JPS63108318A - Laser working device - Google Patents
Laser working deviceInfo
- Publication number
- JPS63108318A JPS63108318A JP61254884A JP25488486A JPS63108318A JP S63108318 A JPS63108318 A JP S63108318A JP 61254884 A JP61254884 A JP 61254884A JP 25488486 A JP25488486 A JP 25488486A JP S63108318 A JPS63108318 A JP S63108318A
- Authority
- JP
- Japan
- Prior art keywords
- light
- light beam
- optical member
- light flux
- optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Laser Beam Processing (AREA)
Abstract
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明はレーザービームを用いた加工装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a processing device using a laser beam.
レーザー光源から出射されるレーザービームの光強度分
布は、−Sに第3図(1)に示すように中心部の光強度
が強く周辺部が弱くなるガウス分布を持っている。その
ため、このような強度を持つ光束を光源とした加工?i
Mを半導体のヒユーズ等の切断、溶接加工等に使用する
と、より高精度の加工を行なうことが難しいという問題
があった。The light intensity distribution of the laser beam emitted from the laser light source has a Gaussian distribution in which the light intensity is strong at the center and weak at the periphery, as shown in FIG. 3 (1) at -S. Therefore, is it possible to process using a light beam with such intensity as a light source? i
When M is used for cutting semiconductor fuses, welding, etc., there is a problem in that it is difficult to perform processing with higher precision.
このため、このようなガウス分布を持った光束から均一
な光強度分布を得るためのいくつかの提案がなされてい
る。For this reason, several proposals have been made to obtain a uniform light intensity distribution from a light beam having such a Gaussian distribution.
例えば、米国特許3547526号公報に開示されてい
るように光の強度を変換する技術の延長として(イ)特
公昭51−37264号公報が開示されている。これは
、はぼ同一の頂角を持つ2個の円錐または多角錐プリズ
ムを互いの底面で接合して一体化したり、該レンズの底
面員や頂角側を相対向させることにより上記の問題を解
決しようとするものであった。また(口)特開昭61−
83501号公報には、1枚の両凸レンズの両側の中心
部を平面とし、該レンズの周辺部に入射した光束のみを
集光させて上記の問題を解決する技術が開示されている
。For example, (a) Japanese Patent Publication No. 51-37264 discloses an extension of the technology for converting the intensity of light as disclosed in US Pat. No. 3,547,526. This problem can be solved by integrating two conical or polygonal pyramidal prisms that have approximately the same apex angle by joining them at their bases, or by making the base members and apex sides of the lenses face each other. It was an attempt to solve it. Also (mouth) JP-A-61-
Japanese Patent No. 83501 discloses a technique in which the center portions of both sides of a single biconvex lens are made flat, and only the light flux incident on the peripheral portion of the lens is focused to solve the above problem.
【発明が解決しようとしている問題点〕しかし、前記(
イ)の場合においては光量分布の均一化には効果がある
が、高強度の中心部光束を周辺部に分散しているので光
ffi損失が多くなる傾向にある。[Problem to be solved by the invention] However, the above (
In the case of (a), although it is effective in making the light quantity distribution uniform, the light ffi loss tends to increase because the high-intensity central light beam is dispersed to the periphery.
一方、前記(ロ)は集光レンズを介することで光強度分
布は台形に近い形状となり均一な光強度を得ることがで
きるという利点はあるが、均一な光強度を得られる位置
が限られて−しまうため、設計する上での自由度が小さ
くなり制約が大きくなるという問題点があった。On the other hand, (b) above has the advantage that the light intensity distribution becomes almost trapezoidal in shape through the condensing lens, and uniform light intensity can be obtained, but the positions where uniform light intensity can be obtained are limited. - Because of this, there was a problem that the degree of freedom in designing was reduced and restrictions were increased.
本発明はこれらの問題点を解決し、光量損失を最小限に
し、高効率でより高性能のレーザー加工装置を提供する
ことを目的としている。It is an object of the present invention to solve these problems, minimize light loss, and provide a highly efficient and high-performance laser processing device.
