JPS63115111A - Light wavelength demultiplexing detector - Google Patents
Light wavelength demultiplexing detectorInfo
- Publication number
- JPS63115111A JPS63115111A JP26129086A JP26129086A JPS63115111A JP S63115111 A JPS63115111 A JP S63115111A JP 26129086 A JP26129086 A JP 26129086A JP 26129086 A JP26129086 A JP 26129086A JP S63115111 A JPS63115111 A JP S63115111A
- Authority
- JP
- Japan
- Prior art keywords
- wavelength
- light
- fresnel lens
- photodetector
- wavelength demultiplexing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 27
- 230000035945 sensitivity Effects 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 2
- 239000000470 constituent Substances 0.000 claims 1
- 239000013307 optical fiber Substances 0.000 abstract description 5
- 230000004075 alteration Effects 0.000 abstract description 4
- 239000000284 extract Substances 0.000 abstract 1
- 238000004891 communication Methods 0.000 description 6
- 238000001514 detection method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 2
- 238000000609 electron-beam lithography Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 241000232219 Platanista Species 0.000 description 1
- 238000011888 autopsy Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4246—Bidirectionally operating package structures
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
- G02B6/293—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
- G02B6/29304—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
- G02B6/29305—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide
- G02B6/29311—Diffractive element operating in transmission
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
- G02B6/293—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
- G02B6/29379—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
- G02B6/2938—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4204—Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Diffracting Gratings Or Hologram Optical Elements (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、光多重化通信の受信端末に用いる光波長分波
検出器に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an optical wavelength demultiplexing detector used in a receiving terminal of optical multiplex communication.
従来の技術
光ファイバーを用いた光多重化技術は、通信の大容量化
だけでなく、通信システムの柔軟性・自由度を高める技
術であると考えられ、今後の光通信システムの発展に重
要な役割を果たすものである。Conventional technology Optical multiplexing technology using optical fibers is considered to be a technology that not only increases communication capacity but also increases the flexibility and freedom of communication systems, and will play an important role in the future development of optical communication systems. It fulfills the following.
光多重化通信のだめの受信端末において、光波長分波検
出器が必要である。グレーティングを用いた従来の光波
長分波検出器の基本構造を第4図に示す。(青白、箕輪
、小林、” 0.8pm%%’WDM伝送用グレーティ
ング分波器の検討″、電子通信学会・光量子エレクトロ
ニクス研究会資料0QE−78−104(1978)、
)同図において、光入力部である光ファイバー2から入
力された入射光(波長λ1.λ2)はコリメーシ目ンレ
ンズ9により平行光となシ、グレーティング10で波長
に応じた角度分散を受ける。その後、ミラー12を経て
フォーカシングレンズ11で収束された分波光へ。Optical wavelength demultiplexing detectors are required at receiving terminals for optical multiplexing communications. The basic structure of a conventional optical wavelength demultiplexing detector using a grating is shown in FIG. (Aohaku, Minowa, Kobayashi, “Study of grating demultiplexer for 0.8pm%% WDM transmission”, Institute of Electronics and Communication Engineers/Photon Quantum Electronics Research Group Material 0QE-78-104 (1978),
) In the figure, incident light (wavelengths λ1, λ2) inputted from an optical fiber 2 serving as a light input section is converted into parallel light by a collimating lens 9, and subjected to angular dispersion according to the wavelength by a grating 10. After that, it passes through the mirror 12 and becomes the demultiplexed light that is converged by the focusing lens 11.
62 となり、それぞれ光検出器31,32に導かれ、
波長λ1.λ2の入射光がそれぞれ検出される。62 and are guided to photodetectors 31 and 32, respectively,
Wavelength λ1. Each of the incident lights of λ2 is detected.
発明が解決しようとする問題点 又位置合わせもめんどうであるという問題点があった。The problem that the invention aims to solve Another problem was that alignment was troublesome.
