JPS63114670A - Thermal head drive circuit - Google Patents
Thermal head drive circuitInfo
- Publication number
- JPS63114670A JPS63114670A JP26000586A JP26000586A JPS63114670A JP S63114670 A JPS63114670 A JP S63114670A JP 26000586 A JP26000586 A JP 26000586A JP 26000586 A JP26000586 A JP 26000586A JP S63114670 A JPS63114670 A JP S63114670A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- resistor
- resistors
- heat generating
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 abstract description 11
- 230000006641 stabilisation Effects 0.000 abstract 1
- 238000011105 stabilization Methods 0.000 abstract 1
- 238000010438 heat treatment Methods 0.000 description 25
- 238000010586 diagram Methods 0.000 description 7
- 230000020169 heat generation Effects 0.000 description 5
- 238000004544 sputter deposition Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/315—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
- B41J2/32—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
- B41J2/35—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads providing current or voltage to the thermal head
- B41J2/355—Control circuits for heating-element selection
- B41J2/36—Print density control
Landscapes
- Electronic Switches (AREA)
Abstract
Description
【発明の詳細な説明】
[4既要]
サーマルヘッドの発熱抵抗体の温度を検出し、発熱抵抗
体に印加するパルスの幅を制限するサーマルヘッドの駆
動回路において、発熱抵抗体と同一基板上に設けた感温
抵抗体を単安定マルチバイブレータの外部タイミング抵
抗として使用し、印字濃度を安定化するようにしたサー
マルヘッドの駆動回路である。[Detailed Description of the Invention] [4 Already Required] In a thermal head drive circuit that detects the temperature of a heating resistor of a thermal head and limits the width of a pulse applied to the heating resistor, the heating resistor is mounted on the same substrate as the heating resistor. This is a thermal head drive circuit that uses a temperature-sensitive resistor installed as an external timing resistor for a monostable multivibrator to stabilize print density.
[産業上の利用分野1
本発明は感熱紙を部分的に加熱し、文字などを印字する
サーマルヘッドの駆動回路に関する。[Industrial Application Field 1] The present invention relates to a drive circuit for a thermal head that partially heats thermal paper to print characters or the like.
サーマルヘッドは節易な構成のため使用範囲が拡がって
いるが、環境条件が種々に変化しても、印字濃度を一定
化することが要望されている。The range of use of thermal heads is expanding due to their simple construction, but there is a demand for keeping print density constant even when environmental conditions vary.
[従来の技術]
サーマルヘッドは感熱紙を使用するプリンタに使用され
ている。微小な発熱抵抗体を1n当たり数個以上基板上
に並列させ、各抵抗体を個別に発熱と非発熱の制御を行
う。このとき、基板上に並ベた抵抗体と接近して、感熱
紙を設け、且つ感熱紙は抵抗体の配列方向と直交して微
小量のステップずつ移動する。抵抗体を発熱するときは
パルス電流波形を抵抗体に印加し、非発熱のときはパル
ス電流の印加を中止する。感熱紙に接近する抵抗体の付
近をサーマルヘッドという。第6図はサーマルヘッドを
含む素子の側面図を示す。サーマルヘッド1の内部にお
ける発熱抵抗体は、発熱と非発熱を繰り返すため、抵抗
体を保持する基板上の温度が使用中に徐々に高くなる。[Prior Art] Thermal heads are used in printers that use thermal paper. Several minute heat-generating resistors are arranged in parallel on a substrate per 1n, and each resistor is individually controlled to generate heat or not. At this time, a thermal paper is provided close to the resistors arranged on the substrate, and the thermal paper is moved in minute steps in a direction perpendicular to the arrangement direction of the resistors. When the resistor generates heat, a pulse current waveform is applied to the resistor, and when the resistor does not generate heat, application of the pulse current is stopped. The area near the resistor that approaches the thermal paper is called the thermal head. FIG. 6 shows a side view of the element including the thermal head. Since the heating resistor inside the thermal head 1 repeatedly generates heat and does not generate heat, the temperature on the substrate holding the resistor gradually increases during use.
