JPS6310981A - video printer - Google Patents
video printerInfo
- Publication number
- JPS6310981A JPS6310981A JP61155645A JP15564586A JPS6310981A JP S6310981 A JPS6310981 A JP S6310981A JP 61155645 A JP61155645 A JP 61155645A JP 15564586 A JP15564586 A JP 15564586A JP S6310981 A JPS6310981 A JP S6310981A
- Authority
- JP
- Japan
- Prior art keywords
- signal
- conversion
- video
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000006243 chemical reaction Methods 0.000 claims abstract description 31
- 238000012937 correction Methods 0.000 description 11
- 230000000694 effects Effects 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000013139 quantization Methods 0.000 description 1
- 238000007430 reference method Methods 0.000 description 1
Landscapes
- Television Signal Processing For Recording (AREA)
- Facsimile Image Signal Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はビデオプリンタに係り、特に階調性を出すプリ
ンタに好適な画質向上を図ったビデオプリンタに関する
。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a video printer, and particularly to a video printer with improved image quality suitable for a printer that produces gradation.
従来プリンタ側のγ補正は文献(IEEE。 Conventionally, γ correction on the printer side is described in the literature (IEEE).
CE−28,Nα3のP、228のFig、 6参照)
にあるようにA/D変換する前にγ補正回路を設けて行
なっていた。この方法では画像信号のメモリは1ライン
分しか持たないのに対し、実際に動画をプリントする場
合には1画面メモリが必要で、この場合にはメモリ画像
を再モニターする必要上、γ補正回路が邪魔になり、し
たがって逆γ補正をD/A変換後、行なう必要があった
。CE-28, P of Nα3, see Fig. 6 of 228)
As shown in , a γ correction circuit was provided before A/D conversion. In this method, the memory for the image signal is only for one line, but when actually printing a moving image, one screen memory is required.In this case, the memory image needs to be remonitored, and the gamma correction Therefore, it was necessary to perform inverse γ correction after D/A conversion.
上記従来技術では画面メモリーを持つ場合、アナログの
γ補正回路を入力と出力にそれぞれ1個持つ必要があっ
た。この場合、γ補正回路は非線形回路で部品数も多く
、特性を揃えることがむつかしく、γ補正された信号を
逆γ補正により、もと通りにするのはアナログで行なう
かぎり、多少の誤差を伴なっていた。In the conventional technology described above, when a screen memory is provided, it is necessary to have one analog γ correction circuit for each input and output. In this case, the γ correction circuit is a non-linear circuit with a large number of components, and it is difficult to make the characteristics uniform, and as long as the γ-corrected signal is restored to its original state by inverse γ correction, as long as it is done in analog, some errors will occur. It had become.
本発明の目的はこれらのγ補正、逆γ補正を簡単な方法
で精度よく行なうことにより、高画質のビデオプリンタ
を提供することにある。An object of the present invention is to provide a high-quality video printer by performing these gamma corrections and inverse gamma corrections in a simple manner and with high precision.
上記目的を達成するために、本発明は、γ補正をディジ
タル信号側で行なうことにより、アナログで問題となる
補正の精度の問題を解決するとともに1部品点数を減ら
すことにある。In order to achieve the above object, the present invention performs γ correction on the digital signal side, thereby solving the correction accuracy problem that occurs in analog systems and reducing the number of parts.
すなわち、ビデオ信号とアナログからディジタルに変換
した後、非線形に信号変換する。これはテーブルを参照
する方式で容易に達成でき、アナログのようなばらつき
もなく1部品も簡単になる。That is, after converting the video signal and analog to digital, the signal is converted nonlinearly. This can be easily achieved by referring to a table, and there is no variation unlike in analog systems, and each component is simplified.
