JPS63107802A - Method for producing oxygen-enriched air - Google Patents
Method for producing oxygen-enriched airInfo
- Publication number
- JPS63107802A JPS63107802A JP25616986A JP25616986A JPS63107802A JP S63107802 A JPS63107802 A JP S63107802A JP 25616986 A JP25616986 A JP 25616986A JP 25616986 A JP25616986 A JP 25616986A JP S63107802 A JPS63107802 A JP S63107802A
- Authority
- JP
- Japan
- Prior art keywords
- hollow fiber
- air
- membrane
- oxygen
- hollow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 title description 21
- 239000001301 oxygen Substances 0.000 title description 21
- 229910052760 oxygen Inorganic materials 0.000 title description 21
- 238000004519 manufacturing process Methods 0.000 title description 5
- 239000012510 hollow fiber Substances 0.000 description 34
- 239000012528 membrane Substances 0.000 description 23
- 230000035699 permeability Effects 0.000 description 11
- 239000000463 material Substances 0.000 description 9
- 238000000926 separation method Methods 0.000 description 8
- 229920000642 polymer Polymers 0.000 description 7
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- -1 ether lactone Chemical class 0.000 description 6
- 229920002492 poly(sulfone) Polymers 0.000 description 6
- 125000003118 aryl group Chemical group 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 229920001296 polysiloxane Polymers 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000004132 cross linking Methods 0.000 description 3
- XPFVYQJUAUNWIW-UHFFFAOYSA-N furfuryl alcohol Chemical compound OCC1=CC=CO1 XPFVYQJUAUNWIW-UHFFFAOYSA-N 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 3
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 3
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 229920002379 silicone rubber Polymers 0.000 description 3
- 239000004945 silicone rubber Substances 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- KFDVPJUYSDEJTH-UHFFFAOYSA-N 4-ethenylpyridine Chemical compound C=CC1=CC=NC=C1 KFDVPJUYSDEJTH-UHFFFAOYSA-N 0.000 description 1
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 1
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920001921 poly-methyl-phenyl-siloxane Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 229920005597 polymer membrane Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
繊維を用いて中空繊維の外部を負圧に保持しながら酸素
濃度20〜40チ程度の酸素富化空気を多量に製造する
方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION This invention relates to a method for producing a large amount of oxygen-enriched air with an oxygen concentration of about 20 to 40 inches while maintaining a negative pressure outside the hollow fiber using fibers.
(従来の技術)
近年化学プロセスにおける酸化用、発酵用、高炉吹込用
、燃焼補助用、廃液処理曝気用の空気の代わシに膜分離
法により製造される酸素濃度が20〜401程度の酸素
富化空気を使用する試みがなされている。本出願人も特
開昭61−101225号に内径が350μm以上でか
つ透過性能0.5 Nrrl/ν・H・嬌偏以上の中空
繊維を用い、該中空繊維内を特定の条件下で負圧に保持
しながら酸素富化空気を製造する方法を提案した。(Prior art) In recent years, oxygen-enriched air with an oxygen concentration of about 20 to 401 is produced by membrane separation as an alternative to air for oxidation, fermentation, blast furnace injection, combustion assistance, and waste liquid treatment aeration in chemical processes. Attempts have been made to use evaporated air. The present applicant also disclosed in JP-A No. 61-101225 that a hollow fiber having an inner diameter of 350 μm or more and a permeation performance of 0.5 Nrrl/ν・H・嬔性 or more was used, and the inside of the hollow fiber was subjected to negative pressure under specific conditions. We proposed a method to produce oxygen-enriched air while maintaining
能と透過空気量の低下のない優れた酸素富化空気上
の製造方法であるが、実用・次のような問題があ□った
。 (1) ファンやプロワ−を用いても中空繊゛細
束の中央部にまで十分原料空気を供給する事が困難で、
中空繊維束の中央部がデッド・ゾーンとなり、必要以上
の過大な膜面積を必要とする。Although this is an excellent production method using oxygen-enriched air that does not reduce performance or permeate air volume, it has the following problems in practical use. (1) Even if a fan or blower is used, it is difficult to supply enough raw air to the center of the hollow fiber bundle.