本発明によるレーザー加工装置は、光強度を変換するた
めの光束変換光学部材を備えており、該光束変換光学部
材は光束の中心部分の光線を偏向することなく通過させ
、光束の輪帯領域に於いて、外方光線と内方光線とを入
れ換えるように屈折する一対の輪帯状屈折面を有するも
のである。The laser processing device according to the present invention is equipped with a light flux conversion optical member for converting light intensity, and the light flux conversion optical member allows the central portion of the light beam to pass through without being deflected, and converts the light beam into an annular region. It has a pair of annular refracting surfaces that refract outward and inward rays interchangeably.
光束変換光学部材4によってレーザー光の中心領域での
光束は偏向させることなく通過させて光量損失を最小限
にし、輪帯領域の内方光線と外方光線を入れ換えること
で光束の強度分布を均一化することができる。The light flux converting optical member 4 allows the light flux in the center region of the laser beam to pass through without being deflected, thereby minimizing the loss of light quantity, and by exchanging the inner and outer light rays of the annular region, the intensity distribution of the light flux is made uniform. can be converted into
〔実施例1〕 本発明による実施例1の光学的配置について説明する。[Example 1] The optical arrangement of Example 1 according to the present invention will be explained.
第1TyJは本発明の実施例に於ける概略光路図である
。レーザー光源1から出射されるガウス分布の光強度を
有した光束は、正レンズ2と正レンズ3によって構成さ
れている第1のアフォーカル光学系20によって光束の
径が拡大される。The first TyJ is a schematic optical path diagram in an embodiment of the present invention. The diameter of the light beam having a Gaussian distribution light intensity emitted from the laser light source 1 is expanded by a first afocal optical system 20 configured by a positive lens 2 and a positive lens 3.
その光束の径が広−かった状態で光束変換光学部材4に
入射する。光束変換光学部材4によって後に説明するよ
うに均一な強度分布に変換される。そして、その光束は
、絞り6を通過し、反射ja7で光路変換され、第1の
アフォーカル光学系によって広げられた光束径は正レン
ズ8と正レンズSとからなる第2のアフォーカル光学系
30によって縮小される。そして、第2のアフォーカル
光学系30によって径を小さくされた光束は、絞り10
を通り対物レンズ11.12によって物体面13上に照
射される。The light beam enters the light beam converting optical member 4 with a wide diameter. The light flux converting optical member 4 converts the light into a uniform intensity distribution as will be explained later. Then, the light flux passes through the aperture 6 and is converted into an optical path by the reflection ja7, and the diameter of the light flux expanded by the first afocal optical system is transferred to the second afocal optical system consisting of a positive lens 8 and a positive lens S. reduced by 30. The light beam whose diameter has been reduced by the second afocal optical system 30 is then transmitted to the aperture 10.
and is irradiated onto the object plane 13 by the objective lens 11.12.
尚、絞り10は第2のアフォーカル系に関して絞り6と
共役な位置にある。また、物体面13は対物レンズ11
.12に関して絞りlOと共役な位置にある。従って、
物体面13上には絞りlOの開口(一般には矩形開口)
が投影され、物体面13に配置された加工物に光束を照
射することによって精密微細加工が可能となる。Note that the aperture 10 is located at a position conjugate with the aperture 6 with respect to the second afocal system. Further, the object plane 13 is the objective lens 11
.. It is located at a position conjugate with the aperture lO with respect to 12. Therefore,
On the object plane 13 is an aperture of a diaphragm lO (generally a rectangular aperture)
is projected and irradiates the workpiece placed on the object plane 13 with a beam of light, making it possible to perform precise micromachining.
更に、正レンズ8.3からなる第2のアフォーカル系3
0の倍率を異なった値にすることによって絞り10に於
ける光束の径を変えることができる。光束の径の変化に
伴って絞り10の径も変えれば、物体面13に於ける所
望の径の光束をエネルギーを失うことなく得ることがで
きる。Furthermore, a second afocal system 3 consisting of a positive lens 8.3
By setting the zero magnification to a different value, the diameter of the light beam at the aperture 10 can be changed. By changing the diameter of the diaphragm 10 in accordance with the change in the diameter of the light beam, it is possible to obtain a light beam with a desired diameter at the object plane 13 without losing energy.