しかしディジタルの演算になるため、信号の桁落ちが発
生する。これを防止するため、A/D変換器の量子化の
bit数を、プリントで使用するbit数よりも大きく
し、ディジタルの状態で非線形の信号変換を行ない、そ
の後プリントで必要とするbit数だけの信号を取り出
し、メモリーに記憶したり、プリントしたりするのであ
る。このようにすると、ディジタルの演算による桁落を
防止することが出来るようになる。またディジタル化し
た信号を画像メモリーに格納し、画像モニターに出力す
る場合、D/A変換する前に、逆の信号変換をディジタ
ルで行なうことにより、画像を正しくモニターすること
ができる。However, since it is a digital calculation, signal loss occurs. To prevent this, the number of quantization bits of the A/D converter is made larger than the number of bits used for printing, nonlinear signal conversion is performed in the digital state, and then only the number of bits required for printing is performed. The signal is extracted and stored in memory or printed. In this way, it becomes possible to prevent a loss of digits due to digital calculations. Furthermore, when storing a digitized signal in an image memory and outputting it to an image monitor, the image can be correctly monitored by performing reverse signal conversion digitally before D/A conversion.
以下、本発明の一実施例を第1図により説明する。すな
わちビデオ信号はA/D変換器1により、mbitに離
散化される。その後、ROMテーブル等によるテーブル
参照方式によりγ乗の非線形変換器2により変換を行な
う。変換後、上位nbitを変換後の信号として画像メ
モリー3に記憶する63より出力されるnbitの信号
は階調制御回路4により記憶ヘッドへ送られる。一方、
3の出力はROM等を用いた非線形逆変換器5により1
/γ乗された後、D/A変換器6を経て、モニターテレ
ビ等に送られ、記憶された画面をモニターするようにな
っている。この場合m ) nとするとγ乗の変換によ
るデータの桁落が防止できる。またγの値としてはブラ
ウン管のγである2、2 またはそれ以上とする。以下
にγ≧2.2 とする理由を述べる。An embodiment of the present invention will be described below with reference to FIG. That is, the video signal is discretized into mbits by the A/D converter 1. Thereafter, conversion is performed by the γ-power nonlinear converter 2 using a table reference method using a ROM table or the like. After conversion, the upper n bits are stored in the image memory 3 as the converted signal.The n-bit signal outputted from 63 is sent to the storage head by the gradation control circuit 4. on the other hand,
The output of 3 is converted to 1 by a nonlinear inverse transformer 5 using ROM etc.
After being multiplied by /γ, the signal is sent to a monitor television or the like via a D/A converter 6, so that the stored screen can be monitored. In this case, by setting m) to n, data loss due to conversion to the γ power can be prevented. Further, the value of γ is set to 2, which is the γ of a cathode ray tube, or 2 or more. The reason for setting γ≧2.2 will be described below.
第2図に信号とプリント濃度の関係を示す。すなわち、
ビデオカメラに入射する光の輝度をE。FIG. 2 shows the relationship between the signal and print density. That is,
E is the brightness of the light incident on the video camera.
(%)、ビデオカメラの出力電圧をEv (%)(反
射率1%)であり、これ以上の濃度を実現するのはかな
りむつかしく、実用上は1.5でも使用できる。第2図
においてD=1.5 の場合のEv’ の値をみると
y=I Ev’=20.8%
γ=2.2 EV’ =3.16%y=2.64
Ev’ =1.58%となっており、γ=1のときE
ν′ の20%が黒の領域になり、離散化しても利用で
きないことになる。たとえば64階調で中間調を制御す
るとき64 x O,2弁13 となって13g!贋分
が利用されないことになる。γを2.2,2.64と大
きくすれば殆んど利用できることになる6表1に64階
調の場合について、濃度ごとにあられせるVll調髪示
す、すなわちγを大きくすることにより。(%), and the output voltage of the video camera is Ev (%) (reflectance of 1%), and it is quite difficult to achieve a higher density than this, so even 1.5 can be used in practice. In Fig. 2, the value of Ev' when D=1.5 is y=I Ev'=20.8% γ=2.2 EV'=3.16%y=2.64
Ev' = 1.58%, and when γ = 1, E
20% of ν' becomes a black area and cannot be used even if it is discretized. For example, when controlling the intermediate tone with 64 gradations, it becomes 64 x O, 2 valves 13, and 13g! The counterfeit portion will not be used. If γ is increased to 2.2 or 2.64, most of the results can be used.6 Table 1 shows the Vll tone that occurs for each density in the case of 64 gradations, that is, by increasing γ.