The central portion of the hollow fiber bundle becomes a dead zone, requiring an unnecessarily large membrane area.
(2) 中空m細束の中央部に原料空気を十分供給し
ようとすれば特殊な構造を必要とする。(2) A special structure is required to supply sufficient raw material air to the center of the hollow m-thin bundle.
(問題点を解決する為の手段)
本発明は上述の問題点を解消した実用的な酸素富化空気
の製造法を提供するもので、中空繊維外を負圧に保持し
て空気を中空繊維の内部へ均等に供給して中空繊維の内
部から外部へ選択的に透過させることにより酸素富化さ
れた透過空気を製造する方法である。(Means for Solving the Problems) The present invention provides a practical method for producing oxygen-enriched air that solves the above-mentioned problems. This is a method for producing oxygen-enriched permeated air by uniformly supplying oxygen to the inside of the hollow fiber and selectively permeating it from the inside to the outside of the hollow fiber.
本発明方法では中空繊維として内径が800−以上であ
り、かつ透過性能が0.5Ni// −H−Kjl/c
yj以上で、しかも下記式を満足する中空繊維が用いら
れる。In the method of the present invention, the hollow fiber has an inner diameter of 800 or more and a permeability of 0.5Ni//-H-Kjl/c.
Hollow fibers are used that are equal to or greater than yj and satisfy the following formula.
本発明で用いる中空繊維の透過性能は次式を用いて表わ
される。The permeation performance of the hollow fiber used in the present invention is expressed using the following equation.
但し FC:透過性能(Nd/♂・H−Ky/ctA)
Q:透過空気量(NH1/H)
Pl:1次側空気圧力(Ky/m abs )P2:2
次側空気圧力(Ky/ci abs )D=中空繊維の
内径(m)
L:中空繊維の長さくm)
酸素濃度20〜40チ程度の酸素富化空気を多量に製造
する場合には、膜の分離性は選択性酸素透過膜の酸素と
窒素の透過係数の比は2.0〜3.0でも士、分であり
、むしろ分離性の高い中空繊維素材よシも透過性の高い
素材を選択すべきである。なぜならば・一般に素材の分
離性能と透過性能とは相反する性質を持ち、分離性能の
良い膜素材は透過性能が良くない。それ故、膜素材は用
途との関係を考慮しつつ、分離性能と透過性能との兼ね
合いで決定されるものである。したがって本発明の目的
に用いる選択性酸素透過膜は酸素と窒素の透過係数の比
が2.0以上で、かつ透過性能が0.5Nrl/rl−
H,Ky、/crA以上のものであればいずれの素材の
ものも使用出来るが、得られる富化空気の必要酸素濃度
及び分離操作上から、好ましくは透過係数の比は2.5
以上で透過性能が1.5Nrl/rl・H、NViのも
のである。However, FC: Transmission performance (Nd/♂・H-Ky/ctA)
Q: Permeated air amount (NH1/H) Pl: Primary side air pressure (Ky/m abs) P2: 2
Next side air pressure (Ky/ci abs) D = inner diameter of hollow fiber (m) L: length of hollow fiber (m) When producing a large amount of oxygen-enriched air with an oxygen concentration of about 20 to 40 g The separation property of the selective oxygen permeable membrane is 2.0 to 3.0, but the ratio of the oxygen to nitrogen permeability coefficients is only 1,000 min. Should be selected. This is because - In general, the separation performance and permeation performance of materials have contradictory properties, and membrane materials with good separation performance do not have good permeation performance. Therefore, the membrane material is determined based on the balance between separation performance and permeation performance, taking into consideration the relationship with the application. Therefore, the selective oxygen permeable membrane used for the purpose of the present invention has a ratio of oxygen to nitrogen permeability coefficients of 2.0 or more and a permeability of 0.5 Nrl/rl-
Any material can be used as long as it has H, Ky, /crA or higher, but from the viewpoint of the required oxygen concentration of the enriched air obtained and the separation operation, preferably the permeability coefficient ratio is 2.5.
