示す樹脂磁石
2′の外径は8mmである。このような樹脂磁石構造体
は磁石素材と結合剤との複合物を圧縮する際の機械的圧
力に抗し得ないと支持部材に環状に亀裂が発生する。し
かし無機質充填剤を65体積%以上としたものでは、そ
のようなことがなく、その支持部材の寸法変化も5μ−
以下であった。Thereafter, the binder was polymerized and cured to obtain a resin magnet structure as shown in FIG. However, the outer diameter of the resin magnet 2' shown in FIG. 2 is 8 mm. If such a resin magnet structure cannot withstand mechanical pressure when the composite of the magnet material and the binder is compressed, annular cracks will occur in the supporting member. However, when the inorganic filler is 65% by volume or more, this does not occur, and the dimensional change of the supporting member is only 5μ-
It was below.
次に、65体積%以上の無機質充填剤を含有する熱重合
性樹脂成形材料の成形品から成る支持部材を用いた樹脂
磁石構造体を、120℃に加熱せしめたのち、直ちに一
30℃の冷媒中に浸漬する熱衝撃を20回繰り返したが
、支持部材、並びに樹脂磁石などに亀裂の発生や寸法変
化が見られなかった。また、支持部材の内径基準によっ
て樹脂磁石外周の振れをみると10μm以内の高度な寸
法精度が維持・確保されていた。Next, a resin magnet structure using a support member made of a molded article of a thermopolymerizable resin molding material containing 65% by volume or more of an inorganic filler is heated to 120°C, and then immediately heated to -30°C. Although the thermal shock of immersion was repeated 20 times, no cracks or dimensional changes were observed in the support member, resin magnet, etc. Furthermore, when looking at the deflection of the outer periphery of the resin magnet based on the inner diameter of the support member, a high degree of dimensional accuracy within 10 μm was maintained and ensured.
尚、磁石素材と結合剤との複合物を40℃、−電相対湿
度中に任意時間放置したのち、支持部材と一体化した樹
脂磁石構造体を外周10極着磁し、その全磁束量を測定
した。第1表は複合物の貯蔵安定性を樹脂磁石構造体の
全磁束量で示す特性表である。In addition, after leaving the composite of the magnet material and the binder at 40°C and -electronic relative humidity for an arbitrary period of time, the resin magnet structure integrated with the supporting member was magnetized with 10 poles on the outer circumference, and the total magnetic flux was It was measured. Table 1 is a characteristic table showing the storage stability of the composite in terms of the total magnetic flux of the resin magnet structure.
第1表から明らかなように、本発明に係る磁石素材と結
合剤との複合物の貯蔵安定性は極めて優れたものである
から、樹脂磁石構造体の品質の維持・確保に有利である
ことは明白である。As is clear from Table 1, the storage stability of the composite of the magnet material and binder according to the present invention is extremely excellent, which is advantageous for maintaining and ensuring the quality of the resin magnet structure. is obvious.
次に、第1図に示すように樹脂磁石構造体を2個軸方向
に互いに対向させ、軸によりアッセンブルし、更に外周
10極着磁して永久磁石回転子とした。Next, as shown in FIG. 1, two resin magnet structures were axially opposed to each other, assembled by the shaft, and further magnetized with 10 outer circumferential poles to form a permanent magnet rotor.
一方で磁石素材とじSm((:00 、88 B 、
(: uO、I 01 。On the other hand, magnetic material binding Sm ((:00, 88 B,
(: uO, I 01 .
F eO,2+4.Z jo、ol])7で示される希
土類コバルトと12−ポリアミドとから得られたアキシ
ャル磁気異方化で9 M G Oeの射出成形タイプの
樹脂磁石材料を45,0OOATの反発起磁力下でラジ
アル磁気異方化磁石とした。FeO, 2+4. By axial magnetic anisotropy obtained from rare earth cobalt and 12-polyamide shown in [Z jo, ol]) 7, an injection molding type resin magnet material of 9 M G Oe is radially heated under a repulsive magnetomotive force of 45,0 OOAT. It was made into a magnetically anisotropic magnet.
また、上記希土類コバルトと液体エポキシ樹脂とで得ら
れるアキシャル磁気異方化で13MGOeの圧縮成形タ
イプの樹脂磁石材料を同一磁場条件下でラジアル磁気異
方化磁石とした。但し、いずれも外径8 +w 、内径
5.5m、高さ4−の寸法形状であり、AQ製の支持部
材に挿入し、接着することにより第4図に示すような永
久磁石回転子とした。但し図中8はラジアル磁気異方化
樹脂磁石、9は支持部材、10は接着材であり、外周1
0極着磁である。In addition, a 13MGOe compression molded resin magnet material was made into a radial magnetic anisotropy magnet under the same magnetic field conditions by axial magnetic anisotropy obtained from the rare earth cobalt and liquid epoxy resin. However, all of them have dimensions of an outer diameter of 8 +w, an inner diameter of 5.5 m, and a height of 4 -, and by inserting them into a support member made of AQ and gluing them, a permanent magnet rotor as shown in Fig. 4 was created. . However, in the figure, 8 is a radial magnetic anisotropic resin magnet, 9 is a support member, 10 is an adhesive material, and the outer periphery 1
Zero pole magnetization.
