JPS63116370A - Fuel cell - Google Patents
Fuel cellInfo
- Publication number
- JPS63116370A JPS63116370A JP61261101A JP26110186A JPS63116370A JP S63116370 A JPS63116370 A JP S63116370A JP 61261101 A JP61261101 A JP 61261101A JP 26110186 A JP26110186 A JP 26110186A JP S63116370 A JPS63116370 A JP S63116370A
- Authority
- JP
- Japan
- Prior art keywords
- matrix
- shims
- shim
- opposing
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000446 fuel Substances 0.000 title claims description 6
- 239000007789 gas Substances 0.000 claims abstract description 28
- 239000011159 matrix material Substances 0.000 claims abstract description 25
- 239000000112 cooling gas Substances 0.000 claims abstract description 21
- 238000000926 separation method Methods 0.000 claims description 14
- 238000007789 sealing Methods 0.000 claims description 9
- 239000012495 reaction gas Substances 0.000 claims description 4
- 239000003792 electrolyte Substances 0.000 abstract description 8
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 abstract description 2
- 239000000853 adhesive Substances 0.000 abstract description 2
- 230000001070 adhesive effect Effects 0.000 abstract description 2
- 229910052731 fluorine Inorganic materials 0.000 abstract description 2
- 239000011737 fluorine Substances 0.000 abstract description 2
- 238000003825 pressing Methods 0.000 abstract description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 3
- 238000002637 fluid replacement therapy Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 239000013590 bulk material Substances 0.000 description 2
- 239000002612 dispersion medium Substances 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0271—Sealing or supporting means around electrodes, matrices or membranes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
Description
【発明の詳細な説明】
@)産業上の利用分野
本発明はリン酸燃料電池C二係り、特(二積重セル間の
シール構成に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a phosphoric acid fuel cell C2, and in particular relates to a seal structure between two stacked cells.
(口1 従来の技術
燃料電池は基本的奮:正負各ガス極間(:電解質マトリ
ックスを介在させた単セルと1両面に夫々正、負各反応
ガス供給溝を形成した炭素質ガス分離板とを交互に多数
積重して電池スタックに構成される。冷却ガスが各反応
ガスと分離して供給される電池スタックでは、一方の対
向局面を冷却ガス流通面とし、他方の対向周面を各反応
ガスの流通面に分割している。この場合各ガス極C二供
給される各反応ガスが電池外部時に冷却ガス流通面に漏
れないようフッ素樹脂を主体とするシムを用いてシール
を行っている。(1) Conventional technology fuel cells basically consist of a single cell with an electrolyte matrix interposed between the positive and negative gas electrodes, and a carbonaceous gas separation plate with positive and negative reaction gas supply grooves formed on each side. A battery stack is constructed by stacking a large number of reactants alternately.In a battery stack in which cooling gas is supplied separately from each reaction gas, one opposing surface is used as the cooling gas circulation surface, and the other opposing circumferential surface is used as the cooling gas circulation surface. It is divided into reaction gas flow surfaces.In this case, each gas electrode C2 is sealed using a shim mainly made of fluororesin to prevent the reactant gases supplied from leaking into the cooling gas flow surface when outside the cell. There is.
従来第1図C二示すように撚料極(Nlと空気極[Pl
との間に介在するマ) IJフックス財)は、その両側
周辺部が隣接ガス分離板(1)(二夫々貼付けた対向シ
ム(2)(3)間で圧接され、前記シムと共C二冷却ガ
ス流通面C二対するシール部を構成している。Conventionally, as shown in FIG.
The peripheral parts of both sides of the gas separation plate (1) (IJ Fuchs Co., Ltd.) interposed between It constitutes a sealing portion for cooling gas circulation surface C2.