The above shows a transmission performance of 1.5 Nrl/rl·H and NVi.
透過性能が0.5 Nrl/d−H−に9/−未満の膜
では低圧力の操作条件で所望の散索濃度の富化空気を製
造する事が出来ない。A membrane having a permeability of less than 0.5 Nrl/dH-9/- cannot produce enriched air with the desired concentration under low pressure operating conditions.
素材としては酸素透過係数の大きいものがよく、膜厚は
透過量が膜厚に反比例する事により分離に1才
関わる膜の層・出来るだけ薄く、且つ耐久性のあるもの
が用いられる。The material should preferably have a large oxygen permeability coefficient, and the membrane thickness should be as thin as possible and durable, since the amount of permeation is inversely proportional to the membrane thickness.
膜の形態としては非対称膜、均質膜、複合膜のいずれで
も使用出来るが、中でも中空糸膜状多孔質支持体の内面
にその細孔中に浸透しないように高分子薄膜を均一に形
成させた複合中空糸膜は透過性能が大きいこと、更に選
択性も2.0以上あり、0、5μm以下の極薄膜化も可
能で、また耐久性もあるので好適に用いられる。かかる
複合中空糸膜の微多孔質中空糸を形成すべき素材として
は、その要求される性能としてその内表面に細孔内に実
質的に侵入しないように被覆された高分子薄膜の破損を
防止し、取扱いを容易にするに足るだけの力学的強度物
性を有すれば十分であり、この意味で例えばポリビニル
アルコール、芳香族ポリスルホン、ポリアミド、ポリエ
ーテルエーテルクトン等可能である。とりわけ、中空糸
成型性に秀れ又耐熱性も良好である等種々の利点を有す
る芳香族ポリスルホンが特に好ましいものである。As for the form of the membrane, any of asymmetric membrane, homogeneous membrane, and composite membrane can be used, but in particular, a thin polymer membrane is uniformly formed on the inner surface of a hollow fiber membrane-like porous support to prevent it from penetrating into the pores. Composite hollow fiber membranes are preferably used because they have high permeability, selectivity of 2.0 or more, can be made into extremely thin membranes of 0.5 μm or less, and are durable. The required performance of the material from which the microporous hollow fibers of such a composite hollow fiber membrane are to be formed is to prevent breakage of the thin polymer film coated on its inner surface so as not to substantially penetrate into the pores. However, it is sufficient that the material has sufficient mechanical strength and physical properties to facilitate handling, and in this sense, polyvinyl alcohol, aromatic polysulfone, polyamide, polyether ether lactone, etc. can be used. Particularly preferred are aromatic polysulfones, which have various advantages such as excellent hollow fiber moldability and good heat resistance.
高分子薄膜成分に関しては、ポリジメチルシロキサン、
ポリジフェニルシロキサン、ポリメチルフェニルシロキ
サン等のポリオルガノシロキサン類及びポリ−4−メチ
ルペンテン−1、ポリテトラフルオロエチレン%フルフ
リルアルコール樹風セルロースアセテート、セルロース
トリアセテート、ポリ−4−ビニルピリジン等種々の高
選択分離透過性を有する高分子を用い得るが、中でもポ
リシロキサン系ポリマーが酸素透過速度定数があらゆる
ポリマーの中で最大であるという意味で適したポリマー
である。Regarding polymer thin film components, polydimethylsiloxane,
Polyorganosiloxanes such as polydiphenylsiloxane and polymethylphenylsiloxane, and various polymers such as poly-4-methylpentene-1, polytetrafluoroethylene% furfuryl alcohol dendritic cellulose acetate, cellulose triacetate, and poly-4-vinylpyridine. Although polymers having selective separation permeability can be used, polysiloxane-based polymers are particularly suitable polymers in the sense that they have the largest oxygen permeation rate constant among all polymers.