D=1.5 以上の階調数が減少し、D=O〜0.5間
が増加し、特に低濃度領域を細かく表現できることがわ
かる。It can be seen that the number of gradations above D=1.5 decreases, and increases between D=O and 0.5, making it possible to express particularly low density regions finely.
表1 あられせる階調数
γの値としては表1からγ=2.2以上とすれば、D=
1.5 以上の階調数も少なく、D=O〜0.5 では
γ=1の場合のほぼ2倍の細かさで濃度をあられすこと
ができる。Table 1 From Table 1, if γ = 2.2 or more, then D =
The number of gradations of 1.5 or more is also small, and when D=O to 0.5, the density can be approximately twice as fine as when γ=1.
第1図ではA/D変換後、ディジタルで非線形の変換、
逆変換を行なっているが、A/D変換の前及びD/A変
換の後でアナログ信号の状態で非線形変換する場合も同
様の効果が期待できる。ディジタルを行なう場合の利点
を以下に示す。In Figure 1, after A/D conversion, digital nonlinear conversion,
Although inverse conversion is performed, similar effects can be expected when nonlinear conversion is performed in the analog signal state before A/D conversion and after D/A conversion. The advantages of digital implementation are shown below.
1)非線形変換回路が簡単で、調整不要となる。1) The nonlinear conversion circuit is simple and does not require adjustment.
2)アナログでは変換し、逆変換しても完全にもとに戻
らず、誤差に伴なうが、ディジタルではもとに戻る。2) In analog, even when converted and inversely converted, it does not completely return to its original state and is accompanied by an error, but in digital it returns to its original state.
3)γの変更もROMテーブルの書きかえで自由にでき
、画像による調節もできる。3) γ can be changed freely by rewriting the ROM table, and can also be adjusted using images.
第3図にEv’ とDを直線関係にした場合を示す。Figure 3 shows a case where Ev' and D are in a linear relationship.
第3図の(1)は
(2)は
の場合で第1象限に対応するEv’ とEvの関係を示
している。すなわちEv’ とEvを曲m (1)のよ
うに与える濃度とEv’ は直線関係となり、0.5
≧D≧0.1.0≧D≧0.5,1.5≧D≧1.0
の3つの範囲に入る階調数はそれぞれ21個と等しくな
る。また(2)のように与えた場合にはDとEv’
は3個の直線であられすことができ、階調数はD=O〜
0.5で32.D=0.5〜1で19.D=1.0〜1
.5で13となる。すなわち、DとEv’ を直線あ
るいは折線の形に与えることにより目的の濃度付近での
階調の数を調節でき、擬似輪郭が目立たない高画質のプ
リントを得ることが出来る。In FIG. 3, (1) and (2) show the relationship between Ev' and Ev corresponding to the first quadrant. In other words, there is a linear relationship between Ev' and the concentration where Ev is given as shown in curve m (1), and Ev' is 0.5
≧D≧0.1.0≧D≧0.5, 1.5≧D≧1.0
The number of gradations within each of the three ranges is equal to 21. Also, when given as in (2), D and Ev'
can be drawn by three straight lines, and the number of gradations is D=O~
0.5 is 32. D=0.5-1 and 19. D=1.0~1
.. 5 becomes 13. That is, by giving D and Ev' in the form of a straight line or a broken line, the number of gradations near the target density can be adjusted, and a high-quality print in which false contours are not noticeable can be obtained.