次に、本発明による実施例1の光束変換光学部材4によ
る光束変換について説明する。光束変換光学部材4は第
1円錐台光学部材4Aと第2円錐台光学部材4Bとで構
成されている。そして、第1円錐台光学部材4Aと第2
円錐台光学部材4Bは底面側を相対向させて配置されて
いる。第2図に示すように第1円錐台光学部材4Aに光
束が入射する前の光強度分布は第3図(I)に示すよう
なガウス分布を有している。第1円錐台光学部材4Aの
入射側平面41は出射側平面43(円錐台底面)と平行
であり、中心部は素通しになっている。このため、この
素通し部分に入射した光(光束の中心領域)は屈折して
偏向することな(直進する。一方、第1円錐台光学部材
4Aの円錐面42に入射した光(光束の周辺領域)は第
2図に示すように、中心部の方向に向かって屈折される
。Next, the light flux conversion by the light flux conversion optical member 4 of Example 1 according to the present invention will be explained. The light flux conversion optical member 4 is composed of a first truncated cone optical member 4A and a second truncated cone optical member 4B. Then, the first truncated cone optical member 4A and the second
The truncated conical optical members 4B are arranged with their bottom surfaces facing each other. As shown in FIG. 2, the light intensity distribution before the light beam enters the first truncated cone optical member 4A has a Gaussian distribution as shown in FIG. 3(I). The entrance side plane 41 of the first truncated cone optical member 4A is parallel to the output side plane 43 (bottom of the truncated cone), and the center portion is transparent. Therefore, the light incident on this transparent portion (center area of the light beam) is not refracted and deflected (progresses straight. ) is refracted toward the center, as shown in FIG.
そして、円錐面42に入射した光軸に関して対称な輪帯
領域の光束は、第1円錐台光学部材4Aと第2円錐台光
学部材4Bの中間の光軸近傍で交わる。そして、光束が
交わった位置から先では外方光線と内方光線とは入れ換
わって、第2円錐台光学部に入射する。Then, the light beams in the annular region that are symmetrical with respect to the optical axis, which are incident on the conical surface 42, intersect in the vicinity of the optical axis between the first truncated cone optical member 4A and the second truncated cone optical member 4B. Then, beyond the point where the light beams intersect, the outer light ray and the inner light ray switch places and enter the second truncated cone optical section.
第2円錐台光学部材4Bは第1円錐台光学部材4Aと同
一形状であり、入射側平面44(円錐台底面)は出射側
平面4Bと平行で中心部は素通しになっている。このた
め第1円錐台光学部材4Aの入射側平面41に入射した
中心領域の光束は、入射側平面44に入射してそのまま
透過して出射側平面46から出て行く、一方、第1円錐
台光学部材4Aの円錐面42に入射し、内方光束と外方
光束とが入れ換わった輪帯領域の光束は、第2円錐台光
学部材4Bの入射側平面44に入射して屈折し、円錐面
45によって更に屈折された後、光軸Axに平行な光束
となって出て行(。The second truncated cone optical member 4B has the same shape as the first truncated cone optical member 4A, and the incident side plane 44 (bottom of the truncated cone) is parallel to the output side plane 4B, and the center portion is transparent. Therefore, the light beam in the center region that has entered the incident side plane 41 of the first truncated cone optical member 4A enters the incident side plane 44, is transmitted as it is, and exits from the output side plane 46. The light beam in the annular region which is incident on the conical surface 42 of the optical member 4A and where the inner light beam and the outer light beam are exchanged is incident on the incident side plane 44 of the second truncated cone optical member 4B and is refracted, forming a cone. After being further refracted by the surface 45, it exits as a beam parallel to the optical axis Ax (.