更に、この様な鎖状ポリオルガノシロキサンを架橋触媒
にて3次元架橋して強度物性を向上させたシリコンゴム
は、鎖状ポリオルガノシロキサンよシ成る高分子薄膜よ
シもその強度物性が更に向上している為に、よシ薄膜化
し得るという大きな長所を有しておシ、本発明の目的用
途の主たる1つである酸素富化膜用としては最も適した
ものであるO
×109以下となる長さとする必要がある0内径が80
0μm未満で、上記パラメータが1.OX 10 ’を
超える中空a維では、中空繊維内の流動抵抗が大きくな
シ、原料空気を供給するファンの消費動力が大きくなり
、経済性の面で劣る。Furthermore, silicone rubber whose strength and physical properties are improved by three-dimensionally crosslinking such chain polyorganosiloxane with a crosslinking catalyst has further improved strength and physical properties of polymer thin films made of chain polyorganosiloxane. Therefore, it has the great advantage of being able to be made into a thin film. The length must be 0 and the inner diameter is 80
less than 0 μm and the above parameters are 1. Hollow A-fibers with a diameter exceeding OX 10' have a large flow resistance within the hollow fibers, and the power consumption of the fan that supplies raw air becomes large, resulting in poor economic efficiency.
(作用)
本発明では簡単な構造の膜モジュールであっても低圧力
レベルの操作条件において透過性能の高い中空繊維によ
シ酸素濃度20〜40チの富化空気を多量に製造すると
いう効果が得られるが、かかる効果は従来の知見からは
全く予想できないことである。この効果を生ずる理由は
内径が800μm以上の太径の中空繊維を用い、かつ長
さを上述の特定の条件を満足する長さにする事により、
膜を透過する空気の流動抵抗を1次側空気圧力と2次側
空気圧力との差圧に対して無視出来る程度に小さく出来
るため、供給空気ファンの動力を小さく出来、省エネ幼
果を発揮出来たものと推測される0(実施例)
実施例1及び比較例1
芳香族ポリスルホン(商品ニュープリポリスルボン:P
−1700:ユニオン・カーノ(イド社製)の100重
量部と、ポリビニルピロリドンの10000重量、それ
らの共通溶媒であるジメチルホルムアミドの500重量
部に混合溶解し、充分脱泡した後、環状ノズルより吐出
成形し、中空部に水を供給しながら水浴中を通過させな
からジメチルホルムアミドを取り除いて後、乾燥する事
により最終的に芳香族ポリスルホン100重量部と、ポ
リビニルピロリドン100重量部が極めて均一に混合さ
れた非多孔性中空糸状膜基材を得九〇
一方、常温硬化型のシリコーンゴム(商品名:シルポッ
ト184W/C:ダウコーニング社製)と、その1/1
0量の硬化触媒をn−ペンタンに溶解して10重量−の
シリコーン溶解液を調整した0この様に作成した10重
量係のシリコーン溶液を。(Function) The present invention has the effect of producing a large amount of enriched air with an oxygen concentration of 20 to 40 inches using hollow fibers with high permeability under operating conditions at low pressure levels even with a membrane module with a simple structure. However, such an effect is completely unexpected from conventional knowledge. The reason for this effect is that by using large diameter hollow fibers with an inner diameter of 800 μm or more, and by adjusting the length to a length that satisfies the above-mentioned specific conditions,
Since the flow resistance of air passing through the membrane can be reduced to a negligible level with respect to the differential pressure between the primary air pressure and the secondary air pressure, the power of the supply air fan can be reduced and energy-saving young fruit can be produced. 0 (Example) Example 1 and Comparative Example 1 Aromatic polysulfone (product new polysulfone: P
-1700: Mix and dissolve 100 parts by weight of Union Carno (manufactured by Ido), 10,000 parts by weight of polyvinylpyrrolidone, and 500 parts by weight of dimethylformamide, which is a common solvent for them, and after sufficiently defoaming, discharge from an annular nozzle. After molding, passing through a water bath while supplying water to the hollow part to remove dimethylformamide, and drying, 100 parts by weight of aromatic polysulfone and 100 parts by weight of polyvinylpyrrolidone are finally mixed extremely uniformly. On the other hand, a room-temperature curing silicone rubber (trade name: Silpot 184W/C: manufactured by Dow Corning) and 1/1 of that were obtained.
