JPS63111155A - Production of permanent magnet material - Google Patents
Production of permanent magnet materialInfo
- Publication number
- JPS63111155A JPS63111155A JP61255895A JP25589586A JPS63111155A JP S63111155 A JPS63111155 A JP S63111155A JP 61255895 A JP61255895 A JP 61255895A JP 25589586 A JP25589586 A JP 25589586A JP S63111155 A JPS63111155 A JP S63111155A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- permanent magnet
- magnet material
- plastic deformation
- anisotropic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 18
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 239000000843 powder Substances 0.000 claims abstract description 20
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 12
- 239000000956 alloy Substances 0.000 claims abstract description 12
- 229910001172 neodymium magnet Inorganic materials 0.000 claims abstract description 12
- 238000000034 method Methods 0.000 claims abstract description 10
- 238000010298 pulverizing process Methods 0.000 claims abstract description 4
- 238000002844 melting Methods 0.000 abstract description 2
- 230000008018 melting Effects 0.000 abstract description 2
- 238000000465 moulding Methods 0.000 abstract description 2
- 238000003825 pressing Methods 0.000 abstract description 2
- 238000005096 rolling process Methods 0.000 abstract description 2
- 238000001816 cooling Methods 0.000 abstract 3
- 238000012856 packing Methods 0.000 abstract 2
- 239000000155 melt Substances 0.000 abstract 1
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910000975 Carbon steel Inorganic materials 0.000 description 2
- 229910052779 Neodymium Inorganic materials 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 239000010962 carbon steel Substances 0.000 description 2
- 238000000748 compression moulding Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 238000007712 rapid solidification Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
- H01F1/0575—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
- H01F1/0576—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Powder Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、異方性Nd−Fe−B系永久磁石材料の製造
方法に関する。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing an anisotropic Nd-Fe-B permanent magnet material.
従来の技術
永久磁石材料は、一般家庭電気製品から精密機器、自動
車部品に至るまで、広い分野にわたって使用されてあり
、電子機器の小形化、高効率化の要求にともない、その
磁気特性の向上が益々求められるようになっている。Conventional technology Permanent magnetic materials are used in a wide range of fields, from general household electrical appliances to precision equipment and automobile parts.As electronic devices become smaller and more efficient, demands for improved magnetic properties are increasing. It is becoming more and more sought after.
Nd−FeB系の磁石材料についても種々の提案がなさ
れ、例えば、Nd−Fe−B系合金を急冷凝固して薄帯
を製造し、これを粒径250μ程度に粉砕し、得られた
粉末を圧縮成形して磁石材料を製造する方法は公知であ
る。又、Nd−Fe−8合金を急冷凝固させて得られた
薄帯を粉砕し、得られた粉末を700 ’C程度の温度
でホットプレスし、次いで加熱して塑性変形させ、異方
性磁石材料を製造する方法も公知で必る。Various proposals have also been made regarding Nd-FeB-based magnet materials. For example, a thin strip is produced by rapidly solidifying an Nd-Fe-B-based alloy, which is pulverized to a particle size of about 250μ, and the resulting powder is Methods of producing magnetic materials by compression molding are known. In addition, the thin ribbon obtained by rapidly solidifying the Nd-Fe-8 alloy is crushed, the obtained powder is hot pressed at a temperature of about 700'C, and then heated to plastically deform it to form an anisotropic magnet. Methods of manufacturing the materials are also known.
発明が解決しようとする問題点
しかしながら、前者の方法では、圧縮成形を磁場中で行
っても異方性の永久磁石材料は得られない。又、後者の
方法では、塑性変形を行うに際し、合金微粉末の表面が
酸化を起こし、磁気特性、特に保磁力の低下を引き起こ
し、又、塑性変形に際してホットプレスによって成形さ
れた成形物が欠けたり、或いは崩れたりするという欠点
があった。Problems to be Solved by the Invention However, with the former method, an anisotropic permanent magnet material cannot be obtained even if compression molding is performed in a magnetic field. In addition, in the latter method, when performing plastic deformation, the surface of the fine alloy powder is oxidized, causing a decrease in magnetic properties, especially coercive force, and also causing chipping of the molded product formed by hot pressing during plastic deformation. , or it may collapse.