従って電池スタック締付時スタック周面に露出するマト
リックス(Ml中のリン酸電解液が外部へ流出してスタ
ック周面【二付肴し、特(二冷却ガス流通面より流出し
た電解液は冷却ガス通路にも付着して電池作動時冷却ガ
ス循環経路のパイプを腐食するという問題があり、又マ
トリックス(財)はガス分離板(1)よりや−大きい寸
法であるため後加工としてはみ出た部分をカッター等で
切断する工程が必要となり組立上のネックとなっていた
。更(=電池作動時冷却ガス流通面に対するシール部か
らのガスリークや補液時の液もれを生ずるなどの問題が
あった。Therefore, when the battery stack is tightened, the phosphoric acid electrolyte in the matrix (Ml) exposed on the stack circumferential surface flows out to the stack circumferential surface. There is a problem that it also adheres to the gas passages and corrodes the pipes of the cooling gas circulation path during battery operation.Also, since the matrix is slightly larger than the gas separation plate (1), the protruding part was removed during post-processing. This required the process of cutting the battery with a cutter, etc., which caused a bottleneck in assembly.Furthermore, there were problems such as gas leakage from the seal against the cooling gas distribution surface during battery operation and fluid leakage during fluid replacement. .
(ハ)発明が解決しようとする問題点
この発明は冷却ガス流通面に対するシール性を改善して
、正負各反応ガスの外部への漏出及び冷却ガスの内部へ
の侵入を防止すると共に補液時の液漏れを抑制し、更C
;電池締付後のマトリックスはみ出し部分の切断工程を
半成して前記問題点を解消するものである。(c) Problems to be Solved by the Invention This invention improves the sealing performance for the cooling gas flow surface, prevents positive and negative reaction gases from leaking to the outside and cooling gas from entering the interior, and also prevents the cooling gas from entering the interior. Suppresses liquid leakage and improves C
The above-mentioned problem is solved by half-doing the process of cutting the protruding portion of the matrix after the battery is tightened.
に)問題点を解決するための手段
この発明は電池スタックを構成するガス分離板の対向面
C二取付けた正負各ガス極を夫fふちどるよう、前記各
ガス分離板のシール面に貼付けた対向シムと、 +iq
記正負正負ガス極間圧してその両側端が前記シム上(=
延長するマトリックスと、該マトリックスの前記延長部
分を削除して削除部に配置した帯状の補助シムとを備え
、前記補助シムを前記マトリックスと共電−前記対向シ
ム間で圧接して前記スタックの冷却ガス流通面に対する
シール部を構成したものである。B) Means for Solving the Problems This invention is characterized in that the positive and negative gas electrodes attached to the opposite surfaces C2 of the gas separation plates constituting the battery stack are pasted on the sealing surface of each gas separation plate so as to cross the two sides. Opposing sim and +iq
The pressure between the positive and negative gas electrodes is set so that both ends thereof are on the shim (=
The method includes a matrix that extends, and a belt-shaped auxiliary shim arranged in the deleted portion by removing the extended portion of the matrix, and cooling the stack by pressing the auxiliary shim against the matrix between the common electric current and the opposing shim. This constitutes a seal portion for the gas flow surface.
ホ)作 用
この発明では電池スタックの冷却ガス流通面にはマトリ
ックスが詔出せず、補助シムで置換されているので、ス
タック締付時電解液の外部への漏出がなくしかも締付後
マトリックスのはみ出し部のカット工程が省略されると
共にこの補助シムが隣接ガス分離板の対向シム間で締付
けられてシール性が向上し、電池作動時のガスリーグや
補液時の液漏れが防止されて電池の信頼性、安全性を向
上することができる。E) Function In this invention, the matrix does not eject from the cooling gas flow surface of the battery stack, but is replaced by an auxiliary shim, so that there is no leakage of electrolyte to the outside when the stack is tightened, and the matrix does not leak out after tightening. The process of cutting the protruding parts is omitted, and this auxiliary shim is tightened between the opposing shims of the adjacent gas separation plates to improve sealing performance, preventing gas leakage during battery operation and liquid leakage during fluid replacement, and improving battery performance. Reliability and safety can be improved.