本発明はかかる点に鑑みてなされたもので、構成部品数
が少なく、小形、軽食で信頼性に優れた2波長光分波検
出器を提供するものである。The present invention has been made in view of the above problems, and it is an object of the present invention to provide a two-wavelength optical demultiplexing detector that has a small number of component parts, is compact, lightweight, and has excellent reliability.
問題点を解決するための手段
本発明は上記問題点を解決するため、楕円形フレネルレ
ンズを用いるものである。Means for Solving the Problems In order to solve the above problems, the present invention uses an elliptical Fresnel lens.
作 用
本発明は、楕円形フレネルレンズ1枚で、グレーティン
グとレンズの構能を果たし、さらにフレネルレンズであ
ることよシ小型軽量な光波長分波検出器が可能になる。Effect of the Invention According to the present invention, a single elliptical Fresnel lens functions as a grating and a lens, and furthermore, it becomes possible to create an optical wavelength demultiplexing detector that is smaller and lighter than a Fresnel lens.
実施例
第1図(1)、 (1=)は本発明の1実施例の光波長
分波検出器の構成を示す平面図である。同図(−)は楕
円形フレネルレンズ1を示すもので、同図Φ)は光検出
器3を示すものである。X、Y座標を図のようにとる。Embodiment FIG. 1 (1) and (1=) are plan views showing the configuration of an optical wavelength demultiplexing detector according to an embodiment of the present invention. The figure (-) shows the elliptical Fresnel lens 1, and the figure Φ) shows the photodetector 3. Take the X and Y coordinates as shown.
第2図(−) 、 (b)は本発明の1実施例の光波長
分波検出器の断面図である。同図(、)はY=Oでの断
面図、同図(b)はX=Oでの断面図である。ススに示
したように2軸をとる。第3図は、本発明の1実施例の
光波長分波検出器の動作を説明するだめの光検出器3上
に集光される光スポット7の形状と、信号の検出の様子
を示すものである。第1図〜第3図を用いて、本発明の
1実施例の光波長分波検出器について説明する。光入力
部として用いた光ファイバー2から入力された2波長の
入射光4(波長λ1.λ22例えば、λ1:0.83μ
m。FIGS. 2(-) and 2(b) are cross-sectional views of an optical wavelength demultiplexing detector according to an embodiment of the present invention. The same figure (,) is a cross-sectional view at Y=O, and the same figure (b) is a cross-sectional view at X=O. Two axes are taken as shown in Susu. FIG. 3 shows the shape of the light spot 7 focused on the photodetector 3 and the state of signal detection to explain the operation of the optical wavelength demultiplexing detector according to one embodiment of the present invention. It is. An optical wavelength demultiplexing detector according to an embodiment of the present invention will be described with reference to FIGS. 1 to 3. Two wavelengths of incident light 4 (wavelengths λ1, λ22, e.g., λ1: 0.83 μ
m.