従って、強度分布を見ると第3図(1)、(U)に示す
ように、光束変換光学部材4によってその円錐面に入射
する輪帯領域光束の周辺部の位置へに於ける外方光線a
の強度!+11は、輪帯領域光束の内側の位置Gで強度
faxに変換される。また、円錐面に入射する輪帯領域
光束の内側の位it!Bに於ける内方光線すの強度1b
tは、輪帯領域光束の周辺部の位IIHで強度ITht
に変換される。同様に、外方光線dの強度は141 (
−1−1)からIat<−1、)に、位置は輪帯領域光
束の周辺部りから輪帯領域の内側Fに変換され、内方光
線Cの強度はI c+ (−,1b+)から!。(−1
゜)に、位置は輪帯領域光束の内側Cから周辺部已にそ
れぞれ変換される。このように、第3図(1)のガウス
分布を持った光束は光束変換光学部材4における1対の
円錐面42.45での屈折作用により、輪帯領域におい
て外方と内方との光線が入れ換わると共に、回折、干渉
等の波動光学的作用によって第3図(II)のように、
ある程度強度が均一で、光量損失がない光束に変換でき
る。Therefore, looking at the intensity distribution, as shown in FIGS. 3(1) and (U), the outward rays of light incident on the conical surface of the annular region light flux are a
The strength of! +11 is converted into intensity fax at the position G inside the annular region light beam. Also, the inner position it! of the annular region light beam incident on the conical surface! Intensity 1b of the inner ray at B
t is the intensity ITht at the peripheral part of the annular region luminous flux IIH
is converted to Similarly, the intensity of the outward ray d is 141 (
-1-1) to Iat<-1,), the position is transformed from the peripheral part of the annular region light flux to the inside F of the annular region, and the intensity of the inner ray C is changed from I c+ (-, 1b+) to ! . (-1
), the position is transformed from the inside C of the annular region light beam to the outside of the periphery, respectively. In this way, the light beam having the Gaussian distribution shown in FIG. are exchanged, and due to wave optical effects such as diffraction and interference, as shown in Figure 3 (II),
It can be converted into a luminous flux with a certain degree of uniform intensity and no loss of light quantity.
尚、光束を調整するために第1円錐台光学部材4Aと第
2円錐台光学部材4Bとの間に透明な傾角可変な平行平
面板5を設置しても良い、製造の時に於いて、平行平面
板5は光軸に対する傾角が可変であり2つの円錐台光学
部材4A、4B間の相対的な光軸のズレを補正する機能
を有する。そして、光束の強度分布が最良の状態になる
ようにその傾角を予め調整する。Incidentally, in order to adjust the luminous flux, a transparent parallel plane plate 5 with a variable inclination angle may be installed between the first truncated cone optical member 4A and the second truncated cone optical member 4B. The plane plate 5 has a variable inclination angle with respect to the optical axis, and has a function of correcting a relative deviation of the optical axis between the two truncated conical optical members 4A and 4B. Then, the inclination angle is adjusted in advance so that the intensity distribution of the light beam is in the best condition.
〔実施例2〕
本発明の実施例2に用いられる光束変換光学部材40の
断面図をそれぞれ第5図、第6図に示す。[Example 2] Cross-sectional views of a light flux conversion optical member 40 used in Example 2 of the present invention are shown in FIGS. 5 and 6, respectively.
実施例2に用いられている光束変換光学部材40は同一
形状の2つの部材40A、40Bから構成されており、
その各々は片側の周辺部に輪帯状の正屈折カド−リック
面を有しており、入射側平面401と出射側平面403
は互いに平行となっている。この同一形状の2つの部材
4QA、40Bは各々の平面403.404庵相対向し
て配置されている。従って、光学的には実施例1と同様
に第1の光学部材40Aの中心部401に入射した光束
は透過して直進する。第1の光学部材40Aの周辺部の
トーリック面402に入射した光束はトーリック面の焦
点F(焦点距離f)で集光され、集光位置から内方光線
と外方光線とが入れ換わる。ここで、トーリック面40
2を入射する輪帯領域光束(第5図中の斜線部)の主光
線は光学系の光軸Axに対して常に平行となっている。The light flux conversion optical member 40 used in Example 2 is composed of two members 40A and 40B of the same shape,
Each of them has a ring-shaped positive refractive cadric surface on one side of its periphery, and has an entrance side plane 401 and an exit side plane 403.
are parallel to each other. These two members 4QA, 40B having the same shape are arranged facing each other on their respective planes 403 and 404. Therefore, optically, as in the first embodiment, the light beam incident on the center portion 401 of the first optical member 40A is transmitted and travels straight. The light beam incident on the toric surface 402 at the peripheral portion of the first optical member 40A is focused at the focal point F (focal length f) of the toric surface, and the inner ray and the outer ray are exchanged from the focusing position. Here, toric surface 40
The principal ray of the annular region light beam (the shaded area in FIG. 5) entering the optical system 2 is always parallel to the optical axis Ax of the optical system.
