JPS63114772A - Axial force damper - Google Patents
Axial force damperInfo
- Publication number
- JPS63114772A JPS63114772A JP25994386A JP25994386A JPS63114772A JP S63114772 A JPS63114772 A JP S63114772A JP 25994386 A JP25994386 A JP 25994386A JP 25994386 A JP25994386 A JP 25994386A JP S63114772 A JPS63114772 A JP S63114772A
- Authority
- JP
- Japan
- Prior art keywords
- damper
- axial force
- plastic
- view
- elasto
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Buildings Adapted To Withstand Abnormal External Influences (AREA)
- Vibration Dampers (AREA)
- Fluid-Damping Devices (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は建物架構等に用いられる軸力ダンパーに関す
るもので、特に耐震あるいは制置構造物等における利用
に適している。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an axial force damper used in building frames, etc., and is particularly suitable for use in earthquake-resistant or restraining structures.
耐震構造物において利用される一般的なダンパーとして
は、免震構造において積層ゴム支承等と組み合わせ建物
の基礎部に用いられる棒状の弾塑性ダンパー、オイルダ
ンパーあるいは粘性体を用いた粘性ダンパー等がある(
日経アーキテクチュア1985年12月30日号第34
頁〜41頁)。Common dampers used in earthquake-resistant structures include rod-shaped elastoplastic dampers, oil dampers, and viscous dampers using viscous materials, which are used in building foundations in combination with laminated rubber bearings in seismic isolation structures. (
Nikkei Architecture December 30, 1985 Issue No. 34
(pages 41-41).
また、特公昭54−28226号公報には所定間隔に配
された抵抗板と隙間に充填された高粘性物質とからなる
粘性ダンパーをプレース等に使用し、建物の壁内に取り
付けた振動減衰装置が開示されている。In addition, Japanese Patent Publication No. 54-28226 discloses a vibration damping device that uses a viscous damper made of resistance plates arranged at predetermined intervals and a high viscosity substance filled in the gaps as a place, etc., and is installed inside the wall of a building. is disclosed.
建物架構において、ダンパーで地震等の振動外力による
揺れの減衰を図る場合、効果的な減衰を得るためには上
述の振動減衰装置では装置が大きくなったり、またメン
テナンスや取り替えが難しくなったりすることが考えら
れる。In a building frame, when using a damper to attenuate shaking caused by an external vibrating force such as an earthquake, in order to obtain effective damping, the above-mentioned vibration damping device requires a large device and is difficult to maintain and replace. is possible.
特に、出願人は特願昭61−112026号において、
受身の耐震でなく、感知した地震動等に基づく応答予測
システムの判断のもとに、建物各部での連結状態等を変
化させ、建物自体の剛性を変化させて、共振領域外また
は共振の少ない状態とし、建物および建物内の機器、居
住者等の安全を図った制置方法を提案しているが、この
ような制置方法においては建物架構にダンパーを用いる
ことにより、その効果を増すことができるため、コンパ
クトな構造で効果的な減衰を得られるダンパーの構造が
望まれる。In particular, in Japanese Patent Application No. 61-112026, the applicant
Rather than passive seismic resistance, based on the judgment of a response prediction system based on detected seismic motion, etc., the connection state of each part of the building is changed, and the rigidity of the building itself is changed to create a state outside the resonance area or with little resonance. proposed a method of installation that aims to ensure the safety of the building, its equipment, residents, etc.; however, the effectiveness of such installation methods can be increased by using dampers in the building frame. Therefore, it is desirable to have a damper structure that can obtain effective damping with a compact structure.
以下、この発明を基本構造を示す第1図によって説明す
る。The present invention will be explained below with reference to FIG. 1 showing the basic structure.
この発明の軸力ダンパーAは図に示すように軸力Nを受
ける点(図中ピン4a、4bで示される)を共通にした
く字状の主部材1,2の中間をそれぞれピン5a、5b
間にダンパー3を介在させて連結したもので、軸力Nに
対し、ダンパー3の機能が拡大された形で作用する。As shown in the figure, the axial force damper A of the present invention has dogleg-shaped main members 1 and 2 which have common points (indicated by pins 4a and 4b in the figure) that receive the axial force N, and pins 5a and 5b, respectively.