本発明は、従来の技術における上記のような欠点に鑑み
てなされたものである。The present invention has been made in view of the above-mentioned drawbacks in the prior art.
問題点を解決するための手段
本発明は、異方性のNd−Fe−B系永久磁石材料の製
造方法に関するもので必って、Nd−Fe−B系合金を
急冷凝固させて得られた薄帯を粉砕し、得られた粉末を
、所望により室温でプレス成形した後、容器に充瞑し、
容器を密封し、容器内の充填物を塑性変形して異方性化
させることを特徴とする。Means for Solving the Problems The present invention relates to a method for manufacturing an anisotropic Nd-Fe-B permanent magnet material, which is obtained by rapidly solidifying an Nd-Fe-B alloy. After crushing the ribbon and press-molding the obtained powder at room temperature if desired, filling it into a container,
It is characterized by sealing the container and plastically deforming the filling inside the container to make it anisotropic.
以下、本発明について詳細に説明する。The present invention will be explained in detail below.
本発明において使用されるNd−FeB系合金は、例え
ば次の一般式で示されるものでる。The Nd-FeB alloy used in the present invention is, for example, one represented by the following general formula.
NdxByFel X y
(式中、0.05≦X≦0.30.0.01≦y≦0.
10(モル比)
上記一般式中、Ndは、その一部が他の希土類元素によ
って置換されていても良く、又、Bは、その一部がc、
N、s;、p及びA1から選択された1種又はそれ以上
の元素で置換されていても良い。又、Feは、その20
重量%までをCo、Mn、N i、Ti、Zr、Hf、
■、Nb、Cr、Ta、MOl及びWから選択された1
種又はそれ以上の元素によって置換されていても良い。NdxByFel X y (wherein, 0.05≦X≦0.30.0.01≦y≦0.
10 (molar ratio) In the above general formula, Nd may be partially substituted with another rare earth element, and B may be partially substituted with c,
It may be substituted with one or more elements selected from N, s;, p, and A1. Also, Fe is 20
Co, Mn, Ni, Ti, Zr, Hf,
■, 1 selected from Nb, Cr, Ta, MOL and W
It may be substituted by one or more elements.
本発明においては、上記組成で示される合金成分を不活
性雰囲気中で溶解し、超急冷法により薄帯にし、得られ
た薄帯を常法により、例えばボールミル等により微粉砕
する。次いで、得られた粉末を容器に充填するが、容器
としては、例えば鉄製の物が使用される。充填された容
器は密閉されるが、密閉された容器内は不活性カス雰囲
気又は真空に保持する必要がおり、特に真空、例えば1
X 10−2mmH!7程度の真空にするのが望ましい
。不活性ガスとしてはアルゴン、ネオン、ヘリウム、窒
素等が使用できるが、その場合でも減圧の状態に保持す
るのが好ましい。In the present invention, the alloy components having the above composition are melted in an inert atmosphere, formed into a ribbon by ultra-quenching, and the resulting ribbon is pulverized by a conventional method such as a ball mill. Next, the obtained powder is filled into a container, which is made of iron, for example. The filled container is hermetically sealed, but the inside of the hermetically sealed container must be maintained in an inert gas atmosphere or vacuum, especially in a vacuum, e.g.
X 10-2mmH! It is desirable to create a vacuum of about 7. As the inert gas, argon, neon, helium, nitrogen, etc. can be used, but even in that case, it is preferable to maintain the pressure in a reduced pressure state.