基板の外周に通常はアルミニウム類の放熱板2を設けて
放熱させている。また発熱体の非発熱時の温度を検出し
、発熱体の発熱を制御している。即ちサーミスタ3を放
熱板2に取付け、放熱板2の温度を測定しながら発熱制
御を行う。例えば動作開始直後で低温のときは印加パル
スの幅を第7図Aに示すように長く、温度が高くなると
は第7図Bに示すように少し短く、可成り温度が高くな
ると第7図Cに示すように最も短くする。基板温度で示
すと第7図Cが46〜70℃、第7図Bは21〜40℃
、第7図Aは0〜10℃のように変化させる。A heat sink 2, usually made of aluminum, is provided around the outer periphery of the board to radiate heat. It also detects the temperature of the heating element when it is not generating heat, and controls the heat generation of the heating element. That is, the thermistor 3 is attached to the heat sink 2, and heat generation control is performed while measuring the temperature of the heat sink 2. For example, when the temperature is low immediately after the start of operation, the width of the applied pulse is long as shown in Figure 7A, when the temperature rises it is slightly shorter as shown in Figure 7B, and when the temperature is considerably high the width of the applied pulse is as shown in Figure 7C. Shortest as shown. In terms of substrate temperature, Figure 7C is 46~70℃, Figure 7B is 21~40℃
, FIG. 7A is varied from 0 to 10°C.
第8図に示す制御回路10より、各素子を駆動するため
の集積回路21に対し、シリアルデータとして印字すべ
きデータがPI端子11から送られる。そしてクロック
端子CLK13からのクロックにより、シリアルデータ
がシフトレジスタ12に取込まれる。シフトレジスタ1
2が丁度満杯になったとき、STBラッチ14ヘラッチ
される。A control circuit 10 shown in FIG. 8 sends data to be printed as serial data from a PI terminal 11 to an integrated circuit 21 for driving each element. Then, serial data is taken into the shift register 12 by the clock from the clock terminal CLK13. shift register 1
2 is just full, STB latch 14 is latched.
次にENBゲート1〜3 (16−1)〜(16−3)
の制御を受けたバッファ15において、各データを長短
時間のパルスに切換えて、発熱体l=1〜1−nの発熱
を制御する。このときサーミスタ3の抵抗値を検出した
セレクタ17により、ENBゲート1〜3は第8図に示
すように、異なった幅のパルスを出力する。したがって
バッファのビット数分だけは同一幅の印加パルスの有無
によって発熱が制御される。Next, ENB gates 1 to 3 (16-1) to (16-3)
In the buffer 15 under the control, each data is switched to a long-time pulse to control the heat generation of the heating elements l=1 to 1-n. At this time, the selector 17 detects the resistance value of the thermistor 3, and the ENB gates 1 to 3 output pulses of different widths as shown in FIG. Therefore, heat generation is controlled by the presence or absence of applied pulses of the same width for the number of bits of the buffer.
[発明が解決しようとする問題点]
第8図により抵抗体の発熱を制御するとき、抵抗体の温
度に対応すると考えられるサーミスタの温度を測定して
、段階的な制御を行っている。第9図に示すように感熱
紙における発色が「黒」と認識できる印字温度約1.2
0D(光学的密度)を得るための周囲温度、即ちサーミ
スタの温度はエネルギーが少ないとき当然高い値を要し
、エネルギーが大きいとき低い温度となる。例えばエネ
ルギーが35ミリジユ一ル/1m2のとき約25℃にお
いて1.20Dを得ているから、温度25°Cを一定に
保つときに所定濃度が得られる。印字を操り返すことに
よって、周囲温度が上昇し、感熱紙へ加えられる熱エネ
ルギーが大きくなるため、感熱紙上の印字濃度が安定化
しない欠点があった。このとき従来のサーミスタではそ
の特性上温度に対する抵抗値の変化があまり大きくない
ため、基板温度に対応するパルス幅の変化を3段階程度
に区切ることが可能となる程度である。したがって印字
開始から印字終了までの全体にわたり印字濃度のむらを
無くすことが出来なかった。[Problems to be Solved by the Invention] When controlling the heat generation of the resistor according to FIG. 8, stepwise control is performed by measuring the temperature of the thermistor, which is considered to correspond to the temperature of the resistor. As shown in Figure 9, the printing temperature at which the color development on thermal paper is recognized as "black" is approximately 1.2.