They are connected with a damper 3 interposed between them, and the function of the damper 3 acts on the axial force N in an expanded manner.
ダンパー3としてはオイルダンパー32(第2図(al
参照)、粘性ダンパー3b(第2図(bl参照)、摩擦
ダンパー3C(第2図(C1参照)、電磁式ダンパー、
弾塑性ダンパー等種々のダンパーが考えられ、と75a
、5bを結ぶ方向に作用させる(図中、6はオイル、7
は粘性体である)。As the damper 3, an oil damper 32 (Fig. 2 (al.
), viscous damper 3b (see Fig. 2 (bl)), friction damper 3C (see Fig. 2 (see C1), electromagnetic damper,
Various dampers such as elastoplastic dampers are possible, and 75a
, 5b (in the figure, 6 is oil, 7
is a viscous body).
第1図を参照して、軸力Nの方向の変形δに対してダン
パー3の変形はθく45°にすれば、δ/lan θ
(θは軸力Nの方向と各部材1a。Referring to FIG. 1, if the deformation of the damper 3 is set to 45 degrees with respect to the deformation δ in the direction of the axial force N, then δ/lan θ
(θ is the direction of the axial force N and each member 1a.
Ib、2a、2bのなす角)と拡大されるので、地震時
の振動外力により軸力Nが作用する場合、軸力Nの方向
の速度に比べてl/lan θだけ速い速度がダンパー
3に作用する。従って、粘性体等速度比例型の材料をダ
ンパー3に使用すれば、その効果は大きい。また金物の
弾塑性履歴特性を利用した弾塑性ダンパーの場合も軸力
Nの方向の変形δがδ/lanθ(θ〈45°)に拡大
されてダンパー3が作用するため、減衰効果が大きい。The angle formed by Ib, 2a, and 2b) is enlarged, so when an axial force N acts on the damper 3 due to an external vibration force during an earthquake, the speed is higher by l/lan θ than the speed in the direction of the axial force N. act. Therefore, if a material proportional to the velocity of a viscous body is used for the damper 3, the effect will be great. Also, in the case of an elasto-plastic damper that utilizes the elasto-plastic hysteresis characteristics of metal objects, the damper 3 acts with the deformation δ in the direction of the axial force N being expanded to δ/lan θ (θ<45°), so the damping effect is large.
第3図は上述の第1図に示したものの変形例として、特
定の振動特性を向上させるためにばね8を併用した場合
である。その他の基本的な構造は第1図に示したものと
同じである。FIG. 3 shows a modification of the one shown in FIG. 1 described above, in which a spring 8 is also used in order to improve specific vibration characteristics. The other basic structure is the same as that shown in FIG.
第4図(a)はダンパーとして電磁式の可変ダンパー9
を用いた場合の例で、第4(b)、 (C)にそれぞれ
具体的な可変ダンパー9a、9bを示しである。第4図
(blのものはシリンダー内に電気流動流体10を満た
し、電極11における電圧を調整することにより、流れ
を制御するものである。第4図(C1Oものはシリンダ
ー内に磁性流体12を満たし、電磁石13の電磁力で流
れを制御するものである。両者とも大きな力を負担する
ことができないが、ダンパー9にかかる力が、N ta
n θ(θく45°)に低減されるので有利である。こ
の可変ダンパー9はコンピューター等で制御することが
できるので、入力地震動等に応じ時々刻々ダンパー9の
抵抗を変化させ、建物の振動性能を変えて応答量を低減
させるように利用することも可能である。FIG. 4(a) shows an electromagnetic variable damper 9 as a damper.
In this example, concrete variable dampers 9a and 9b are shown in 4th (b) and 4(c), respectively. Figure 4 (BL type is a cylinder filled with electrorheological fluid 10 and the flow is controlled by adjusting the voltage at the electrode 11. Figure 4 (C1O type is a cylinder filled with electrorheological fluid 10). The flow is controlled by the electromagnetic force of the electromagnet 13. Although neither of them can bear a large force, the force applied to the damper 9 is Nta
This is advantageous because it is reduced to n θ (θ<45°). Since this variable damper 9 can be controlled by a computer or the like, it can be used to change the resistance of the damper 9 from time to time according to input seismic motion, etc., and change the vibration performance of the building to reduce the amount of response. be.