λ2=0.78μm )は、楕円形フレネルレンズ1に
入射し、光検出器3上に分波光51と5゜のように色収
差を生じて集光された。光ファイバー2.楕円形フレネ
ルレンズ1.光検出器3の位置関係を適当にすることに
よりレンズの色収差のため集光された光スポット7は、
波長が長いλ1 の方71はY軸方向に細長く、波長が
短いλ2の方72はX軸方向に細長くなった。光検出器
3は、光スポット7の交わった部分をとり囲むように3
l−C34マで4ケ配置した。このとき、光検出器31
と33には波長λ1の光だけ、光検出器32と34には
波長λ2の光だけが集光されて入射することになり、加
算増幅器8で光検出器3の出力を図のように2組にして
とり出すことにより、光波長を分波して検出を行うこと
ができた。楕円形フレネルレンズ1は、周期が外側にい
くほど短くなる同心楕円のグレーティングから構成され
たものであり、X軸方向、Y軸方向にそれぞれ個々の焦
点距離が存在する非点収差レンズである。楕円形フレネ
ルレンズ1の色収差は大きく、焦点距離と波長の積が一
定の関係にある。本実施例では、このレンズ1は電子ビ
ームリソグラフィにより、ガラス基板e上に0MS電子
ビームレジストで例えば、X軸方向サイズ2+m、Y軸
方向サイズ1.9瓢のものを形成した。断面を最適膜厚
で鋸歯形状にすることにより単波長では集光効率をほぼ
1oo%にまで向上させることができる。本実施例では
、入射光4の・ 波長がλ1=0.83μm、λ2=
0.78μmのように2波長あるため、フレネルレンズ
1の最大膜厚を2波長の平均値λ工=(λ1+λ2)/
2:0.805μmに合わせて設定し、0MSレジスト
の屈折率n=1.6を考えて最大膜厚(グレーティング
の溝の最大深す)dをλm/(n−1)=1.34μm
とした。このときλ1゜λ2の波長のどちらに対しても
90チ以上の高効率を達成できた。このように、楕円形
フレネルレンズ1の最大膜厚dを、使用波長はλ1とλ
2の平均値と考えて、レンズ1の構成材料の屈折率nに
対して、λ、n/(nl)のほぼ0.8倍から1.2倍
の間になるように設定すると、どちらの波長の光に対し
ても効率がよかった。又、用いる光検出器3の感度が、
波長によって違う場合、楕円形フレネルレンズ1の最大
膜厚dをλm/(n−1)から変化させると、光検出器
の感度分散を補正することが可能であった。例えば、入
射光40波長λ、=0.83μm、λ2=0.6328
μmで光検出器3にS、7.トダイオードを用いた場合
、Si フォトダイオードの感度はλ1=0.83μ
mの方がよいため、楕円形フレネルレンズ1の最大膜厚
dをλm/(n−1)=1.22μm からλ2/(n
−1)=1.06μmの間にとればある値で感度補正が
可能であった。逆の場合も同様に効果があった。又、楕
円形フレネルレンズ1は電子ビームリソグラフィにより
作製したものをマスターにしてレプリカを形成し、PM
MAや紫外線硬化樹脂等の合成樹脂を用いて複製法で作
製すると大量生産を容易に実現することができる。λ2=0.78 μm) enters the elliptical Fresnel lens 1 and is focused on the photodetector 3 with a chromatic aberration of 5° with respect to the demultiplexed light 51. Optical fiber 2. Oval Fresnel lens 1. By appropriately arranging the positional relationship of the photodetector 3, the light spot 7 is focused due to the chromatic aberration of the lens.
The λ1 side 71 having a longer wavelength is elongated in the Y-axis direction, and the λ2 side 72 having a shorter wavelength is elongated in the X-axis direction. The photodetector 3 is arranged so as to surround the intersection of the light spots 7.
Four pieces were arranged using l-C34 ma. At this time, the photodetector 31
Only the light with wavelength λ1 is focused on and 33, and only the light with wavelength λ2 is focused on the photodetectors 32 and 34. By extracting them in pairs, it was possible to separate the wavelengths of light and perform detection. The elliptical Fresnel lens 1 is composed of a concentric elliptical grating whose period becomes shorter toward the outside, and is an astigmatic lens having individual focal lengths in the X-axis direction and the Y-axis direction. The elliptical Fresnel lens 1 has a large chromatic aberration, and the product of focal length and wavelength has a constant relationship. In this example, the lens 1 is formed using an 0MS electron beam resist on a glass substrate e by electron beam lithography, and has a size of, for example, 2+m in the X-axis direction and 1.9m in the Y-axis direction. By making the cross section into a sawtooth shape with an optimum film thickness, the light collection efficiency can be improved to approximately 10% at a single wavelength. In this example, the wavelength of the incident light 4 is λ1=0.83 μm, λ2=
Since there are two wavelengths such as 0.78 μm, the maximum film thickness of Fresnel lens 1 is the average value of the two wavelengths λ = (λ1 + λ2) /
2: Set according to 0.805 μm, and considering the refractive index n = 1.6 of the 0MS resist, the maximum film thickness (maximum depth of the grating groove) d is λm/(n-1) = 1.34 μm.