容器に粉末を充填する場合、取り扱いの容易さ、及び最
終製品の密度の上昇による磁気特性の向上を図るために
、粉末は予め室温で所定の形状にプレス成形し、高密度
にした状態のものにしておいても良い。When filling a container with powder, the powder should be press-formed into a predetermined shape at room temperature to make it denser in order to make it easier to handle and improve the magnetic properties of the final product by increasing its density. You can leave it as is.
容器に充填し、密閉された粉末又はその成形物は、次い
で、塑性変形処理が施されて異方性化される。塑性変形
は、例えば、一方向のプレス、圧延、スウエージング、
鍛伸等の方法で行われる。The powder or molded product filled in the container and sealed is then subjected to plastic deformation treatment to be made anisotropic. Plastic deformation can be achieved, for example, by unidirectional pressing, rolling, swaging,
This is done using methods such as forging.
塑性変形は変形ff130%以上になるように行うのが
好ましい。何故ならば、変形量が30%より低いと、充
分な磁気特性が得られないからでおる。The plastic deformation is preferably performed so that the deformation ff is 130% or more. This is because if the amount of deformation is lower than 30%, sufficient magnetic properties cannot be obtained.
作用
本発明は、Nd−Fe−B系合金を急冷凝固させて得ら
れた薄帯を粉砕し、得られた粉末を、所望により室温で
プレス成形した後、容器に充填し、容器を密封し、容器
内の充填物を塑性変形させるものでおるから、粉砕によ
り得られた粉末の表面は酸化されることなく異方性化さ
れる。したがって、得られるNd−Fe−B系磁石材料
は、優れた磁気特性を有するものとなる。Function The present invention involves pulverizing a ribbon obtained by rapidly solidifying an Nd-Fe-B alloy, press-forming the obtained powder at room temperature if desired, filling it into a container, and sealing the container. Since the filling in the container is plastically deformed, the surface of the powder obtained by pulverization is made anisotropic without being oxidized. Therefore, the obtained Nd-Fe-B based magnet material has excellent magnetic properties.
実施例 以下、本発明を実施例によって説明する。Example Hereinafter, the present invention will be explained by examples.
実施例1
Nd29重母%、81重冊%及びFe残部よりなる組成
の合金を溶解炉により溶製し、鋳塊を得た。この鋳塊を
溶解し、ロール周速20m/seCで回転する片ロール
上にアルゴンにより吹き出して薄帯化し、得られた薄帯
をボールミルによって粒径200μ以下になるまで粉砕
した。得られた粉末を7t/cnの圧力で空温において
所定の形状にプレス成形し、得られた成形物を炭素鋼容
器に真空度1 X 10−2mmHgになるように真空
密封した。この炭素鋼容器をプレスによって第1表に記
載の温度で、変形量50%になるように圧縮し、塑性変
形させることによって異方性化した。得られた磁石材料
から、磁気特性試験片を切り出し、磁気特性を測定した
。その結果は、第1表に示す通りでめった。なあ、以下
において、3rは残留磁束密度を、B@ c Lt保磁
力を、(BH)maXは最大エネルギ積を示す。Example 1 An alloy having a composition of 29% Nd, 81% Nd, and the balance Fe was melted in a melting furnace to obtain an ingot. This ingot was melted and blown with argon onto a single roll rotating at a peripheral speed of 20 m/sec to form a thin ribbon, and the obtained ribbon was ground with a ball mill until the particle size was 200 μm or less. The obtained powder was press-molded into a predetermined shape at a pressure of 7 t/cn at air temperature, and the obtained molded product was vacuum-sealed in a carbon steel container at a vacuum degree of 1×10 −2 mmHg. This carbon steel container was compressed by a press at the temperature listed in Table 1 to a deformation amount of 50%, and was plastically deformed to make it anisotropic. A magnetic property test piece was cut out from the obtained magnet material and its magnetic properties were measured. The results were as shown in Table 1. In the following, 3r represents the residual magnetic flux density, B@c Lt coercive force, and (BH)maX the maximum energy product.