以上、本発明によれば簡単な回路で、プリントの濃度を
細かくすることができ、高画質で擬似軸郭が出にくいプ
リントを提供できる効果がある。As described above, according to the present invention, the density of the print can be made fine with a simple circuit, and there is an effect that it is possible to provide a print with high image quality and in which false axis outlines are less likely to appear.
第1図は本発明の実施例を示す図、第2図および第3図
はビデオ信号とプリント濃度の関係を示す図である。
1・・・A/D変換器、2・・・非線形変換器、3・・
・画像メモリ、4・・・Nm制御回路、5・・・非線形
逆変換器。
6・・・D/A変換器。FIG. 1 is a diagram showing an embodiment of the present invention, and FIGS. 2 and 3 are diagrams showing the relationship between a video signal and print density. 1...A/D converter, 2...Nonlinear converter, 3...
- Image memory, 4...Nm control circuit, 5... Nonlinear inverse transformer. 6...D/A converter.
Claims (1)
を得るビデオプリンタに於いて、該ビデオ信号の入力部
分で、非線形の信号変換を行なうことを特徴とするビデ
オプリンタ。 2、特許請求の範囲第1項において、非線形の信号変換
を、入力信号をγ乗したものを出力信号とする変換とし
、γが2.2に等しいか、大きいことを特徴とするビデ
オプリンタ。 3、ビデオ信号を入力して、その中間調画像のプリント
を得るビデオプリンタに於いて、該ビデオ信号をプリン
トで表現する階調の信号ビット数に等しいか、より大き
いビット数でディジタル信号に変換すると共に、該ディ
ジタル信号に非線形の信号変換を施した後、プリントで
表現する階調ビット数に等しくすることを特徴とするビ
デオプリンタ。 4、特許請求の範囲第3項に於いて、非線形の信号変換
を、入力信号をγ乗したものを出力信号とする変換とし
、γが2.2に等しいか大きいことを特徴とするビデオ
プリンタ。 5、特許請求の範囲第1項又は第3項において、画面メ
モリを備え、メモリの出力をプリントを得るためのディ
ジタル信号とすると共に、別途D/A変換器を通してア
ナログ信号に変換後、該プリンタ入口で行なつた非線形
の信号変換の逆変換を行ない、モニターテレビ等に出力
することを特徴とするビデオプリンタ。 6、特許請求の範囲第1項又は第3項において、画面メ
モリを備え、非線形の信号変換後、該画面メモリに蓄え
ると共に、該画面メモリの出力をプリントを得るための
信号とすると共に、別途、該両面メモリの出力に前に実
施した非線形の信号変換の逆変換を施した後、D/A変
換器を通してアナログ信号とし、モニターテレビ等に出
力することを特徴とするビデオプリンタ。[Claims] 1. A video printer that inputs a video signal and prints a halftone image thereof, which performs nonlinear signal conversion at the input portion of the video signal. . 2. A video printer according to claim 1, wherein the nonlinear signal conversion is a conversion in which an input signal raised to the γ power is used as an output signal, and γ is equal to or larger than 2.2. 3. In a video printer that receives a video signal and prints a halftone image, converts the video signal into a digital signal with a bit number equal to or greater than the number of signal bits of the gradation expressed in the print. A video printer characterized in that the digital signal is subjected to non-linear signal conversion and then made equal to the number of gradation bits expressed in a print. 4. A video printer according to claim 3, characterized in that the nonlinear signal conversion is a conversion in which an input signal raised to the power of γ is used as an output signal, and γ is equal to or larger than 2.2. . 5. In claim 1 or 3, the printer is provided with a screen memory, the output of the memory is converted into a digital signal for obtaining a print, and the printer is converted into an analog signal through a separate D/A converter. A video printer that performs inverse conversion of the nonlinear signal conversion performed at the entrance and outputs the result to a monitor television or the like. 6. In claim 1 or 3, a screen memory is provided, and after non-linear signal conversion, the screen memory stores the output, the output of the screen memory is used as a signal for obtaining a print, and a separate A video printer characterized in that the output of the double-sided memory is subjected to an inverse conversion of the nonlinear signal conversion performed previously, and then converted to an analog signal through a D/A converter and output to a monitor television or the like.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61155645A JPH0787566B2 (en) | 1986-07-02 | 1986-07-02 | Video printer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61155645A JPH0787566B2 (en) | 1986-07-02 | 1986-07-02 | Video printer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6310981A true JPS6310981A (en) | 1988-01-18 |
