[go: up one dir, main page]

JPS63111155A - Production of permanent magnet material - Google Patents

Production of permanent magnet material

Info

Publication number
JPS63111155A
JPS63111155A JP61255895A JP25589586A JPS63111155A JP S63111155 A JPS63111155 A JP S63111155A JP 61255895 A JP61255895 A JP 61255895A JP 25589586 A JP25589586 A JP 25589586A JP S63111155 A JPS63111155 A JP S63111155A
Authority
JP
Japan
Prior art keywords
powder
permanent magnet
magnet material
plastic deformation
anisotropic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61255895A
Other languages
Japanese (ja)
Inventor
Takashi Furuya
古谷 嵩司
Norio Yoshikawa
紀夫 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP61255895A priority Critical patent/JPS63111155A/en
Publication of JPS63111155A publication Critical patent/JPS63111155A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain an Nd-Fe-B permanent magnet material having excellent magnetic characteristics by packing the powder formed by pulverizing a thin strip obtd. by quick cooling and solidifying of an Nd-Fe-B alloy into a hermetic vessel, then making the packed material anisotropic by plastic deformation. CONSTITUTION:The thin strip prepd. by melting the Nd-Fe-B alloy expressed by the formula in an inert atmosphere, then cooling the melt by an ultra-quick cooling method is pulverized by; for example, a ball mill, etc. in accordance with the conventional practice. The fine powder obtd. in such a manner is packed into the hermetic vessel which is so constructed that an inert gaseous atmosphere or vacuum can be maintained. The powder may be preliminarily press-formed to a prescribed shape at a room temp. and may be formed in the state of the higher density in the case of packing the powder into the vessel. The powder or molding packed into the hermetic vessel is then subjected to the plastic deformation treatment by a method such as; for example, unidirectional pressing or rolling and is thereby made anisotropic. The plastic deformation is preferably so executed as to attain >=30% rate of deformation. The desired Nd-Fe-B permanent magnet material is obtd. by the above-mentioned method.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、異方性Nd−Fe−B系永久磁石材料の製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing an anisotropic Nd-Fe-B permanent magnet material.

従来の技術 永久磁石材料は、一般家庭電気製品から精密機器、自動
車部品に至るまで、広い分野にわたって使用されてあり
、電子機器の小形化、高効率化の要求にともない、その
磁気特性の向上が益々求められるようになっている。
Conventional technology Permanent magnetic materials are used in a wide range of fields, from general household electrical appliances to precision equipment and automobile parts.As electronic devices become smaller and more efficient, demands for improved magnetic properties are increasing. It is becoming more and more sought after.

Nd−FeB系の磁石材料についても種々の提案がなさ
れ、例えば、Nd−Fe−B系合金を急冷凝固して薄帯
を製造し、これを粒径250μ程度に粉砕し、得られた
粉末を圧縮成形して磁石材料を製造する方法は公知であ
る。又、Nd−Fe−8合金を急冷凝固させて得られた
薄帯を粉砕し、得られた粉末を700 ’C程度の温度
でホットプレスし、次いで加熱して塑性変形させ、異方
性磁石材料を製造する方法も公知で必る。
Various proposals have also been made regarding Nd-FeB-based magnet materials. For example, a thin strip is produced by rapidly solidifying an Nd-Fe-B-based alloy, which is pulverized to a particle size of about 250μ, and the resulting powder is Methods of producing magnetic materials by compression molding are known. In addition, the thin ribbon obtained by rapidly solidifying the Nd-Fe-8 alloy is crushed, the obtained powder is hot pressed at a temperature of about 700'C, and then heated to plastically deform it to form an anisotropic magnet. Methods of manufacturing the materials are also known.