第1表
第1表から明らかなように、塑性変形温度が100ない
し900’Cにおいては、磁気特性が優れたものになる
が、特に400〜700’Cにおいては優れた結果が得
られた。As is clear from Table 1, the magnetic properties are excellent when the plastic deformation temperature is 100 to 900'C, and particularly excellent results were obtained at 400 to 700'C.
実施例2
実施例1におけると同様に処理して磁石材料を製造し、
磁気特性を測定した。但し、塑性変形を、温度600
’Cの下で、第2表に記載の変形量になるように行った
。結果は、第2表に示す通りで必った。Example 2 A magnet material was produced by the same treatment as in Example 1,
The magnetic properties were measured. However, plastic deformation at a temperature of 600
'C, the deformation amount was as shown in Table 2. The results were as shown in Table 2.
第2表
―
□
第2表から明らかなように、塑性変形に際しての変形量
が30%以上になると、磁気特性は優れたちのになった
。Table 2 - □ As is clear from Table 2, when the amount of deformation during plastic deformation was 30% or more, the magnetic properties became excellent.
発明の効果
本発明は、前記の構成を有することにより、従来、異方
性磁石の製造が困難でおったNd−Fe−B系合金の急
冷凝固による薄帯から、磁場をかけることなく容易に異
方性化された磁石何科を製造することができる。そして
、その異方性化は、上記薄帯を粉砕して得た粉末を容器
に充填し、密閉して行なうから、粉末粒子の表面が酸化
されることなく行なうことができ、従って、得られるN
d−Fe−8基磁石材料は、優れた磁気特性を有する。Effects of the Invention By having the above-described structure, the present invention can easily produce an anisotropic magnet from a thin ribbon produced by rapid solidification of an Nd-Fe-B alloy, which has traditionally been difficult to produce, without applying a magnetic field. Several families of anisotropic magnets can be manufactured. The anisotropy can be achieved by filling a container with the powder obtained by crushing the ribbon and sealing the container, so that the anisotropy can be achieved without oxidizing the surface of the powder particles. N
d-Fe-8 based magnet materials have excellent magnetic properties.
Claims (5)
薄帯を粉砕し、得られた粉末を、所望により室温でプレ
ス成形した後、容器に充填し、容器を密封し、容器内の
充填物を塑性変形して異方性化させることを特徴とする
永久磁石材料の製造方法。(1) The thin strip obtained by rapidly solidifying the Nd-Fe-B alloy is pulverized, the obtained powder is press-molded at room temperature if desired, and then filled into a container, the container is sealed, and the A method for producing a permanent magnet material, the method comprising plastically deforming a filling therein to make it anisotropic.
を特徴とする特許請求の範囲第1項に記載の永久磁石材
料の製造方法。(2) The method for producing a permanent magnet material according to claim 1, wherein the plastic deformation is performed at a temperature of 100°C to 900°C.
を特徴とする特許請求の範囲第1項に記載の永久磁石材
料の製造方法。(3) The method for producing a permanent magnet material according to claim 1, wherein the plastic deformation is performed at a temperature of 400°C to 700°C.
ことを特徴とする特許請求の範囲第1項に記載の永久磁
石材料の製造方法。(4) The method for manufacturing a permanent magnet material according to claim 1, wherein the plastic deformation is performed to a deformation amount of 30% or more.