本発明例の樹脂磁石構造体から得られた永久磁石回転子
の軸基準における樹脂磁石外周撮れ2〜12μmに対し
、支持部材にラジアル磁気異方化した希土類コバルト樹
脂磁石を接着して得た永久磁石回転子の軸基準の樹脂磁
石外周振れは8〜23μ−と大きい。A permanent magnet obtained by adhering a rare earth cobalt resin magnet with radial magnetic anisotropy to a supporting member has a diameter of 2 to 12 μm on the outer circumference of the resin magnet based on the axis of the permanent magnet rotor obtained from the resin magnet structure of the example of the present invention. The outer peripheral runout of the resin magnet with respect to the axis of the magnet rotor is as large as 8 to 23 μ-.
次に上記永久磁石回転子を、第2図のようなPM型パル
スモータとしたときのパルスレートとプルアウト・トル
クとの関係を第5図に示す。但し図中PPSはPu1s
e Per 5econdを示し、本発明例1.,
2.3はそれぞれ樹脂磁石構造体の樹脂磁石部分の密度
が異なるものでその値を併記した。また、対象例1は本
発明例と同じ構成の樹脂磁石構造体から得た永久磁石回
転子であるが、樹脂磁石部分の密度が4.6g/cdの
場合のものである。また比較例1.2はそれぞれ射出成
形タイプ、圧縮成形タイプの希土類コバルト樹脂磁石の
ラジアル磁気異方佳品を使用したものである。図から明
らかなように本発明例1〜3は比較例2の圧縮成形タイ
プの希土類コバルト樹脂磁石による永久磁石回転子に比
較して高トルクを示す。また樹脂磁石の密度も約15〜
25%低いのでトルク・イナーシャ比が優れている。ま
た対象例1のように本発明に係る樹脂磁石構造体の樹脂
磁石部分の密度が5.0g/c+Jを下回ると高トルク
が得られなくなる欠点があるが、比較例1の射出成形タ
イプの希土類コバルト樹脂磁石による永久磁石回転子に
比べると高トルクであり、且つ経端であるから最大応答
周波数は高パルスレート域まで拡大する。Next, FIG. 5 shows the relationship between the pulse rate and pullout torque when the permanent magnet rotor is a PM type pulse motor as shown in FIG. 2. However, PPS in the figure is Pu1s
e Per 5econd, and Example 1 of the present invention. ,
2.3 is a resin magnet structure in which the density of the resin magnet portion is different, and the values are also listed. Further, Target Example 1 is a permanent magnet rotor obtained from a resin magnet structure having the same configuration as the example of the present invention, but the density of the resin magnet portion is 4.6 g/cd. Comparative Examples 1 and 2 used injection molded and compression molded rare earth cobalt resin magnets with excellent radial magnetic anisotropy. As is clear from the figure, Examples 1 to 3 of the present invention exhibit higher torque than the permanent magnet rotor of Comparative Example 2, which is made of compression-molded rare earth cobalt resin magnets. Also, the density of the resin magnet is about 15~
Since it is 25% lower, the torque/inertia ratio is excellent. Furthermore, as in Target Example 1, if the density of the resin magnet portion of the resin magnet structure according to the present invention is less than 5.0 g/c+J, high torque cannot be obtained. Compared to a permanent magnet rotor made of cobalt resin magnets, the torque is higher, and since the rotor is at the end, the maximum response frequency extends to a high pulse rate range.
発明の効果
以上のように本発明は小形化・高性能化が望まれる永久
磁石回転子に使用されるような樹脂磁石構造体にかかり
、当該樹脂磁石によって支配される特性を維持しつつ小
形・高性能化への対応力とアッセンブル性とを兼備した
ものであるから、例えばPM型パルスモータなどの分野
に対して有用なものである。Effects of the Invention As described above, the present invention applies to a resin magnet structure used in a permanent magnet rotor that is desired to be smaller and have higher performance, and can be made smaller and more efficient while maintaining the characteristics controlled by the resin magnet. Since it has both the ability to respond to high performance and the ease of assembling, it is useful in fields such as PM type pulse motors.