発明が解決しようとする問題点 しかしながら、前者の方法では、圧縮成形を磁場中で行
っても異方性の永久磁石材料は得られない。又、後者の
方法では、塑性変形を行うに際し、合金微粉末の表面が
酸化を起こし、磁気特性、特に保磁力の低下を引き起こ
し、又、塑性変形に際してホットプレスによって成形さ
れた成形物が欠けたり、或いは崩れたりするという欠点
があった。
Problems to be Solved by the Invention However, with the former method, an anisotropic permanent magnet material cannot be obtained even if compression molding is performed in a magnetic field. In addition, in the latter method, when performing plastic deformation, the surface of the fine alloy powder is oxidized, causing a decrease in magnetic properties, especially coercive force, and also causing chipping of the molded product formed by hot pressing during plastic deformation. , or it may collapse.

本発明は、従来の技術における上記のような欠点に鑑み
てなされたものである。
The present invention has been made in view of the above-mentioned drawbacks in the prior art.

問題点を解決するための手段 本発明は、異方性のNd−Fe−B系永久磁石材料の製
造方法に関するもので必って、Nd−Fe−B系合金を
急冷凝固させて得られた薄帯を粉砕し、得られた粉末を
、所望により室温でプレス成形した後、容器に充瞑し、
容器を密封し、容器内の充填物を塑性変形して異方性化
させることを特徴とする。
Means for Solving the Problems The present invention relates to a method for manufacturing an anisotropic Nd-Fe-B permanent magnet material, which is obtained by rapidly solidifying an Nd-Fe-B alloy. After crushing the ribbon and press-molding the obtained powder at room temperature if desired, filling it into a container,
It is characterized by sealing the container and plastically deforming the filling inside the container to make it anisotropic.

以下、本発明について詳細に説明する。The present invention will be explained in detail below.

本発明において使用されるNd−FeB系合金は、例え
ば次の一般式で示されるものでる。
The Nd-FeB alloy used in the present invention is, for example, one represented by the following general formula.

NdxByFel  X  y (式中、0.05≦X≦0.30.0.01≦y≦0.
10(モル比) 上記一般式中、Ndは、その一部が他の希土類元素によ
って置換されていても良く、又、Bは、その一部がc、
N、s;、p及びA1から選択された1種又はそれ以上
の元素で置換されていても良い。又、Feは、その20
重量%までをCo、Mn、N i、Ti、Zr、Hf、
■、Nb、Cr、Ta、MOl及びWから選択された1
種又はそれ以上の元素によって置換されていても良い。
NdxByFel X y (wherein, 0.05≦X≦0.30.0.01≦y≦0.
10 (molar ratio) In the above general formula, Nd may be partially substituted with another rare earth element, and B may be partially substituted with c,
It may be substituted with one or more elements selected from N, s;, p, and A1. Also, Fe is 20
Co, Mn, Ni, Ti, Zr, Hf,
■, 1 selected from Nb, Cr, Ta, MOL and W
It may be substituted by one or more elements.

本発明においては、上記組成で示される合金成分を不活
性雰囲気中で溶解し、超急冷法により薄帯にし、得られ
た薄帯を常法により、例えばボールミル等により微粉砕
する。次いで、得られた粉末を容器に充填するが、容器
としては、例えば鉄製の物が使用される。充填された容
器は密閉されるが、密閉された容器内は不活性カス雰囲
気又は真空に保持する必要がおり、特に真空、例えば1
X 10−2mmH!7程度の真空にするのが望ましい
。不活性ガスとしてはアルゴン、ネオン、ヘリウム、窒
素等が使用できるが、その場合でも減圧の状態に保持す
るのが好ましい。
In the present invention, the alloy components having the above composition are melted in an inert atmosphere, formed into a ribbon by ultra-quenching, and the resulting ribbon is pulverized by a conventional method such as a ball mill. Next, the obtained powder is filled into a container, which is made of iron, for example. The filled container is hermetically sealed, but the inside of the hermetically sealed container must be maintained in an inert gas atmosphere or vacuum, especially in a vacuum, e.g.
X 10-2mmH! It is desirable to create a vacuum of about 7. As the inert gas, argon, neon, helium, nitrogen, etc. can be used, but even in that case, it is preferable to maintain the pressure in a reduced pressure state.