成形して高密度化し、容器に充填することを特徴とする
特許請求の範囲第1項に記載の永久磁石材料の製造方法
。(5) A method for producing a permanent magnet material according to claim 1, characterized in that the powder obtained by pulverizing the ribbon is press-molded at room temperature to increase the density, and then filled into a container. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61255895A JPS63111155A (en) | 1986-10-29 | 1986-10-29 | Production of permanent magnet material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61255895A JPS63111155A (en) | 1986-10-29 | 1986-10-29 | Production of permanent magnet material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63111155A true JPS63111155A (en) | 1988-05-16 |
Family
ID=17285058
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61255895A Pending JPS63111155A (en) | 1986-10-29 | 1986-10-29 | Production of permanent magnet material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63111155A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0239503A (en) * | 1988-07-29 | 1990-02-08 | Mitsubishi Metal Corp | Manufacturing method of rare earth-Fe-B anisotropic permanent magnet |
JPH0366105A (en) * | 1989-08-04 | 1991-03-20 | Nippon Steel Corp | Rare earth anisotropic powder and magnet, and manufacture thereof |
EP0488334A2 (en) * | 1990-11-30 | 1992-06-03 | Intermetallics Co., Ltd. | Method and apparatus for producing a permanent magnet by forming a green and sintered compact |
US5505990A (en) * | 1992-08-10 | 1996-04-09 | Intermetallics Co., Ltd. | Method for forming a coating using powders of different fusion points |
US5672363A (en) * | 1990-11-30 | 1997-09-30 | Intermetallics Co., Ltd. | Production apparatus for making green compact |
-
1986
- 1986-10-29 JP JP61255895A patent/JPS63111155A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0239503A (en) * | 1988-07-29 | 1990-02-08 | Mitsubishi Metal Corp | Manufacturing method of rare earth-Fe-B anisotropic permanent magnet |
JPH0366105A (en) * | 1989-08-04 | 1991-03-20 | Nippon Steel Corp | Rare earth anisotropic powder and magnet, and manufacture thereof |
EP0488334A2 (en) * | 1990-11-30 | 1992-06-03 | Intermetallics Co., Ltd. | Method and apparatus for producing a permanent magnet by forming a green and sintered compact |
US5250255A (en) * | 1990-11-30 | 1993-10-05 | Intermetallics Co., Ltd. | Method for producing permanent magnet and sintered compact and production apparatus for making green compacts |
US5672363A (en) * | 1990-11-30 | 1997-09-30 | Intermetallics Co., Ltd. | Production apparatus for making green compact |
US5505990A (en) * | 1992-08-10 | 1996-04-09 | Intermetallics Co., Ltd. | Method for forming a coating using powders of different fusion points |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0366105A (en) | Rare earth anisotropic powder and magnet, and manufacture thereof | |
JPS63111155A (en) | Production of permanent magnet material | |
JPS6181606A (en) | Preparation of rare earth magnet | |
JPH09263913A (en) | Hard magnetic alloy compacted body and its production | |
JPH0689432B2 (en) | Method of manufacturing permanent magnet material | |
JPS6181604A (en) | Preparation of rare earth magnet | |
JP2794704B2 (en) | Manufacturing method of anisotropic permanent magnet | |
JPS6329908A (en) | Manufacture of r-fe-b rare earth magnet | |
JP2725004B2 (en) | Manufacturing method of permanent magnet | |
JPS6077961A (en) | Permanent magnet material and its manufacture | |
JPH07110965B2 (en) | Method for producing alloy powder for resin-bonded permanent magnet | |
JPH05152113A (en) | Manufacture of rare-earth anisotropic magnet powder | |
JP2642619B2 (en) | Manufacturing method of permanent magnet | |
JPS60165702A (en) | Manufacture of permanent magnet | |
JPS61214402A (en) | Manufacture of sintered magnet | |
JPS63137136A (en) | Manufacture of rare earth-iron group sintered permanent magnet material | |
JPH0997730A (en) | Manufacture of sintered permanent magnet | |
JPH11233323A (en) | Manufacture of anisotropic magnet material and manufacture of bond magnet using the same | |
JPH06224018A (en) | Manufacture of r-fe-b-based sintered magnet | |
JPS63227701A (en) | Production of permanent magnet mode of rare earth metal-containing alloy | |
JPS6140738B2 (en) | ||
JPS62229804A (en) | Manufacture of nd-fe-b alloy power for plastic magnet | |
JPH02252222A (en) | Permanent magnet manufacturing method | |
JPH0227425B2 (en) | ||
JPH02260615A (en) | Quasi-anisotropic permanent magnet and manufacture thereof |