The ambient temperature for obtaining 0D (optical density), that is, the temperature of the thermistor, naturally requires a high value when the energy is low, and a low temperature when the energy is high. For example, when the energy is 35 millijoules/1 m2, 1.20D is obtained at about 25°C, so a predetermined concentration can be obtained when the temperature is kept constant at 25°C. By manipulating the printing, the ambient temperature rises and the thermal energy applied to the thermal paper increases, so there is a drawback that the print density on the thermal paper is not stabilized. At this time, since the resistance value of a conventional thermistor does not vary greatly with respect to temperature due to its characteristics, the change in pulse width corresponding to the substrate temperature can be divided into about three stages. Therefore, it has not been possible to eliminate unevenness in print density over the entire period from the start of printing to the end of printing.
本発明の目的は前述の欠点を改善し、発熱抵抗体の温度
を可及的に一定にして、印字濃度を安定化したサーマル
ヘッドの駆動回路を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a thermal head drive circuit which improves the above-mentioned drawbacks, keeps the temperature of the heating resistor as constant as possible, and stabilizes the printing density.
[問題点を解決するための手段]
第1図は本発明の原理構成を示す図である。第1図にお
いて、1−1 、1−2・・・1−nは発熱抵抗体、2
1.22・・・・2mは発熱抵抗体を駆動する集積回路
を示し、発熱抵抗体を複数本まとめて駆動するような集
積回路がm個存在することを示している。[Means for Solving the Problems] FIG. 1 is a diagram showing the basic configuration of the present invention. In Fig. 1, 1-1, 1-2...1-n are heating resistors, 2
1.22...2m indicates an integrated circuit that drives the heat generating resistor, indicating that there are m integrated circuits that drive a plurality of heat generating resistors at once.
31 、 32−3 mは怒温砥抗体、41 、 42
−4mは単安定マルチバイブレータで、21〜2m。31, 32-3 m is an anti-inflammatory antibody, 41, 42
-4m is a monostable multivibrator, 21 to 2m.
31〜3m、、41〜4mは、21.3L 41が互
いに対応するようにそれぞれ対応している。31-3m and 41-4m correspond to each other in the same way that 21.3L 41 corresponds to each other.
電気パルス信号を発熱抵抗体1−1.1−2−・−1−
nに印カロし、抵抗体の温度が上昇したとき、該抵抗体
と接触する感熱紙上に印字するサーマルヘッドであって
、前記抵抗体の温度をサーミスタにより検出し、前記パ
ルス幅を変化させるようにしたサーマルヘッドの駆動回
路において、本発明は下記の構成としている。即ち
発熱抵抗体1−1.1〜2−・1−nと同一基板上に、
温度係数がサーミスタより大きな感温抵抗体31゜32
−・−3mを設け、該感温度抵抗体を単安定マルチバイ
ブレータ41.42・・−4mの外部タイミング抵抗と
して使用し、該単安定マルチバイブレータの出力を前記
電気パルス信号とすることである。The electric pulse signal is passed through the heating resistor 1-1.1-2-・-1-
The thermal head prints on thermal paper that comes into contact with the resistor when the temperature of the resistor increases and the temperature of the resistor is detected by a thermistor, and the pulse width is changed. The drive circuit for the thermal head according to the present invention has the following configuration. That is, on the same substrate as the heating resistors 1-1.1 to 2-.1-n,
Temperature sensitive resistor with a larger temperature coefficient than the thermistor 31°32
-.-3m is provided, the temperature-sensitive resistor is used as an external timing resistor of the monostable multivibrator 41, 42...-4m, and the output of the monostable multivibrator is used as the electric pulse signal.
なお第1図において、発熱抵抗体近傍に設けた下向き矢
印は、感温抵抗体31.32・・・3mの近傍に設けた
上向き矢印と対応する。即ち複数の発熱抵抗体に対し成
る1つの感温抵抗体を対応させ、それが対応する単安定
マルチバイブレータに組込まれる。In FIG. 1, the downward arrow provided near the heating resistor corresponds to the upward arrow provided near the temperature sensitive resistor 31, 32, . . . 3m. That is, one temperature-sensitive resistor is made to correspond to a plurality of heating resistors, and is incorporated into a corresponding monostable multivibrator.