And so. At this time, a high efficiency of 90 or more was achieved for both wavelengths λ1 and λ2. In this way, the maximum film thickness d of the elliptical Fresnel lens 1 is determined by the wavelengths λ1 and λ
Considering that the average value of Efficiency was also high for wavelengths of light. Moreover, the sensitivity of the photodetector 3 used is
When the wavelength differs, it was possible to correct the sensitivity dispersion of the photodetector by changing the maximum film thickness d of the elliptical Fresnel lens 1 from λm/(n-1). For example, 40 wavelengths of incident light λ, = 0.83 μm, λ2 = 0.6328
S on the photodetector 3 in μm, 7. When using a Si photodiode, the sensitivity of the Si photodiode is λ1=0.83μ
Since m is better, the maximum film thickness d of the elliptical Fresnel lens 1 is changed from λm/(n-1)=1.22μm to λ2/(n
-1) = 1.06 μm, it was possible to correct the sensitivity with a certain value. The same effect was obtained in the opposite case. In addition, the elliptical Fresnel lens 1 is manufactured by electron beam lithography, and a replica is formed using it as a master.
Mass production can be easily achieved by manufacturing by a replication method using synthetic resin such as MA or ultraviolet curing resin.
本実施例は、光検出器3として31〜34″&で2組の
4ケ配置したが、これは3 又は33と、32又は34
のそれぞれ1つづつでもよいがこの場合感度が約半分に
なる。又、2波長のうち1波長のみ分波検出する場合は
、光検出器3は1組あればよい。又、本実施例では、光
スポット7の交わった部分には光検出器3を配置しなか
っだが、このことにより、クロストークの小さい良好な
分波検出が可能であった。In this embodiment, two sets of four photodetectors 3, 31 to 34''&, were arranged;
It is also possible to use one each, but in this case the sensitivity will be approximately halved. Further, when performing demultiplexing detection of only one wavelength out of two wavelengths, only one set of photodetectors 3 is sufficient. Furthermore, in this embodiment, the photodetector 3 was not placed at the intersection of the light spots 7, but this enabled good demultiplexing detection with low crosstalk.
発明の効果
以上のように本発明によれば、薄形、軽量の楕円形フレ
ネルレンズと光検出器だけで光波長分波検出が可能にな
シ、従って安価で位置合わせも容易になり、信頼性に優
れたコンパクトな光波長分波検出器が構成可能であると
いう効果を有する。Effects of the Invention As described above, according to the present invention, optical wavelength division detection is possible using only a thin and lightweight elliptical Fresnel lens and a photodetector, and therefore, it is inexpensive, easy to align, and reliable. This has the advantage that a compact optical wavelength demultiplexing detector with excellent performance can be constructed.
第1図(a)、(n)はそれぞれ本発明の実施例におけ
る光波長分波検出器の平面図および断面図、第2図(a
) 、 (b)は同光波長分波検出器の構成図、第3図
は本実施例の光検出を説明するための光検出器上に集光
された光スポットの形状と光検出器の出力の様子を示す
模式図、第4図は従来例の光波長分波検出器の構成図で
ある。
1・・・・・・楕円形7レネルレンズ、2・・・・・・
光ファイバー、3・・・・・・光検出器、4・・・・・
・入射光。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図
ず−剖1巴つ71/半ルυンズ
y G−一傷杖
Y3°−°7れ暴
3−−一先撲t、を
呼−一人封尤
5−衾液丸
Y δ−jllW、;曽幅春FIGS. 1(a) and (n) are a plan view and a sectional view of an optical wavelength demultiplexing detector in an embodiment of the present invention, and FIG. 2(a) is a
), (b) is a configuration diagram of the optical wavelength demultiplexing detector, and FIG. FIG. 4 is a schematic diagram showing the state of output, and is a configuration diagram of a conventional optical wavelength demultiplexing detector. 1... elliptical 7 renel lens, 2...