JPH0787566B2 JPH0787566B2 (en) | 1995-09-20 |
Family
ID=15610498
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61155645A Expired - Lifetime JPH0787566B2 (en) | 1986-07-02 | 1986-07-02 | Video printer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0787566B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010200382A (en) * | 2010-06-14 | 2010-09-09 | Canon Inc | Computer and image processing method in image processing system, and program |
JP4587155B2 (en) * | 2001-08-09 | 2010-11-24 | キヤノン株式会社 | Image processing system, method, and program |
US7978384B2 (en) | 2000-09-29 | 2011-07-12 | Canon Kabushiki Kaisha | Image processing system, image processing apparatus, image processing method, and storage medium thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52142445A (en) * | 1976-05-21 | 1977-11-28 | Toshiba Corp | Computing method |
JPS60139080A (en) * | 1983-12-27 | 1985-07-23 | Canon Inc | Picture forming device |
-
1986
- 1986-07-02 JP JP61155645A patent/JPH0787566B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52142445A (en) * | 1976-05-21 | 1977-11-28 | Toshiba Corp | Computing method |
JPS60139080A (en) * | 1983-12-27 | 1985-07-23 | Canon Inc | Picture forming device |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7978384B2 (en) | 2000-09-29 | 2011-07-12 | Canon Kabushiki Kaisha | Image processing system, image processing apparatus, image processing method, and storage medium thereof |
JP4587155B2 (en) * | 2001-08-09 | 2010-11-24 | キヤノン株式会社 | Image processing system, method, and program |
JP2010200382A (en) * | 2010-06-14 | 2010-09-09 | Canon Inc | Computer and image processing method in image processing system, and program |
Also Published As
Publication number | Publication date |
---|---|
JPH0787566B2 (en) | 1995-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0717551B1 (en) | Image processing apparatus | |
JP2748678B2 (en) | Gradation correction method and gradation correction device | |
US5293258A (en) | Automatic correction for color printing | |
EP0651563A1 (en) | Apparatus for transforming a digital color image signal | |
JPH10506767A (en) | Method and apparatus for reducing bit rate and reconstructing image data using a dither array | |
JPH05219377A (en) | Method of quantizing in-picture picture element value | |
US6137542A (en) | Digital correction of linear approximation of gamma | |
US6999213B2 (en) | Image processing system, image processing apparatus, image processing method, and storage medium thereof | |
JPH06113124A (en) | Preparation method of image signal | |
US5537496A (en) | Method of any apparatus for converting gradient of image data | |
JPS6310981A (en) | video printer | |
US5506698A (en) | Image reproducing apparatus and process wherein minimized average error technique is used for each of fractions of original pel intensity value | |
JP2942072B2 (en) | How to create a gamma correction table | |
JP2006254432A (en) | Digital image data-processing method for processing digital image data | |
JP3121379B2 (en) | Color television signal transmission system | |
JPS61157191A (en) | Video printer device | |
JP3254749B2 (en) | Image reading device | |
JPH02254870A (en) | Quantizing method for video signal | |
JPH0563984A (en) | Half tone binary data generation circuit | |
JPH10108041A (en) | Nonlinear processing circuit | |
JPH0378094A (en) | Picture gradient converting device | |
JPS62110364A (en) | Correcting device for pseudo halftone color | |
JPH0563982A (en) | Pseudo half tone processing circuit | |
JPH0117309B2 (en) | ||
JPH0575862A (en) | Quantization error reduction method |