そして、トーリック面を有する第2の光学部材40Bに
それぞれの光束は入射側平面404に入射する。該光学
・部材40Aの入射側平面401に入射した光束は屈折
せずに該光学部材40Bの出射側平面406から出て行
き、また該光学部材40Aのトーリック面402に入射
した光束は該光学部材40Bのトーリック面405から
出て行く。ここで該光学部材40Bの焦点距誦もfであ
る。このような光束変換光学部材40を用いる場合でも
ガウス分布強度を有する光束は1対のトーリック面を有
する光束変換光学部材40を介することでも第3図(I
I)のような均一な強度に変換された光束を得ることが
できる。Then, each light beam enters the second optical member 40B having a toric surface onto the incident side plane 404. The light beam that entered the incident side plane 401 of the optical member 40A exits from the exit side plane 406 of the optical member 40B without being refracted, and the light beam that entered the toric surface 402 of the optical member 40A exits the optical member 40A. It exits from the toric surface 405 of 40B. Here, the focal length of the optical member 40B is also f. Even when such a light flux conversion optical member 40 is used, the light flux having a Gaussian distribution intensity can be transmitted through the light flux conversion optical member 40 having a pair of toric surfaces as shown in FIG.
It is possible to obtain a luminous flux converted into a uniform intensity as shown in I).
従って、実施例1に用いられた光束変喚光学部材4の代
わりに実施例2で用いられたトーリック面を有する光束
変換光学部材40を用いても同様な効果が期待できる。Therefore, similar effects can be expected even if the light flux converting optical member 40 having a toric surface used in the second embodiment is used in place of the light flux changing optical member 4 used in the first embodiment.
尚、実施例2では2つのトーリック面を有する光束変換
光学部材40の底面側を相対向させて配置された時の実
施例を説明をしたが、トーリック面を有する光束変換光
学部材40のトーリック面側を相対向させて配置して使
用しても同様な効果が期待できる。In addition, in Example 2, an example was explained in which the bottom surfaces of the light flux conversion optical member 40 having two toric surfaces are arranged opposite to each other. A similar effect can be expected even when used with the sides facing each other.
以上のように本発明によれば、光強度分布の中心部を素
通にし周辺領域に於いて外方光線と内方光線を入れ換え
ることによって、ある程度光強度が均一になり、更に光
量損失を最小限にでき高効率なレーザー加工装置を得る
ことができる。しかも光束変換光学部材を通過した光束
は、入射する前と同様にコリメートされた状態であるた
め、光軸上のどの位置に於いても等しく均一性が維持さ
れているため、設計上での自由度を低下させることがな
く設計が容易で簡単な構成にすることができる。As described above, according to the present invention, by passing through the center of the light intensity distribution and exchanging the outer rays and inner rays in the peripheral area, the light intensity can be made uniform to some extent, and the loss of light amount can be minimized. As a result, highly efficient laser processing equipment can be obtained. Furthermore, the light flux that has passed through the light flux conversion optical member is collimated in the same way as before entering, so uniformity is maintained at any position on the optical axis, allowing for greater freedom in design. It is possible to easily design and have a simple configuration without reducing the performance.
Claims (3)
備えたレーザ加工装置において、 該光束変換光学部材は光束の中心領域の光 線を偏向することなく通過させ、光束の輪帯領域に於い
て、外方光線と内方光線とを入れ換えるように屈折する
一対の輪帯状屈折面を有することを特徴とするレーザー
加工装置。(1) In a laser processing device equipped with a light flux conversion optical member for converting the light intensity distribution, the light flux conversion optical member allows the light beam in the central region of the light flux to pass through without being deflected, and in the annular region of the light flux. 1. A laser processing device comprising: a pair of annular refracting surfaces that refract an external beam and an internal beam so as to exchange them;
て配置された同一形状の2個の円錐台または多角錐台の
光学部材を有していることを特徴とする特許請求の範囲
第1項記載の レーザー加工装置。(2) The light flux converting optical member has two optical members in the form of a truncated cone or a truncated polygonal pyramid having the same shape and arranged with their bottom surfaces facing each other. The laser processing device according to item 1.