[作用]
第1図に示す構成としたため、本発明では発熱抵抗体に
対する発熱動作のため、駆動信号をトリガとして単安定
マルチバイブレータに与える。発熱抵抗体周辺の温度は
感温抵抗体が感知しているから、発熱抵抗体が発熱動作
する直前の温度に対応した抵抗値が単安定マルチバイブ
レータの外部タイミング用抵抗となって、所定時間幅の
パルスを発生できる。このパルスは所望の発熱抵抗体に
印加され発熱させる。[Function] With the configuration shown in FIG. 1, in the present invention, a drive signal is applied as a trigger to the monostable multivibrator in order to generate heat for the heating resistor. Since the temperature around the heating resistor is sensed by the temperature sensitive resistor, the resistance value corresponding to the temperature immediately before the heating resistor starts generating heat becomes the external timing resistance of the monostable multivibrator, and the resistance value corresponding to the temperature immediately before the heating resistor starts generating heat is used as the external timing resistance of the monostable multivibrator. can generate pulses. This pulse is applied to a desired heating resistor to generate heat.
次の動作タイミングにおいて感温抵抗体が温度変化を感
知すれば、単安定マルチバイブレータのパルス幅が変化
する。通常は温度上昇となるから感温抵抗体の温度係数
がマイナスなので、パルス幅が短くなる。If the temperature-sensitive resistor senses a temperature change at the next operation timing, the pulse width of the monostable multivibrator changes. Normally, the temperature increases, so the temperature coefficient of the temperature-sensitive resistor is negative, so the pulse width becomes shorter.
第2図は各駆動集積回路21.22−・2m毎に幅の異
なったパルスの印加されることを示している。即ち第2
図Aは各単安定マルチパイブレークに印加されるトリガ
パルスを、同図Bは単安定マルチバイブレータの出力パ
ルスである。FIG. 2 shows that pulses of different widths are applied to each drive integrated circuit 21, 22-2m. That is, the second
Figure A shows the trigger pulse applied to each monostable multivibrator, and Figure B shows the output pulse of the monostable multivibrator.
したがって発熱抵抗体の温度上昇の高低幅が最小限に抑
制され、感熱紙の発色が一定化できる。Therefore, the width of the temperature rise of the heating resistor is suppressed to a minimum, and the color development of the thermal paper can be made constant.
[実施例コ
第3図は本発明の実施例として、発熱抵抗体と感温抵抗
体を製造する方法を説明する図である。Embodiment FIG. 3 is a diagram illustrating a method of manufacturing a heating resistor and a temperature-sensitive resistor as an embodiment of the present invention.
グレーズドアルミナ基板上で、第3図にPと示す部分に
、まず温度係数(TCR)が−1500PPM /’C
のように大きく、面積抵抗の大きな薄膜、例えばTa−
3tのサーメソ)JIWを、直流スパッタにより厚さ1
000人にスパッタする。第4図はスパッタガス圧 対
固を抵抗値ρ・温度係数(TCR)との関係を示す図
である。例えば−1500PPM/ ”Cの温度係数を
得るとき9 X 10−’Torrのガス圧を使用する
と抵抗値が約2000μΩcmとなる。On the glazed alumina substrate, the temperature coefficient (TCR) is -1500 PPM/'C at the part marked P in Figure 3.
Thin films that are large and have high sheet resistance, such as Ta-
3t of Thermeso) JIW to a thickness of 1 by DC sputtering.
Sputter to 000 people. FIG. 4 is a diagram showing the relationship between sputtering gas pressure vs. resistance value ρ and temperature coefficient (TCR). For example, if a gas pressure of 9 x 10-' Torr is used to obtain a temperature coefficient of -1500 PPM/''C, the resistance value will be about 2000 μΩcm.
次に、第3図にPと示す以外のQ部分に発熱抵抗体とな
るTa−Nを直流スパッタする。その上に導体となるA
I (アルミニウム)を約3μmの厚さ直流スパッタ
し、フォトリソ工程により感温抵抗体として多数の素子
が直列接続されるように形成する。Next, Ta--N, which will become a heat generating resistor, is sputtered by DC sputtering onto the Q portion other than the portion indicated by P in FIG. A that becomes a conductor on top of that
I (aluminum) is DC-sputtered to a thickness of about 3 μm, and a large number of elements are formed in series as a temperature-sensitive resistor by a photolithography process.