A 10 weight silicone solution was prepared by dissolving 0 amount of curing catalyst in n-pentane.The 10 weight silicone solution thus prepared was prepared.
前述の非多孔性中空糸膜状基材の内表面側に、約3 Q
mj/minの供給速度で約3分間供給し、その後自
然滴下にて、シリコーン溶液の液抜きをした後空気を1
5m/seaの線速で約1分間通過させた。Approximately 3 Q on the inner surface side of the aforementioned non-porous hollow fiber membrane base material.
Supply the silicone solution for about 3 minutes at a supply rate of mj/min, then drain the silicone solution by natural dripping, and then remove the air for 1 minute.
It was allowed to pass for about 1 minute at a linear speed of 5 m/sea.
この後、100℃X I HRの架橋処理を行い、この
後、60℃のエタノールに16時間浸漬して、ポリビニ
ルピロリドンの抽出除去を行った。この様な方法により
、最終的に芳香族ポリスルホンよシ成る多孔性中空糸膜
状基材とその内表面に、内表面の細孔内に実質的に浸透
することがない様に、かつ該中空糸内表面の円周方向、
及び繊維軸方向のいずれにおいても、極めて厚みむらが
なく形成されたシリコーンゴム薄膜とよシ成る内径50
0Iin、800AB11000P111200μm、
で長さ1mの複合中空光分M膜を得た。この各中空繊維
膜の多数を集束して両端が開口するようにエポキシ樹脂
で固定し、膜面積が100ゴのモジュールを作製し、中
空糸外部で且つハウジング内部をルーツプロワ−で吸引
して中空繊維の内径の分離性能及び透過性能に及ぼす影
響を測定した結果を我−1に示す。Thereafter, crosslinking treatment was carried out at 100°C X I HR, and then the polyvinylpyrrolidone was extracted and removed by immersion in 60°C ethanol for 16 hours. By such a method, the porous hollow fiber membrane-like base material made of aromatic polysulfone and its inner surface are finally formed so as not to substantially penetrate into the pores of the inner surface, and to form the hollow fibers. Circumferential direction of the inner surface of the thread,
and an inner diameter of 50 mm, which is well formed with a thin silicone rubber film formed with extremely uniform thickness in both the fiber axis direction.
0Iin, 800AB11000P111200μm,
A composite hollow optical spectrometer M film with a length of 1 m was obtained. A large number of these hollow fiber membranes were bundled and fixed with epoxy resin so that both ends were open, a module with a membrane area of 100 mm was created, and the outside of the hollow fibers and the inside of the housing were sucked with a Roots blower to remove the hollow fibers. The results of measuring the influence of the inner diameter on separation performance and permeation performance are shown in I-1.
また、上記結果をプロットしたものを第1図に示すO
c−L2
上記実施例よりパラメーター「は次のように求められる
。即ち中空繊維外への透過空気量0式として、中空繊維
内の流れは層流状態であり、流動抵抗は0式で示される
。In addition, a plot of the above results is shown in Figure 1.O c-L2 From the above example, the parameter ``is determined as follows.In other words, assuming that the amount of air permeating to the outside of the hollow fiber is 0, the flow inside the hollow fiber is is a laminar flow state, and the flow resistance is expressed by the equation 0.