多角錐台の光学部材間に配置された平行平面部材を備え
たことを特徴とする特許請求の範囲第1項記載のレーザ
ー加工装置。(3) The laser processing apparatus according to claim 1, wherein the light flux conversion optical member includes a parallel plane member disposed between the two optical members in the form of a truncated cone or a truncated polygonal pyramid. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61254884A JPS63108318A (en) | 1986-10-27 | 1986-10-27 | Laser working device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61254884A JPS63108318A (en) | 1986-10-27 | 1986-10-27 | Laser working device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63108318A true JPS63108318A (en) | 1988-05-13 |
Family
ID=17271174
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61254884A Pending JPS63108318A (en) | 1986-10-27 | 1986-10-27 | Laser working device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63108318A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03170616A (en) * | 1989-11-29 | 1991-07-24 | Mitsubishi Heavy Ind Ltd | Laser beam optical instrument for heating inner face of pipe |
JPH0433791A (en) * | 1990-05-29 | 1992-02-05 | Matsushita Electric Ind Co Ltd | Laser beam machine |
JP2002341222A (en) * | 2001-05-14 | 2002-11-27 | Dainippon Screen Mfg Co Ltd | Image formation optical device |
JP2006130691A (en) * | 2004-11-02 | 2006-05-25 | Shibuya Kogyo Co Ltd | Method and apparatus for dividing and cutting fragile material |
CN101909806A (en) * | 2007-12-27 | 2010-12-08 | 三星钻石工业股份有限公司 | Laser processing apparatus |
US8430434B2 (en) | 2006-07-12 | 2013-04-30 | Fidlock Gmbh | Mechanical-magnetic connecting structure |
-
1986
- 1986-10-27 JP JP61254884A patent/JPS63108318A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03170616A (en) * | 1989-11-29 | 1991-07-24 | Mitsubishi Heavy Ind Ltd | Laser beam optical instrument for heating inner face of pipe |
JPH0433791A (en) * | 1990-05-29 | 1992-02-05 | Matsushita Electric Ind Co Ltd | Laser beam machine |
JP2002341222A (en) * | 2001-05-14 | 2002-11-27 | Dainippon Screen Mfg Co Ltd | Image formation optical device |
US6927924B2 (en) | 2001-05-14 | 2005-08-09 | Dainippon Screen Mfg. Co., Ltd. | Imaging optical instrument |
JP2006130691A (en) * | 2004-11-02 | 2006-05-25 | Shibuya Kogyo Co Ltd | Method and apparatus for dividing and cutting fragile material |
US8430434B2 (en) | 2006-07-12 | 2013-04-30 | Fidlock Gmbh | Mechanical-magnetic connecting structure |
CN101909806A (en) * | 2007-12-27 | 2010-12-08 | 三星钻石工业股份有限公司 | Laser processing apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3531199B2 (en) | Optical transmission equipment | |
JPH0412039B2 (en) | ||
US4206494A (en) | High throughput illuminator | |
JP2866267B2 (en) | Optical drawing apparatus and optical drawing method for wafer substrate | |
JP2016143057A (en) | Optical element for focusing approximately collimated rays | |
JPS63108318A (en) | Laser working device | |
US4685780A (en) | Reflection type optical device | |
US5285223A (en) | Ophthalmic optical apparatus having an alignment optical system | |
CN113305426A (en) | Bessel beam lens for laser cutting | |
JPH01191801A (en) | Condenser lens | |
JP3317290B2 (en) | Emission optics for laser processing | |
JPS58154484A (en) | Laser beam conversion method | |
EP0236521B1 (en) | Reflection type optical device | |
JPS605394B2 (en) | Laser irradiation device | |
JPH0569172A (en) | Irradiation device for mask with laser beam | |
JP3367569B2 (en) | Illumination optical device, exposure device, and transfer method using the exposure device | |
JPH02211994A (en) | Laser beam machining device | |
JPS5742014A (en) | Mirror lens | |
JPH0125046B2 (en) | ||
JPS62107890A (en) | Laser beam machine | |
JPH112763A (en) | Illumination optical system for laser beam machine | |
JPS60165616A (en) | Beam converter | |
JP2001350062A (en) | Optical system for synthesizing laser optical flux | |
JP2000275570A (en) | Beam mode converting optical system | |
JP2003039188A (en) | Laser beam machining method and laser beam machining device |