次にエツチングを行うが、このときTa−NとT a
−Siサーメント膜は、酸素と4弗化炭素の混合ガスに
よって同時にドライエツチングすることが可能である。Next, etching is performed, but at this time Ta-N and Ta
-Si cerment film can be dry-etched simultaneously with a mixed gas of oxygen and carbon tetrafluoride.
次に保護膜のS i Oz・’razoiをスパッタし
て、樹脂コートを行う。次に駆動集積回路をボンディン
グしてから再度樹脂コートする。単安定マルチバイブレ
ータと感温抵抗体とを接続して駆動回路を完成させる。Next, a resin coating is performed by sputtering a protective film of S i Oz.'razoi. Next, the drive integrated circuit is bonded and then coated with resin again. Complete the drive circuit by connecting the monostable multivibrator and temperature-sensitive resistor.
第5図は成る単安定マルチバイブレータについて、その
外部抵抗と容量を可変にしたとき、得られるパルス幅の
関係を図示したものである。例えば接続容量値がo、o
osμFで感温度抵抗体の抵抗値が1150にΩのとき
パルス幅が約2m秒であるとして、周囲温度が上昇して
抵抗値が285にΩに変化するとパルス幅は0.5m秒
に変化する。FIG. 5 illustrates the relationship between the pulse widths obtained when the external resistance and capacitance of the monostable multivibrator are made variable. For example, the connection capacitance value is o, o
When the resistance value of the temperature-sensitive resistor is osμF and the resistance value is 1150Ω, the pulse width is approximately 2ms. When the ambient temperature rises and the resistance value changes to 285Ω, the pulse width changes to 0.5ms. .
[発明の効果]
このようにして本発明によると、印字開始後発熱抵抗体
の温度が段々と高くなったときも、単安定マルチバイブ
レータの外付抵抗値が変化して、発熱動作用パルス電流
の幅を制御しているから、感熱紙に対する印字濃度が常
に一定の値が得られる。[Effects of the Invention] According to the present invention, even when the temperature of the heating resistor gradually increases after printing starts, the external resistance value of the monostable multivibrator changes, and the pulse current for heating operation changes. Since the width is controlled, the print density on thermal paper always remains constant.
第1図は本発明の原理構成を示す図、
第2図は第1図の動作説明図、
第3図は本発明の実施例として(3温抵抗体の製造方法
を説明する図、
第4図は感温抵抗体の特性を示す図、
第5図は単安定マルチバイブレータの動作特性を示す図
、
第6図は従来のサーマルヘッドを含む素子の側面図、
第7図は従来の基板温度と印加パルス波形との関連図、
第8図は従来の駆動回路を示す図、
第9図は印字濃度と周囲温度との関係を示す図である。
1・・・・サーマルヘッド
1−1.1−2・・・1−n・・・発熱抵抗体2・−放
熱板
10・−・制御回路
21 、 22−2 m−・集積回路
31.32・・・3m・−感温度抵抗体41.42・・
・4m・・・単安定マルチバイブレータ特許出願人
冨士通株式会社
代 理 人 弁理士 鈴木栄祐
破6月の原!3!図
第1図
(PPM/’C)
イl!Σ;A柩1デy)ニイ;)5、
第4図 1202
第6図
第7図
側囲温皮(0C)FIG. 1 is a diagram showing the principle configuration of the present invention, FIG. 2 is an explanatory diagram of the operation of FIG. Figure 5 shows the characteristics of a temperature-sensitive resistor, Figure 5 shows the operating characteristics of a monostable multivibrator, Figure 6 is a side view of a device including a conventional thermal head, and Figure 7 shows the temperature of a conventional substrate. FIG. 8 is a diagram showing a conventional drive circuit, and FIG. 9 is a diagram showing the relationship between printing density and ambient temperature. 1. Thermal head 1-1. 1-2...1-n...Heating resistor 2--Heating plate 10--Control circuit 21, 22-2 m--Integrated circuit 31.32...3 m--Temperature-sensitive resistor 41 .42...