q=πxDxLxFc x (PH−Pz )□■但し
、
・−o 圧力損失 (Ky/crA)Fc 膜の
透過性能 (Nrrf/rl−H−KVctA)D
中空繊維の内径 (m)
L 中空繊維の長さ (m)
Pl 1次圧力 (KVc!Aaba)Pz
2次圧力 (Ky/c!Aabs)μ粘度
(ky/m−S)
U流速 (m/S)
gc 重力換算係数 (9,8kP−m7S2−K
y)1次側の供給空気量をQ (Ni/H)とすればQ
=10q□□■
が好ましい供給量であり、■式に従い空気を供給する。q=πxDxLxFc x (PH-Pz)□■However, -o Pressure loss (Ky/crA)Fc Membrane permeability performance (Nrrf/rl-H-KVctA)D
Inner diameter of hollow fiber (m) L Length of hollow fiber (m) Pl Primary pressure (KVc!Aaba)Pz
Secondary pressure (Ky/c!Aabs) μ viscosity
(ky/m-S) U flow velocity (m/S) gc Gravity conversion factor (9,8kP-m7S2-K
y) If the supply air amount on the primary side is Q (Ni/H), then Q
=10q□□■ is the preferred supply amount, and air is supplied according to the formula.
温度20℃のときの空気の粘度18 x 10−60−
6kfを0式に代入し、かつ■式と結合すれば■式とな
る。The viscosity of air at a temperature of 20°C is 18 x 10-60-
Substituting 6kf into equation 0 and combining it with equation (■) yields equation (■).
■式で計算された結果と実施例1及び比較例1で示す表
−1の結果を対比させた場合の修正係数を表−2に示す
。Table 2 shows the correction coefficients when comparing the results calculated by formula (1) with the results in Table 1 shown in Example 1 and Comparative Example 1.
上記結果より修正係数は0.73〜0.77の範囲にあ
シ、平均値として0.75を採用すると、■式は0式に
置き換える事が出来る。From the above results, if the correction coefficient is in the range of 0.73 to 0.77 and 0.75 is adopted as the average value, then equation (2) can be replaced with equation 0.
実施例1及び比較例1で用いた4種類の内径を有する中
空繊維は1次圧力と2次圧力の差に対し、各々表−3の
ようになる。The hollow fibers having four types of inner diameters used in Example 1 and Comparative Example 1 have the differences between the primary pressure and the secondary pressure as shown in Table 3.
表−3
表−3の結果を0式に代入し整理すれば操作条件、中空
繊維の仕様(透過性能、内径、長さ)を考慮したパラメ
ータとして表−4にまとめる事が出来る0
表−4
(発明の効果)
以上のように本発明方法は膜の透過性能、操作条件等か
ら、中空繊維の内径、長さを選択する事により、空気か
ら酸素富化空気を経済的に製造する事が出来、実用上極
めて有用な方法である。Table 3 By substituting the results of Table 3 into Equation 0 and rearranging them, the parameters can be summarized in Table 4, taking into account operating conditions and hollow fiber specifications (transmission performance, inner diameter, length).Table 4 (Effects of the Invention) As described above, the method of the present invention makes it possible to economically produce oxygen-enriched air from air by selecting the inner diameter and length of the hollow fibers based on the permeation performance of the membrane, operating conditions, etc. This is an extremely useful method in practice.