(へ)実施例
本発明の実施例を図【二ついて説明するが、該当個所は
第1図と同一記号を付した。電池スタック(Slはセル
とガス分離板(1)とを交互(二多数積重して構成され
るが、第2図は第1図と同様簡単化のため車セルの場合
C二ついて示した。(f) Embodiment An embodiment of the present invention will be explained using two figures, but the same symbols as in FIG. 1 are given to the relevant parts. A battery stack (Sl) is constructed by stacking cells and gas separation plates (1) alternately (two in number), but in the case of a car cell, two C are shown in Fig. 2 for simplification as in Fig. 1. Ta.
隣接ガス分離板(1)の対向面C二は、燃料ガス供給溝
(4)及び空気供給溝(5)を夫々覆うよう燃料極[N
l及び空気極[Plが取付けられ、前記各反応ガスの出
入口部を除きこれら各極(ト)l(Plを夫々取囲むよ
う各分離板(1)のシール面に一対のL字状シムf21
31が貼付けられている。The opposing surface C2 of the adjacent gas separation plate (1) is provided with a fuel electrode [N
A pair of L-shaped shims f21 are attached to the sealing surface of each separation plate (1) so as to surround each of these electrodes (g)l (Pl) except for the inlet and outlet portions of each of the reaction gases.
31 is attached.
対向極間fP1間に分圧する電解質マ) IJフックス
補はスタックの冷却ガス流通面に対応する両側端が夫々
削除されこの削除部分を補助シム(6)で置換している
。この補助シム(6)はその厚みがマトリックス(M+
(厚み0.2〜0.′5震)よりや\厚<0.3〜0.
4誠。In the IJ Fuchs supplement, both ends of the stack corresponding to the cooling gas flow surface are removed, and these removed portions are replaced with auxiliary shims (6). The thickness of this auxiliary shim (6) is matrix (M+
(thickness 0.2-0.'5 earthquake) or thickness <0.3-0.
4 Makoto.
巾が約2鴎であり詳3図【二示すよう一方のシム(2)
上(;フッ素系接着剤で予め貼付けられている。The width is about 2 shims, and the details are as shown in Figure 2. One shim (2)
Top (; pasted in advance with fluorine adhesive.
電池スタック+81の締付時この帯状の補助シム(6)
はマトリックス■)と共に隣接ガス分離板(1)に貼付
けた対向シム(21(31間で圧着され、これら対向シ
ムと補助シム(二よりスタックの冷却ガス流通面(二対
するシール部を構成する。When tightening the battery stack +81, use this belt-shaped auxiliary shim (6)
is crimped between the opposing shims (21 (31) attached to the adjacent gas separation plate (1) together with the matrix (2), and these opposing shims and the auxiliary shims (two-stranded cooling gas flow surface of the stack) constitute a sealing portion for the two.
角l己マトリックスMがカーボンマトリックスの場合絶
縁性のSiOマトリックスが予め空気極filの表面に
塗着されている。When the square matrix M is a carbon matrix, an insulating SiO matrix is applied in advance to the surface of the air electrode film.
前記補助シム(6)はシムf21[31と同様弾力性と
柔軟性を持つ材質であることが必要であり、その作成例
(二ついて説明する。The auxiliary shim (6) needs to be made of a material with elasticity and flexibility like the shim f21 [31], and an example of its preparation (two will be explained below).
作成例1
フッ素樹脂粉末(ニバルク材粉末を混合し、これを分散
媒中で混練してフッ素樹脂をフィブリル化し、シート状
とした後バルク材及び分散媒を除去して熱処理を施す。Creation Example 1 Fluororesin powder (Nibulk material powder is mixed and kneaded in a dispersion medium to fibrillate the fluororesin, and after forming into a sheet, the bulk material and dispersion medium are removed and heat treatment is performed.