容器に粉末を充填する場合、取り扱いの容易さ、及び最
終製品の密度の上昇による磁気特性の向上を図るために
、粉末は予め室温で所定の形状にプレス成形し、高密度
にした状態のものにしておいても良い。
When filling a container with powder, the powder should be press-formed into a predetermined shape at room temperature to make it denser in order to make it easier to handle and improve the magnetic properties of the final product by increasing its density. You can leave it as is.

容器に充填し、密閉された粉末又はその成形物は、次い
で、塑性変形処理が施されて異方性化される。塑性変形
は、例えば、一方向のプレス、圧延、スウエージング、
鍛伸等の方法で行われる。
The powder or molded product filled in the container and sealed is then subjected to plastic deformation treatment to be made anisotropic. Plastic deformation can be achieved, for example, by unidirectional pressing, rolling, swaging,
This is done using methods such as forging.

塑性変形は変形ff130%以上になるように行うのが
好ましい。何故ならば、変形量が30%より低いと、充
分な磁気特性が得られないからでおる。
The plastic deformation is preferably performed so that the deformation ff is 130% or more. This is because if the amount of deformation is lower than 30%, sufficient magnetic properties cannot be obtained.

作用 本発明は、Nd−Fe−B系合金を急冷凝固させて得ら
れた薄帯を粉砕し、得られた粉末を、所望により室温で
プレス成形した後、容器に充填し、容器を密封し、容器
内の充填物を塑性変形させるものでおるから、粉砕によ
り得られた粉末の表面は酸化されることなく異方性化さ
れる。したがって、得られるNd−Fe−B系磁石材料
は、優れた磁気特性を有するものとなる。
Function The present invention involves pulverizing a ribbon obtained by rapidly solidifying an Nd-Fe-B alloy, press-forming the obtained powder at room temperature if desired, filling it into a container, and sealing the container. Since the filling in the container is plastically deformed, the surface of the powder obtained by pulverization is made anisotropic without being oxidized. Therefore, the obtained Nd-Fe-B based magnet material has excellent magnetic properties.

実施例 以下、本発明を実施例によって説明する。Example Hereinafter, the present invention will be explained by examples.

実施例1 Nd29重母%、81重冊%及びFe残部よりなる組成
の合金を溶解炉により溶製し、鋳塊を得た。この鋳塊を
溶解し、ロール周速20m/seCで回転する片ロール
上にアルゴンにより吹き出して薄帯化し、得られた薄帯
をボールミルによって粒径200μ以下になるまで粉砕
した。得られた粉末を7t/cnの圧力で空温において
所定の形状にプレス成形し、得られた成形物を炭素鋼容
器に真空度1 X 10−2mmHgになるように真空
密封した。この炭素鋼容器をプレスによって第1表に記
載の温度で、変形量50%になるように圧縮し、塑性変
形させることによって異方性化した。得られた磁石材料
から、磁気特性試験片を切り出し、磁気特性を測定した
。その結果は、第1表に示す通りでめった。なあ、以下
において、3rは残留磁束密度を、B@ c Lt保磁
力を、(BH)maXは最大エネルギ積を示す。
Example 1 An alloy having a composition of 29% Nd, 81% Nd, and the balance Fe was melted in a melting furnace to obtain an ingot. This ingot was melted and blown with argon onto a single roll rotating at a peripheral speed of 20 m/sec to form a thin ribbon, and the obtained ribbon was ground with a ball mill until the particle size was 200 μm or less. The obtained powder was press-molded into a predetermined shape at a pressure of 7 t/cn at air temperature, and the obtained molded product was vacuum-sealed in a carbon steel container at a vacuum degree of 1×10 −2 mmHg. This carbon steel container was compressed by a press at the temperature listed in Table 1 to a deformation amount of 50%, and was plastically deformed to make it anisotropic. A magnetic property test piece was cut out from the obtained magnet material and its magnetic properties were measured. The results were as shown in Table 1. In the following, 3r represents the residual magnetic flux density, B@c Lt coercive force, and (BH)maX the maximum energy product.