Optical fiber, 3...Photodetector, 4...
・Incoming light. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Zuzu - autopsy 1 tomotsu 71/half lunz y G - one wound cane Y 3° - ° 7 assault 3 - first attack t, call - one person seal 5 - 衾水丸 Y δ - jllW, ; Soha Spring
Claims (1)
有し、前記光入力部と前記光検出器の間に前記楕円形フ
レネルレンズを設けたことを特徴とする光波長分波検出
器。 (2)楕四形フレネルレンズを構成するグレーティング
の断面は鋸歯形状であることを特徴とする特許請求の範
囲第1項記載の光波長分波検出器。 (3)光検出器は光軸の中央部を除く周辺に配置したこ
とを特徴とする特許請求の範囲第1項記載の光波長分波
検出器。 (4)光検出器は少なくとも4ケ設けたことを特徴とす
る特許請求の範囲第3項記載の光波長分波検出器。 (5)楕円形フレネルレンズの最大膜厚(d)は、使用
波長(λ_1、λ_2)、前記楕円形フレネルレンズの
構成材料の屈折率(n)に対して 0.8・[λ_1+λ_2/2(n−1)]≦d≦1.
2・[λ_1+λ_2/2(n−1]を満たすことを特
徴とする特許請求の範囲第1項記載の光波長分波検出器
。 (5)楕円形フレネルレンズの最大膜厚(d)は、使用
波長(λ_1、λ_2;λ_1>λ_2)、前記楕円形
フレネルレンズの構成材料の屈折率(n)、前記使用波
長(λ_1、λ_2)に対する光検出器の感度(S(λ
_1)、S(λ_2))に対して S(λ_1)>S(λ_2)のとき [λ_1+λ_2/2(n−1)]≧d≧[λ_2/(
n−1)]S(λ_1)≦S(λ_2)のとき [λ_1/(n−1)]≧d≧[λ_1+λ_2/2(
n−1)]を満たすことを特徴とする特許請求の範囲第
1項に記載の光波長分波検出器。[Scope of Claims] (1) It has a light input section, an elliptical Fresnel lens, and a photodetector, and the elliptical Fresnel lens is provided between the light input section and the photodetector. Optical wavelength demultiplexing detector. (2) The optical wavelength demultiplexing detector according to claim 1, wherein the grating constituting the elliptical Fresnel lens has a sawtooth cross section. (3) The optical wavelength demultiplexing detector according to claim 1, wherein the photodetector is arranged around the optical axis except at the center. (4) The optical wavelength demultiplexing detector according to claim 3, characterized in that at least four photodetectors are provided. (5) The maximum film thickness (d) of the elliptical Fresnel lens is 0.8·[λ_1+λ_2/2( n-1)]≦d≦1.
2. The optical wavelength demultiplexing detector according to claim 1, which satisfies [λ_1+λ_2/2(n-1]). (5) The maximum film thickness (d) of the elliptical Fresnel lens is: The used wavelength (λ_1, λ_2; λ_1>λ_2), the refractive index (n) of the constituent material of the elliptical Fresnel lens, the sensitivity of the photodetector (S(λ) to the used wavelength (λ_1, λ_2)
_1), S(λ_2)), when S(λ_1)>S(λ_2), [λ_1+λ_2/2(n-1)]≧d≧[λ_2/(
n-1)] When S(λ_1)≦S(λ_2), [λ_1/(n-1)]≧d≧[λ_1+λ_2/2(
The optical wavelength demultiplexing detector according to claim 1, which satisfies [n-1)].