このシートはバルク材の混入mを調節することにより所
望の弾力性と柔軟性を付与することができる。This sheet can be given desired elasticity and flexibility by adjusting the amount of bulk material mixed in (m).
作成例2
フッ素樹脂粉末を円柱状C二成型し、焼結温度に達する
まで序々C;熱処理を施す。ついでこの円柱体をゆっく
り回転しつつ円周面に刃を当てがって厚み約75μのシ
ート(:切削し、このシート番−一方向の伸長力を加え
て微視的な切目孔が全面的(二形成された厚み約25μ
の多孔膜を作成し、この多孔膜を所定枚数積重後ロール
掛け(二ついで熱処理を行うこと【二より1作成例1と
同様に柔軟性と弾力性を有するシートが得られる。Preparation Example 2 Fluororesin powder is molded into a cylindrical shape C2, and heat treatment is sequentially performed until the sintering temperature is reached. Next, while slowly rotating this cylindrical body, a blade is applied to the circumferential surface to cut a sheet with a thickness of approximately 75μ, and a stretching force in one direction is applied to the sheet to form microscopic perforations on the entire surface. (Two formed thickness approximately 25μ
After stacking a predetermined number of porous membranes, a predetermined number of porous membranes are stacked and then rolled (heat-treated in two) to obtain a sheet having flexibility and elasticity similar to Example 1.
いづれの場合も完成したシートラ所定形状【;切断して
シムとするが、シムf21(31の厚みは約0.7〜0
、8 M 、補助シム(6)のそれは前述の如く約0.
′5〜Q、4調である。In either case, the completed sheet la is cut into a predetermined shape [; The thickness of the shim f21 (31 is approximately 0.7 to 0.0
, 8 M, and that of the auxiliary shim (6) is about 0.
'5-Q, in the 4th key.
尚、マトリックス(財)の削除は、ガス分離板(1)の
シール面に形成した電解液溜(7)(二まで及ばない程
度とし、補液時この液溜(7)を介してマトリックス(
財)への電解液含浸が行われるようにする必要がある。The removal of the matrix should not extend to the level of the electrolyte reservoir (7) (2) formed on the sealing surface of the gas separation plate (1), and the matrix (
It is necessary to ensure that the electrolyte is impregnated into the electrolyte.
(ト1 発明の効果
上述の如く本発明によれば、スタックの冷却ガヘ漏出す
ることがないと共にはみ出し部分のカット工程が不用と
なる。更にマトリックスの両側削除部を補助シムで置換
してこの補助シムが対向シム間で圧接されているので、
冷却ガス流通面(一対するシール性が著しく改善され、
を池作動時のガスリーグや補液時の液漏れが防止されて
電池の信頼性、安全性を向上することができる。(G1) Effects of the Invention As described above, according to the present invention, there is no leakage into the cooling gas of the stack and there is no need to cut the protruding parts.Furthermore, the removed parts on both sides of the matrix are replaced with auxiliary shims. Since the auxiliary shim is pressed between the opposing shims,
Cooling gas flow surface (sealing performance for the pair has been significantly improved,
This prevents fluid leakage during gas league and fluid replacement during pond operation, improving battery reliability and safety.
第1図は従来電池の要部断面図、第2図は本発明電池の
要部断面図、第3図は同上電池の要部平面図である。
1・・・ガス分M!、2,3・・・シム、6川補助ンム
、N・・・撚料栂%P・・・空気tM、M・・・マトリ
ックス、4・・・燃料ガス供給溝、5・・・空気供給溝
。FIG. 1 is a sectional view of a main part of a conventional battery, FIG. 2 is a sectional view of a main part of a battery of the present invention, and FIG. 3 is a plan view of a main part of the same battery. 1...Gas M! , 2, 3...Shim, 6 river auxiliary units, N...Twisting material %P...Air tM, M...Matrix, 4...Fuel gas supply groove, 5...Air supply groove.