第5図はこの発明の軸力ダンパーAを建物架構のプレー
スとして利用した場合を示したもので、振動等に対して
、プレースに作用する軸方向の力を効率良く減衰させる
ことができる。なお、ダンパー3の機能が損なわれた場
合は、ダンパー3部分のみ取り替えればよい。FIG. 5 shows the case where the axial force damper A of the present invention is used as a place in a building frame, and can efficiently damp the axial force acting on the place against vibrations and the like. Note that if the function of the damper 3 is impaired, only the damper 3 portion needs to be replaced.
第6図(a)、 (b)、 (C1はダンパー3として
金物の弾塑性履歴特性を利用した弾塑性ダンパーを用い
た場合である。弾塑性ダンパーは第6図fc)のように
箱形の金物の板の曲げ降伏を利用したもので、曲げ降伏
すると、塑性変形によりエネルギーが吸収される。取り
付は方法は第6図(a)のように中空部が正面を向いて
いても、第6図(b)のように横向きであってもよい。Figures 6(a), (b), (C1 is the case where an elasto-plastic damper that utilizes the elasto-plastic hysteresis characteristics of hardware is used as the damper 3.The elasto-plastic damper has a box shape as shown in Figure 6 fc). This utilizes the bending yielding of a metal plate, and when the bending yields, energy is absorbed through plastic deformation. The mounting method may be such that the hollow portion faces the front as shown in FIG. 6(a) or sideways as shown in FIG. 6(b).
軸力ダンパーAの軸力N方向の変位は前述のようにダン
パー3においてδ/lan 6倍(θく45°)に拡大
されるため、大きな減衰力が得られる。As described above, the displacement of the axial force damper A in the direction of the axial force N is expanded by 6 times δ/lan (θ x 45°) in the damper 3, so a large damping force can be obtained.
第7図(al〜(f)は同様の金物の板の曲げ降伏を利
用した弾塑性ダンパーの変形例を示したもので、円形(
同図(a))、半円形(同図(bl)、半円の組合せ(
同図(C))、長円(同図(d))、溝形(同図(e)
)、溝形の組合せ(同図(f))等種々の形状が考えら
れる。Figures 7 (al to f) show modified examples of elasto-plastic dampers that utilize the bending yield of similar metal plates, and are circular (
Figure (a)), semicircle (Figure (bl), combination of semicircles (
Figure (C)), oval (Figure (d)), groove shape (Figure (e))
), a combination of grooves (FIG. 6(f)), and various other shapes are possible.
第8図(a)はダンパー3として、上下に向き合う一対
の板状の軸部材3bと、軸部材3bの両側に設けた支持
金物3aとの間を複数枚の板3′で水平に連結した金物
からなる弾塑性ダンパーの例を示したもので、これら複
数枚の板3′の曲げ降伏を利用するものである。第8図
(blは同様に両側の支持金物3aと下側の軸部材3b
を一体とし、上側の軸部材3bと支持金物3aを複数枚
の板3′で連結したものである。これらは一体に成形す
ることもできるが、第8図(C)に示すように支持金物
3aおよび軸部材3bを貫通させて板3′を配し、端部
を溶接あるいは割りピン等で固定してもよい。FIG. 8(a) shows a damper 3 in which a pair of vertically facing plate-shaped shaft members 3b and supporting hardware 3a provided on both sides of the shaft members 3b are horizontally connected by a plurality of plates 3'. This shows an example of an elastoplastic damper made of metal, which utilizes the bending yield of a plurality of plates 3'. FIG. 8 (bl similarly shows the supporting hardware 3a on both sides and the lower shaft member 3b.
The upper shaft member 3b and the supporting hardware 3a are connected by a plurality of plates 3'. These can be formed integrally, but as shown in FIG. 8(C), a plate 3' is placed through the support metal fitting 3a and the shaft member 3b, and the ends are fixed by welding or split pins. You can.