第1表 第1表から明らかなように、塑性変形温度が100ない
し900’Cにおいては、磁気特性が優れたものになる
が、特に400〜700’Cにおいては優れた結果が得
られた。
As is clear from Table 1, the magnetic properties are excellent when the plastic deformation temperature is 100 to 900'C, and particularly excellent results were obtained at 400 to 700'C.

実施例2 実施例1におけると同様に処理して磁石材料を製造し、
磁気特性を測定した。但し、塑性変形を、温度600 
’Cの下で、第2表に記載の変形量になるように行った
。結果は、第2表に示す通りで必った。
Example 2 A magnet material was produced by the same treatment as in Example 1,
The magnetic properties were measured. However, plastic deformation at a temperature of 600
'C, the deformation amount was as shown in Table 2. The results were as shown in Table 2.

第2表 ― □ 第2表から明らかなように、塑性変形に際しての変形量
が30%以上になると、磁気特性は優れたちのになった
Table 2 - □ As is clear from Table 2, when the amount of deformation during plastic deformation was 30% or more, the magnetic properties became excellent.

発明の効果 本発明は、前記の構成を有することにより、従来、異方
性磁石の製造が困難でおったNd−Fe−B系合金の急
冷凝固による薄帯から、磁場をかけることなく容易に異
方性化された磁石何科を製造することができる。そして
、その異方性化は、上記薄帯を粉砕して得た粉末を容器
に充填し、密閉して行なうから、粉末粒子の表面が酸化
されることなく行なうことができ、従って、得られるN
d−Fe−8基磁石材料は、優れた磁気特性を有する。
Effects of the Invention By having the above-described structure, the present invention can easily produce an anisotropic magnet from a thin ribbon produced by rapid solidification of an Nd-Fe-B alloy, which has traditionally been difficult to produce, without applying a magnetic field. Several families of anisotropic magnets can be manufactured. The anisotropy can be achieved by filling a container with the powder obtained by crushing the ribbon and sealing the container, so that the anisotropy can be achieved without oxidizing the surface of the powder particles. N
d-Fe-8 based magnet materials have excellent magnetic properties.

Claims (5)

【特許請求の範囲】[Claims] (1)Nd−Fe−B系合金を急冷凝固させて得られた
薄帯を粉砕し、得られた粉末を、所望により室温でプレ
ス成形した後、容器に充填し、容器を密封し、容器内の
充填物を塑性変形して異方性化させることを特徴とする
永久磁石材料の製造方法。
(1) The thin strip obtained by rapidly solidifying the Nd-Fe-B alloy is pulverized, the obtained powder is press-molded at room temperature if desired, and then filled into a container, the container is sealed, and the A method for producing a permanent magnet material, the method comprising plastically deforming a filling therein to make it anisotropic.
(2)塑性変形を100℃〜900℃の温度で行うこと
を特徴とする特許請求の範囲第1項に記載の永久磁石材
料の製造方法。
(2) The method for producing a permanent magnet material according to claim 1, wherein the plastic deformation is performed at a temperature of 100°C to 900°C.
(3)塑性変形を400℃〜700℃の温度で行うこと
を特徴とする特許請求の範囲第1項に記載の永久磁石材
料の製造方法。
(3) The method for producing a permanent magnet material according to claim 1, wherein the plastic deformation is performed at a temperature of 400°C to 700°C.
(4)塑性変形を30%以上の変形量になるように行う
ことを特徴とする特許請求の範囲第1項に記載の永久磁
石材料の製造方法。
(4) The method for manufacturing a permanent magnet material according to claim 1, wherein the plastic deformation is performed to a deformation amount of 30% or more.
(5)上記薄帯を粉砕して得られた粉末を室温でプレス
成形して高密度化し、容器に充填することを特徴とする
特許請求の範囲第1項に記載の永久磁石材料の製造方法
(5) A method for producing a permanent magnet material according to claim 1, characterized in that the powder obtained by pulverizing the ribbon is press-molded at room temperature to increase the density, and then filled into a container. .
JP61255895A 1986-10-29 1986-10-29 Production of permanent magnet material Pending JPS63111155A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61255895A JPS63111155A (en) 1986-10-29 1986-10-29 Production of permanent magnet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61255895A JPS63111155A (en) 1986-10-29 1986-10-29 Production of permanent magnet material