Claims (1)
る電池スタックの一対向周面を冷却ガス流通面とし、他
対向周面を各反応ガスの流通面に分割した燃料電池にお
いて、隣接する前記ガス分離板の対向面に取付けた正負
各ガス極を夫々ふちどるよう前記各ガス分離板のシール
面に貼付けた対向シムと、前記正負ガス極間に介在し前
記シム上に延長するマトリックスと、前記マトリックス
の両側端を削除して前記削除部分に配置した帯状の補助
シムとを備え、前記補助シムを前記マトリックスと共に
前記対向シム間で圧接して前記冷却ガス流通面に対する
シール部を構成したことを特徴とする燃料電池。(1) In a fuel cell in which one opposing circumferential surface of a battery stack formed by stacking a large number of unit cells and gas separation plates alternately is used as a cooling gas flow surface, and the other opposing circumferential surface is divided into flow surfaces for each reaction gas. , an opposing shim attached to the sealing surface of each gas separation plate so as to frame each positive and negative gas electrode attached to the opposing surface of the adjacent gas separation plate, and an opposing shim interposed between the positive and negative gas electrodes and extending onto the shim. and a strip-shaped auxiliary shim disposed in the deleted portion by removing both ends of the matrix, the auxiliary shim is pressed together with the matrix between the opposing shims to seal the cooling gas flow surface. A fuel cell characterized by comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61261101A JPS63116370A (en) | 1986-10-31 | 1986-10-31 | Fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61261101A JPS63116370A (en) | 1986-10-31 | 1986-10-31 | Fuel cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63116370A true JPS63116370A (en) | 1988-05-20 |
Family
ID=17357092
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61261101A Pending JPS63116370A (en) | 1986-10-31 | 1986-10-31 | Fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63116370A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017045732A (en) * | 2014-07-09 | 2017-03-02 | ジーエム・グローバル・テクノロジー・オペレーションズ・エルエルシー | Fuel cell stack |
-
1986
- 1986-10-31 JP JP61261101A patent/JPS63116370A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017045732A (en) * | 2014-07-09 | 2017-03-02 | ジーエム・グローバル・テクノロジー・オペレーションズ・エルエルシー | Fuel cell stack |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU675415B2 (en) | Fuel cell sealing gasket apparatus and method | |
JP3245161B2 (en) | Membrane electrode assembly using gasket for electrochemical fuel cell | |
US6764787B2 (en) | One piece sleeve gas manifold for cell stack assemblies such as fuel cells | |
EP1152477A2 (en) | Polymeric membrane fuel cell | |
EP0604683B1 (en) | Fuel cell membrane electrode and seal assembly | |
US20190252693A1 (en) | Fuel cell microseal and a method of manufacture thereof | |
US6638655B2 (en) | Fuel cell system | |
US8722271B2 (en) | Flow field plate with relief ducts for fuel cell stack | |
JPH0349184B2 (en) | ||
JPS63116370A (en) | Fuel cell | |
US7670709B2 (en) | Fuel cell seal with integral bridge | |
JPS58145066A (en) | Fuel cell | |
JPH09167623A (en) | Solid polymer electrolyte fuel cell | |
JP3105660B2 (en) | Solid polymer electrolyte fuel cell stack | |
JPS5935368A (en) | Layer-built fuel cell | |
JPH0822837A (en) | Solid polymer electrolyte fuel cell | |
JPS6388759A (en) | Fuel cell | |
JPS63116369A (en) | Fuel cell | |
JPH0758620B2 (en) | Fuel cell | |
JPS5933763A (en) | Molten salt fuel cell | |
JPH0349183B2 (en) | ||
JPH07263004A (en) | Fuel cell | |
JPH044565A (en) | Fuel cell gas seal structure | |
JPH02126562A (en) | Fuel cell gas seal structure | |
JPS62136776A (en) | Fuel cell gas seal structure |