第9図(al、 (b)は第8図(al、 (b)にお
ける複数の板3′の代わりに複数の棒3″を配した金物
を示しており、棒3#の曲げ降伏を利用するものである
。この場合も金物は一体成形しても、第9図(bl、
(C1,(dlに示すように支持金物3aおよび軸部材
3bを貫通する棒3#の端部を溶接したり、割りピン1
4あるいはナツト15で固定してもよい。Figure 9 (al, (b)) shows a hardware in which a plurality of rods 3'' are arranged instead of the plurality of plates 3' in Figure 8 (al, (b)), and the bending yield of rod 3# is utilized. In this case as well, even if the hardware is integrally molded,
(C1, (as shown in dl, weld the end of the rod 3# that passes through the support hardware 3a and the shaft member 3b, or
4 or may be fixed with nuts 15.
第10図(a)、 (b)はやはり弾塑性ダンパーの例
として、枠体3Cと枠体内に鉛直に配した板3dとから
なる金物のダンパー3を示している。FIGS. 10(a) and 10(b) also show, as an example of an elastoplastic damper, a metal damper 3 consisting of a frame 3C and a plate 3d arranged vertically within the frame.
この例では鉛直に配した仮3dのせん断降伏を利用し、
塑性変形によりエネルギーが吸収される。In this example, we use a virtual 3D shear yield placed vertically,
Energy is absorbed by plastic deformation.
第11図(al、 (b)は弾塑性ダンパーとしての鉛
ダンパーの例である。第8図(al、 (b)の場合と
同様の支持金物3aと軸部材3bの間に第11図FC+
または第11図(dlのような鉛ダンパー16を介在さ
せている。第11図(C)は対向する一対の取付板17
間に積層ゴム18を挟み込み、コアとして鉛柱16aを
埋め込んだものである。第11図(dlは取付板17間
に滑車形状の鉛コア16bを固定したものである。11(al) and (b) are examples of a lead damper as an elastic-plastic damper.FIG. 11(al) and (b) show an example of a lead damper as an elastoplastic damper.
Alternatively, a lead damper 16 like that shown in FIG. 11 (dl) is interposed. FIG. 11 (C) shows a pair of mounting plates 17 facing each other.
Laminated rubber 18 is sandwiched between them, and a lead column 16a is embedded as a core. FIG. 11 (dl shows a pulley-shaped lead core 16b fixed between mounting plates 17.
軸方向の振動外力に対し、ダンパーを直接軸方向に作用
させる場合に比べ、ダンパー位置での変形や速度がθ〈
45°とすることにより、1/lanθ倍に拡大される
ので、減衰効果が大きい。Compared to the case where the damper acts directly in the axial direction, the deformation and velocity at the damper position are reduced by θ〈
By setting the angle to 45°, the attenuation effect is large because it is expanded by 1/lanθ times.
また、電磁式の可変ダンパーにより抵抗を変化させて使
用する場合等も、ダンパーにかかる力がtan 0倍に
低減されるので、ダンパーの負担が少な(有利である。Furthermore, when using an electromagnetic variable damper to change the resistance, the force applied to the damper is reduced by tan 0 times, so the burden on the damper is small (which is advantageous).
中央のダンパーのみ交換することができ、維持、管理が
容易である。Only the central damper can be replaced, making maintenance and management easy.