第1図は中空繊維の内径の流動抵抗を示すグラフである
。
特許出願人 株式会社FJワレ
代 理 人 弁理土木多堅FIG. 1 is a graph showing the flow resistance of the inner diameter of hollow fibers. Patent applicant: FJ Ware Co., Ltd. Agent: Patent Attorney Doboku Taken
Claims (1)
外部へ選択的に透過させることにより酸素富化された透
過空気を製造する方法において、該中空繊維として内径
が800μm以上、かつ透過性能が0.5Nm^3/m
^2・H・Kg/cm^2以上で、しかも下記式を満足
する中空繊維を用いることを特徴とする酸素富化空気の
製造法。 L^2/D^3<(1.0×10^9)/Fc 但しFc:透過性能(Nm^3/m^2・H・Kg/c
m^2) D:中空繊維の内径(m) L:中空繊維の長さ(m)[Claims] In a method for producing oxygen-enriched permeated air by maintaining a negative pressure outside the hollow fiber and selectively permeating air from the inside to the outside of the hollow fiber, the inside diameter of the hollow fiber is is 800μm or more, and the transmission performance is 0.5Nm^3/m
A method for producing oxygen-enriched air characterized by using hollow fibers having a value of ^2·H·Kg/cm^2 or more and satisfying the following formula. L^2/D^3<(1.0×10^9)/Fc However, Fc: Transmission performance (Nm^3/m^2・H・Kg/c
m^2) D: Inner diameter of hollow fiber (m) L: Length of hollow fiber (m)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25616986A JPS63107802A (en) | 1986-10-27 | 1986-10-27 | Method for producing oxygen-enriched air |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25616986A JPS63107802A (en) | 1986-10-27 | 1986-10-27 | Method for producing oxygen-enriched air |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63107802A true JPS63107802A (en) | 1988-05-12 |
Family
ID=17288865
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25616986A Pending JPS63107802A (en) | 1986-10-27 | 1986-10-27 | Method for producing oxygen-enriched air |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63107802A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5158584A (en) * | 1987-10-23 | 1992-10-27 | Teijin Limited | Oxygen enriching module and oxygen enriching apparatus using same |
WO2012157204A1 (en) * | 2011-05-19 | 2012-11-22 | 株式会社神戸製鋼所 | Oxygen-enriched air-producing device and oxygen-enriched air-producing method |
-
1986
- 1986-10-27 JP JP25616986A patent/JPS63107802A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5158584A (en) * | 1987-10-23 | 1992-10-27 | Teijin Limited | Oxygen enriching module and oxygen enriching apparatus using same |
WO2012157204A1 (en) * | 2011-05-19 | 2012-11-22 | 株式会社神戸製鋼所 | Oxygen-enriched air-producing device and oxygen-enriched air-producing method |
JP2012254437A (en) * | 2011-05-19 | 2012-12-27 | Kobe Steel Ltd | Apparatus and method for producing oxygen-enriched air |
US9254493B2 (en) | 2011-05-19 | 2016-02-09 | Kobe Steel, Ltd. | Oxygen-enriched air producing device and oxygen-enriched air producing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0206354B1 (en) | Multilayer composite hollow fibers and method of making same | |
EP0390992A1 (en) | Aromatic polyimide double layered hollow filamentary membrane and process for producing same | |
JPH0335971B2 (en) | ||
JP2509962B2 (en) | Polyimide separation membrane | |
US5116504A (en) | Organic polymer separation membrane having fluorene skeleton and oxygen enrichment device utilizing same | |
KR20160026070A (en) | Manufacturing method of gas separator membrane | |
US4900502A (en) | Hollow fiber annealing | |
JPS62227423A (en) | Gas separating membrane | |
CN111744370B (en) | A hollow fiber composite membrane, preparation method and application thereof | |
JPH07114935B2 (en) | Polyarylate separation membrane | |
JPS63278524A (en) | Improvement of characteristic of gas separating membrane | |
JPS63107802A (en) | Method for producing oxygen-enriched air | |
JPH0569571B2 (en) | ||
JPH0621373B2 (en) | Porous hollow fiber membrane and method for producing the same | |
JP2009183814A (en) | Separation membrane and manufacturing method thereof | |
JPS63296939A (en) | Polyvinylidene fluoride resin porous film and its manufacture | |
Niwa et al. | Development of a novel polyimide hollow‐fiber oxygenator | |
JP2572895B2 (en) | Manufacturing method of porous hollow fiber membrane | |
JPS61101225A (en) | Method for producing oxygen-enriched air | |
JP2592725B2 (en) | Manufacturing method of hollow fiber membrane | |
JP2622629B2 (en) | Manufacturing method of hollow fiber membrane | |
JP2553248B2 (en) | Method for producing porous hollow fiber membrane | |
JPH01180206A (en) | Modified polysulfone membrane and its production | |
JPS6391123A (en) | Porous hollow fiber composite membrane and its manufacturing method | |
JPH01171604A (en) | Semipermeable membrane and its production |