Publications (1)

Publication Number Publication Date
JPS63111155A true JPS63111155A (en) 1988-05-16

Family

ID=17285058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61255895A Pending JPS63111155A (en) 1986-10-29 1986-10-29 Production of permanent magnet material

Country Status (1)

Country Link
JP (1) JPS63111155A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0239503A (en) * 1988-07-29 1990-02-08 Mitsubishi Metal Corp Manufacturing method of rare earth-Fe-B anisotropic permanent magnet
JPH0366105A (en) * 1989-08-04 1991-03-20 Nippon Steel Corp Rare earth anisotropic powder and magnet, and manufacture thereof
EP0488334A2 (en) * 1990-11-30 1992-06-03 Intermetallics Co., Ltd. Method and apparatus for producing a permanent magnet by forming a green and sintered compact
US5505990A (en) * 1992-08-10 1996-04-09 Intermetallics Co., Ltd. Method for forming a coating using powders of different fusion points
US5672363A (en) * 1990-11-30 1997-09-30 Intermetallics Co., Ltd. Production apparatus for making green compact

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0239503A (en) * 1988-07-29 1990-02-08 Mitsubishi Metal Corp Manufacturing method of rare earth-Fe-B anisotropic permanent magnet
JPH0366105A (en) * 1989-08-04 1991-03-20 Nippon Steel Corp Rare earth anisotropic powder and magnet, and manufacture thereof
EP0488334A2 (en) * 1990-11-30 1992-06-03 Intermetallics Co., Ltd. Method and apparatus for producing a permanent magnet by forming a green and sintered compact
US5250255A (en) * 1990-11-30 1993-10-05 Intermetallics Co., Ltd. Method for producing permanent magnet and sintered compact and production apparatus for making green compacts
US5672363A (en) * 1990-11-30 1997-09-30 Intermetallics Co., Ltd. Production apparatus for making green compact
US5505990A (en) * 1992-08-10 1996-04-09 Intermetallics Co., Ltd. Method for forming a coating using powders of different fusion points

Similar Documents

Publication Publication Date Title
JPH0366105A (en) Rare earth anisotropic powder and magnet, and manufacture thereof
JPS63111155A (en) Production of permanent magnet material
JPS6181606A (en) Preparation of rare earth magnet
JPH09263913A (en) Hard magnetic alloy compacted body and its production
JPH0689432B2 (en) Method of manufacturing permanent magnet material
JPS6181604A (en) Preparation of rare earth magnet
JP2794704B2 (en) Manufacturing method of anisotropic permanent magnet
JPS6329908A (en) Manufacture of r-fe-b rare earth magnet
JP2725004B2 (en) Manufacturing method of permanent magnet
JPS6077961A (en) Permanent magnet material and its manufacture
JPH07110965B2 (en) Method for producing alloy powder for resin-bonded permanent magnet
JPH05152113A (en) Manufacture of rare-earth anisotropic magnet powder
JP2642619B2 (en) Manufacturing method of permanent magnet
JPS60165702A (en) Manufacture of permanent magnet
JPS61214402A (en) Manufacture of sintered magnet
JPS63137136A (en) Manufacture of rare earth-iron group sintered permanent magnet material
JPH0997730A (en) Manufacture of sintered permanent magnet
JPH11233323A (en) Manufacture of anisotropic magnet material and manufacture of bond magnet using the same
JPH06224018A (en) Manufacture of r-fe-b-based sintered magnet
JPS63227701A (en) Production of permanent magnet mode of rare earth metal-containing alloy
JPS6140738B2 (en)
JPS62229804A (en) Manufacture of nd-fe-b alloy power for plastic magnet
JPH02252222A (en) Permanent magnet manufacturing method
JPH0227425B2 (en)
JPH02260615A (en) Quasi-anisotropic permanent magnet and manufacture thereof