第1図はこの発明の軸力ダンパーの基本構造を示す概略
断面図面、第2図(al〜fc)はダンパーの例を示す
断面図、第3図はばねを併用した場合の概略断面図、第
4図(a)は可変ダンパーを適用した場合の断面図、第
4図(bl、 (C)は可変ダンパーの例を示す断面図
、第5図は建物架構のブルースへの適用例を示す正面図
、第6図(a)、 fblは弾塑性ダンパーの適用例を
示す正面図、第6図fc)は弾塑性ダンパ一部分の斜視
図、第7図fa)〜(f)は板の曲げ降伏を利用した弾
塑性ダンパーの変形例を示す斜視図、第8図(a)、
(blは複数の板の曲げ降伏を利用した弾塑性ダンパー
の例を示す斜視図、第8図(C)は板の固定方法を示す
斜視図、第9図(a)、 (b)は複数の棒の曲げ降伏
を利用した弾塑性ダンパーの斜視図、第9図(C)、
(d)は棒の固定方法を示す斜視図、第10図(a)、
(b)は板のせん断降伏を利用した弾塑性ダンパーの
例を示す斜視図、第11図(al、 (blは鉛ダンパ
ーの例を示す斜視図、第11図(C1,(d)は鉛コア
部分の構造の例を示す斜視図である。
A・・・・・・軸力ダンパー、1,2・・・・・・主部
材、3・・・・・・ダンパー、
4 a、 4 b、 5 a、 5 b・”・・
ピン、6・・・・・・オイル、7・・・・・・粘性体、
8・・・・・・ばね、9・・・・・・可変ダンパー、1
0・・・・・・電気流動流体、11・・・・・・電極、
12・・・・・・磁性流体、13・・・・・・電磁石、
14・・・・・・割りピン、15・・・・・・ナツト、
16・・・・・・鉛ダンパー、17・・・・・・取付機
、18・・・・・・積層ゴム。
第1図
第2図
(a) (b) (c)第3
図
第4図
(a)
(b) (C)
第5図
第7図
(a) (b) (C)
nl
第8図
(a)
第9図
(a)Fig. 1 is a schematic sectional view showing the basic structure of the axial force damper of the present invention, Fig. 2 (al to fc) is a sectional view showing an example of the damper, and Fig. 3 is a schematic sectional view when a spring is used in combination. Figure 4 (a) is a sectional view when a variable damper is applied, Figure 4 (bl, (C) is a sectional view showing an example of a variable damper, and Figure 5 is an example of application to building frame blues. Front view, Figure 6 (a), fbl is a front view showing an application example of the elastic-plastic damper, Figure 6 fc) is a perspective view of a part of the elastic-plastic damper, Figure 7 fa) to (f) are bending of the plate. A perspective view showing a modification example of an elastoplastic damper using yielding, FIG. 8(a),
(bl is a perspective view showing an example of an elastic-plastic damper that utilizes the bending yield of multiple plates, Figure 8 (C) is a perspective view showing a method of fixing plates, Figures 9 (a) and (b) are multiple A perspective view of an elastoplastic damper that utilizes the bending yield of a bar, Figure 9 (C),
(d) is a perspective view showing how to fix the rod, FIG. 10(a),
(b) is a perspective view showing an example of an elastoplastic damper that utilizes the shear yield of a plate, Figure 11 (al), (bl is a perspective view showing an example of a lead damper, Figure 11 (C1, It is a perspective view showing an example of the structure of the core part. A... Axial force damper, 1, 2... Main member, 3... Damper, 4 a, 4 b , 5 a, 5 b...
Pin, 6... Oil, 7... Viscous body,
8... Spring, 9... Variable damper, 1
0... Electrorheological fluid, 11... Electrode,
12...Magnetic fluid, 13...Electromagnet,
14... Cotter pin, 15... Nut,
16...Lead damper, 17...Mounting machine, 18...Laminated rubber. Figure 1 Figure 2 (a) (b) (c) 3rd
Figure 4 (a) (b) (C) Figure 5 Figure 7 (a) (b) (C)
nl Figure 8(a) Figure 9(a)
Claims (4)
するく字状の主部材の中間をそれぞれピン接合とし、該
ピン接合位置どうしをダンパーを介在させて連結してあ
ることを特徴とする軸力ダンパー。(1) Pin joints are made between the mutually opposing dog-shaped main members that share the same point of receiving the axial force at the ends of both materials, and the pin joint positions are connected with a damper interposed between them. Features an axial force damper.
ある特許請求の範囲第1項記載の軸力ダンパー。(2) The axial force damper according to claim 1, wherein the damper is an oil damper or a viscous damper.
変抵抗のダンパーである特許請求の範囲第1項記載の軸
力ダンパー。(3) The axial force damper according to claim 1, wherein the damper is a variable resistance damper using an electrofluid or a magnetic fluid.