・4m...Monostable multivibrator patent applicant
Fujitsu Co., Ltd. Representative Patent Attorney Eisuke Suzuki June Hara! 3! Figure 1 (PPM/'C) Il! Σ; A coffin 1 day) Ni;) 5, Figure 4 1202 Figure 6 Figure 7 Side warm skin (0C)
Claims (1)
・・(1−n)に印加し、抵抗体(1−1)(1−2)
・・・・(1−1n)の温度が上昇したとき、該抵抗体
と接触する感熱紙上に印字するサーマルヘッドであって
、前記抵抗体の温度をサーミスタにより検出し、前記パ
ルス幅を変化させるようにしたサーマルヘッドの駆動回
路において、 前記発熱抵抗体(1−1)(1−2)・・・・(1−n
)と同一基板上に、温度係数が前記サーミスタより大き
な感温抵抗体(31)(32)・・・・(3m)を設け
、該感温抵抗体(31)(32)・・・・(3m)を単
安定マルチバイブレータ(41)(42)・・・・(4
m)の外部タイミング抵抗として使用し、 該単安定マルチバイブレータ(41)(42)・・・・
(4m)の出力を前記電気パルス信号とすることを特徴
とするサーマルヘッドの駆動回路。[Claims] Electric pulse signals are transmitted through heating resistors (1-1) (1-2)...
...(1-n), resistor (1-1) (1-2)
A thermal head that prints on thermal paper in contact with the resistor when the temperature of (1-1n) rises, the temperature of the resistor is detected by a thermistor, and the pulse width is changed. In the thermal head drive circuit configured as above, the heat generating resistors (1-1) (1-2)...(1-n
) are provided with temperature-sensitive resistors (31) (32)...(3m) having a larger temperature coefficient than the thermistor, and the temperature-sensitive resistors (31)(32)...( 3m) to a monostable multivibrator (41) (42)...(4
m) as an external timing resistor for the monostable multivibrator (41) (42)...
(4m) as the electric pulse signal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26000586A JPS63114670A (en) | 1986-10-31 | 1986-10-31 | Thermal head drive circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26000586A JPS63114670A (en) | 1986-10-31 | 1986-10-31 | Thermal head drive circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63114670A true JPS63114670A (en) | 1988-05-19 |
Family
ID=17341977
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26000586A Pending JPS63114670A (en) | 1986-10-31 | 1986-10-31 | Thermal head drive circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63114670A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6505907B2 (en) | 1988-07-26 | 2003-01-14 | Canon Kabushiki Kaisha | Recording apparatus having abnormality determination based on temperature and average ejection duty cycle |
US9347164B2 (en) | 2011-04-14 | 2016-05-24 | Lg Electronics Inc. | Washer |
-
1986
- 1986-10-31 JP JP26000586A patent/JPS63114670A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6505907B2 (en) | 1988-07-26 | 2003-01-14 | Canon Kabushiki Kaisha | Recording apparatus having abnormality determination based on temperature and average ejection duty cycle |
US6598952B2 (en) | 1988-07-26 | 2003-07-29 | Canon Kabushiki Kaisha | Liquid jet recording head having controller for controlling temperature distribution |
US9347164B2 (en) | 2011-04-14 | 2016-05-24 | Lg Electronics Inc. | Washer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2702426B2 (en) | Thermal head device | |
JPH05193179A (en) | Apparatus for controlling thermal print head | |
US5359352A (en) | Driving method of heat generating resistor in heat recording device | |
JPH07148959A (en) | Thermal head device | |
JPS63114670A (en) | Thermal head drive circuit | |
JPH07108702A (en) | Thermal printer | |
JP3809380B2 (en) | Thermal printer head and manufacturing method thereof | |
JPH06198943A (en) | Thermal head | |
JP2932661B2 (en) | Manufacturing method of thermal head | |
JP2955408B2 (en) | Image recording device | |
JPH0234361A (en) | Thermal printing head | |
JPS6292864A (en) | Manufacture of thick-film type thermal head | |
JP2958374B2 (en) | Thermal head | |
JPH0193375A (en) | Thermal head | |
JP2893345B2 (en) | Thermal recording method | |
JPS59207270A (en) | Thermal head | |
JP2000246935A (en) | Thermal head | |
JPS60162669A (en) | Thermal head temperature control method | |
JP2681004B2 (en) | Thermal head control circuit | |
JPS6169471A (en) | Thermal printing head | |
JPH11277783A (en) | Thermal printer | |
JPH04152151A (en) | Printing density correction data generating device and thermal recorder using correction data of the device | |
JPS58147381A (en) | Heat-sensitive recording head | |
JPS62119061A (en) | printer temperature control device | |
JPH05193180A (en) | Thermal recording apparatus |