第1図は環状樹脂磁石構造体の斜視図、第2図は本発明
例に基づ<PM型パルスモータの斜視図、第3図は支持
部材の無機質充填剤含有竜と曲げ弾性率、線膨張率、熱
伝導率の関係を示す特性図、第4図は従来例のPM型パ
ルスモータの斜視図、第5図はパルスレート2とプルア
ウト−トルクの関係を示す特性図である。
1・・・・・・支持部材、1′・・・・・・係合部、2
・・・・・・樹脂磁石構造体、2′・・・・・・樹脂磁
石、3・・・・・・永久磁石回転子、4・・・・・・軸
。
代理人の氏名 弁理士 中尾敏男 ほか1名+−−−i
拵郭々
2−盾脂j石講赴体
第1図 2′−謝楠
3−一一永久層幅諌÷
1′
第9図
田
第3図
;
桐す舖鉱a藷Z)
第4図Fig. 1 is a perspective view of an annular resin magnet structure, Fig. 2 is a perspective view of a PM type pulse motor based on an example of the present invention, and Fig. 3 is a support member containing an inorganic filler, bending elastic modulus, and line FIG. 4 is a perspective view of a conventional PM type pulse motor, and FIG. 5 is a characteristic diagram showing the relationship between pulse rate 2 and pull-out torque. 1...Supporting member, 1'...Engaging portion, 2
... Resin magnet structure, 2' ... Resin magnet, 3 ... Permanent magnet rotor, 4 ... Shaft. Name of agent: Patent attorney Toshio Nakao and 1 other person +---i
Fig. 1 2' - Xie Kusu 3 - 11 permanent layer width ÷ 1'
Claims (6)
形した樹脂磁石構造体。(1) A resin magnet structure in which a composite of a magnet material and a binder is integrally molded into a supporting member.
る熱重合性樹脂成形材料の成形品である特許請求の範囲
第1項記載の樹脂磁石構造体。(2) The resin magnet structure according to claim 1, wherein the supporting member is a molded article of a thermopolymerizable resin molding material containing 65% by volume or more of an inorganic filler.
Ndまたは/およびPr)磁石素材である特許請求の範
囲第1項記載の樹脂磁石構造体。(3) The resin magnet structure according to claim 1, wherein the magnet material is a liquid-quenched Fe-BR-based magnet material (where R is Nd or/and Pr).
と反応し得る活性水素を有する重合体とイソシアナート
再生体である特許請求の範囲第1項記載の樹脂磁石構造
体。(4) The resin magnet structure according to claim 1, wherein the binder is a polymer having an active hydrogen capable of reacting with an isocyanate group in at least its molecular chain and an isocyanate regenerated product.
3以上の密度に圧縮してなる特許請求の範囲第1項記載
の樹脂磁石構造体。(5) Composite of magnet material and binder at 5.0g/cm^
The resin magnet structure according to claim 1, which is compressed to a density of 3 or more.
請求の範囲第1項記載の樹脂磁石構造体。(6) The resin magnet structure according to claim 1, wherein the supporting member has an engaging portion with the composite portion on the outer periphery.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26598786A JPS63119509A (en) | 1986-11-07 | 1986-11-07 | Resin magnet structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26598786A JPS63119509A (en) | 1986-11-07 | 1986-11-07 | Resin magnet structure |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63119509A true JPS63119509A (en) | 1988-05-24 |
Family
ID=17424791
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26598786A Pending JPS63119509A (en) | 1986-11-07 | 1986-11-07 | Resin magnet structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63119509A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000022442A1 (en) * | 1998-10-12 | 2000-04-20 | Robert Bosch Gmbh | Magnet wheel consisting of a hollow magnet body and a retaining element |
-
1986
- 1986-11-07 JP JP26598786A patent/JPS63119509A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000022442A1 (en) * | 1998-10-12 | 2000-04-20 | Robert Bosch Gmbh | Magnet wheel consisting of a hollow magnet body and a retaining element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR900003477B1 (en) | Resin-bonded magnet | |
US5500994A (en) | Method of manufacturing a rotor | |
EP0331055B1 (en) | Methods for producing a resinbonded magnet | |
KR101096958B1 (en) | Magnetic core and coil parts using the same | |
US3784945A (en) | Permanent magnet for suspension bearings | |
WO2011106756A2 (en) | Improved magnet rotor assembly with increased physical strength | |
JP4525678B2 (en) | Manufacturing method of self-assembled rare earth-iron bond magnet and motor using the same | |
KR910003782B1 (en) | Method of molded magnet | |
US9266311B2 (en) | Manufacturing method of laminated magnet film end product with self-bonding layer | |
WO2001017093A1 (en) | Permanent magnet field small dc motor | |
JPH03257807A (en) | Manufacture of resin magnet structure body | |
JPS63119509A (en) | Resin magnet structure | |
US6708388B1 (en) | Method of making a permanent magnet field-type compact DC motor | |
US5190684A (en) | Rare earth containing resin-bonded magnet and its production | |
JPH0642409B2 (en) | Resin magnet | |
WO2023053307A1 (en) | Rotor and electric motor | |
JP2615781B2 (en) | Method for manufacturing resin magnet structure | |
JP2568615B2 (en) | Method for manufacturing resin magnet structure | |
JP2839264B2 (en) | permanent magnet | |
JP4089220B2 (en) | Permanent magnet motor | |
JPH09131006A (en) | Magnet rotor for rotating electric machine | |
KR920002258B1 (en) | Resin-bonded magnet and making method thereof | |
JP3024436B2 (en) | Method for manufacturing resin magnet structure | |
JP2699438B2 (en) | Actuator | |
JP4742980B2 (en) | Sheet-like bonded magnet curling device |