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26129086A JPS63115111A (en) | 1986-10-31 | 1986-10-31 | Light wavelength demultiplexing detector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26129086A JPS63115111A (en) | 1986-10-31 | 1986-10-31 | Light wavelength demultiplexing detector |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63115111A true JPS63115111A (en) | 1988-05-19 |
Family
ID=17359746
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26129086A Pending JPS63115111A (en) | 1986-10-31 | 1986-10-31 | Light wavelength demultiplexing detector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63115111A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0333805A (en) * | 1989-03-28 | 1991-02-14 | American Teleph & Telegr Co <Att> | Optical device with focusing bragg reflector, optical multiplexing instrument, optical feedback multi- plexing instrument and optical filter |
EP1296166A1 (en) * | 2001-09-25 | 2003-03-26 | Agilent Technologies Inc. (a Delaware Corporation) | Optical demultiplexing device with optical to electrical conversion |
JP2020052434A (en) * | 2016-03-10 | 2020-04-02 | シスメックス株式会社 | Optical apparatus and image forming method |
US11598952B2 (en) | 2016-03-10 | 2023-03-07 | Sysmex Corporation | Optical device, phase plate, and image forming method |
-
1986
- 1986-10-31 JP JP26129086A patent/JPS63115111A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0333805A (en) * | 1989-03-28 | 1991-02-14 | American Teleph & Telegr Co <Att> | Optical device with focusing bragg reflector, optical multiplexing instrument, optical feedback multi- plexing instrument and optical filter |
EP1296166A1 (en) * | 2001-09-25 | 2003-03-26 | Agilent Technologies Inc. (a Delaware Corporation) | Optical demultiplexing device with optical to electrical conversion |
JP2020052434A (en) * | 2016-03-10 | 2020-04-02 | シスメックス株式会社 | Optical apparatus and image forming method |
US11598952B2 (en) | 2016-03-10 | 2023-03-07 | Sysmex Corporation | Optical device, phase plate, and image forming method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4198117A (en) | Optical wavelength-division multiplexing and demultiplexing device | |
US6084695A (en) | Optical fiber wavelength multiplexer and demutiplexer | |
US6169828B1 (en) | Fiber optic dense wavelength division multiplexer with a phase differential method of wavelength separation utilizing a polarization beam splitter and a nonlinear interferometer | |
JP2775243B2 (en) | Integrated optical wavelength demultiplexer | |
JPS63115111A (en) | Light wavelength demultiplexing detector | |
CN114609708B (en) | Microlens array having aspherical surface shape on first side | |
US7076129B2 (en) | Apparatus and method for a filterless parallel WDM multiplexer | |
JPH11223745A (en) | Apparatus with virtual image phase array (VIPA) in combination with a wavelength demultiplexer for demultiplexing wavelength multiplexed (WDM) light | |
US7010190B2 (en) | Silicon optic based wavelength division multiplexing device | |
US5078499A (en) | Optical interconnection arrangement | |
JPS6046682B2 (en) | Optical multiplexing/demultiplexing circuit for optical beams | |
CN206164551U (en) | Receiving terminal and quantum key distribution system of quantum key distribution system | |
JPS6290042A (en) | Demultiplexing circuit | |
KR101270745B1 (en) | optical combining and splitting device | |
Patel et al. | Multi-mode fiber coarse WDM grating router using broadband add/drop filters for wavelength re-use | |
JP2002169054A (en) | Device for multiplexing and branching wavelengths | |
JPH11326619A (en) | Optical device | |
JPS629305A (en) | Photocoupling parts | |
KR100310138B1 (en) | Apparatus for separating and uniting optical signals | |
JP2001264572A (en) | Interference light filter module device | |
Murshid et al. | An Efficient Spatial Domain Optical De-Multiplexer Design | |
JPH04116507A (en) | Array laser module | |
JPH04166903A (en) | Semiconductor laser array module with optical isolator | |
Zhou et al. | Axial-graded-index (AGRIN) lens-based eight-channel wavelength division demultiplexer for multimode fiber-optic systems | |
JPS6088907A (en) | Optical multiplexer/demultiplexer |