性ダンパーである特許請求の範囲第1項記載の軸力ダン
パー。(4) The axial force damper according to claim 1, wherein the damper is an elasto-plastic damper that utilizes the elasto-plastic hysteresis characteristics of metal objects.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25994386A JPS63114772A (en) | 1986-10-31 | 1986-10-31 | Axial force damper |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25994386A JPS63114772A (en) | 1986-10-31 | 1986-10-31 | Axial force damper |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63114772A true JPS63114772A (en) | 1988-05-19 |
Family
ID=17341076
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25994386A Pending JPS63114772A (en) | 1986-10-31 | 1986-10-31 | Axial force damper |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63114772A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05256045A (en) * | 1992-03-10 | 1993-10-05 | Ohbayashi Corp | Vibration-damping damper |
JPH05263549A (en) * | 1992-03-18 | 1993-10-12 | Kajima Corp | Steel damper |
JPH0584754U (en) * | 1991-07-22 | 1993-11-16 | 清水建設株式会社 | Damping damper |
JPH0776951A (en) * | 1993-09-08 | 1995-03-20 | Kajima Corp | Steel bending damper |
JP2013151857A (en) * | 2007-05-15 | 2013-08-08 | Christopoulos Constantin | Cast structural yielding fuse member |
JP2013199823A (en) * | 2012-02-20 | 2013-10-03 | Nippon Sharyo Seizo Kaisha Ltd | Damper brace and seismic response controlled structure |
JP2018040479A (en) * | 2016-09-09 | 2018-03-15 | 新日鐵住金株式会社 | Energy absorbing device and base isolation structure |
JP2018529034A (en) * | 2016-05-24 | 2018-10-04 | インノーズ テック カンパニー,リミテッド | Vibration control device for structures with low damping |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5032539A (en) * | 1973-07-25 | 1975-03-29 |
-
1986
- 1986-10-31 JP JP25994386A patent/JPS63114772A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5032539A (en) * | 1973-07-25 | 1975-03-29 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0584754U (en) * | 1991-07-22 | 1993-11-16 | 清水建設株式会社 | Damping damper |
JPH05256045A (en) * | 1992-03-10 | 1993-10-05 | Ohbayashi Corp | Vibration-damping damper |
JPH05263549A (en) * | 1992-03-18 | 1993-10-12 | Kajima Corp | Steel damper |
JPH0776951A (en) * | 1993-09-08 | 1995-03-20 | Kajima Corp | Steel bending damper |
JP2013151857A (en) * | 2007-05-15 | 2013-08-08 | Christopoulos Constantin | Cast structural yielding fuse member |
JP2013199823A (en) * | 2012-02-20 | 2013-10-03 | Nippon Sharyo Seizo Kaisha Ltd | Damper brace and seismic response controlled structure |
JP2018529034A (en) * | 2016-05-24 | 2018-10-04 | インノーズ テック カンパニー,リミテッド | Vibration control device for structures with low damping |
JP2018040479A (en) * | 2016-09-09 | 2018-03-15 | 新日鐵住金株式会社 | Energy absorbing device and base isolation structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5487534A (en) | Laminated rubber vibration control device for structures | |
JPH10504088A (en) | Tuning mass damper | |
JPS63114772A (en) | Axial force damper | |
Mathew et al. | Seismic response control of a building by negative stiffness devices | |
Pradono et al. | Application of angular‐mass dampers to base‐isolated benchmark building | |
JPH1136657A (en) | Base isolation device | |
JPH01322061A (en) | Earthquake isolating device | |
JP3828695B2 (en) | Seismic control wall of a three-story house | |
JPH0477112B2 (en) | ||
JPH09310531A (en) | Vibration control device with vibration control | |
Chen et al. | Active vibration control of a magnetorheological sandwich beam | |
JPS63297837A (en) | Double acting vibration absorber | |
JP3253258B2 (en) | Bracing damping device | |
JP3463085B2 (en) | Seismic building | |
JPH1150689A (en) | Vibration control mechanism | |
JP4208459B2 (en) | Damping wall | |
JP2796997B2 (en) | Damping for damping by bolting | |
JPH02285176A (en) | Response control device of building | |
JP2573525B2 (en) | Partition wall damping structure | |
JPS6114338A (en) | Vibration damping device for structures | |
JPS62220734A (en) | Vibrational energy absorbing device | |
JPH0259262B2 (en) | ||
JP2005126947A (en) | Small-vibration absorbing structure and small-vibration absorber of earthquake resistant frame, and earthquake resistant frame using small-vibration absorber | |
JPH02232478A (en) | Connection structure of structural members in structure | |
JPH01165885A (en) | Vibration-damping structure |