JPS63104752A - Surface treatment method for continuous casting molds - Google Patents
Surface treatment method for continuous casting moldsInfo
- Publication number
- JPS63104752A JPS63104752A JP25238486A JP25238486A JPS63104752A JP S63104752 A JPS63104752 A JP S63104752A JP 25238486 A JP25238486 A JP 25238486A JP 25238486 A JP25238486 A JP 25238486A JP S63104752 A JPS63104752 A JP S63104752A
- Authority
- JP
- Japan
- Prior art keywords
- mold
- anode
- nickel
- continuous casting
- plating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/04—Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
- B22D11/059—Mould materials or platings
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Electroplating Methods And Accessories (AREA)
- Continuous Casting (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は連続鋳造用鋳型の表面処理方法、特に、連続鋳
造用鋳型を分解することなくその設置場所で補修するの
に適した表面処理方法に関する。Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a surface treatment method for continuous casting molds, and particularly a surface treatment method suitable for repairing continuous casting molds at their installation site without disassembling them. Regarding.
(従来の技術)
近年、連続鋳造においては、操業の高速化とオンライン
での鋳造中変更技術の発達に伴い、連続鋳造用鋳型に要
求されろ性能も過酷なものとなり、銅製鋳型の耐久性を
向上させるため、最近では、銅製鋳型の内壁面にNiメ
ッキ層を形成したもの、Niメッキ層のうえにN1−P
やCrのメッキ層を積層したもの(例えば、特開昭52
−52828号公報)、あるいは自溶合金を溶射して表
面処理したものが汎用されてきている。(Conventional technology) In recent years, in continuous casting, with the speeding up of operations and the development of on-line change during casting technology, the performance required of continuous casting molds has become harsher, and the durability of copper molds has been reduced. In order to improve the
or Cr plating layer (for example, JP-A-52
-52828), or those whose surface has been treated by thermal spraying with a self-fluxing alloy have been widely used.
(発明が解決しようとする問題点)
しかしながら、これらの保護膜を形成した連続鋳造用鋳
型であっても反復使用すると、凝固殻の摺動により鋳型
下部の保護層か摩耗するため、頻繁に鋳型の摩耗面を補
修する必要がある。この鋳型を補修する場合、まず、鋳
造設備を停止させて鋳型を分解し、鋳型の補修後、再び
組み立てなければならず、分解及び組み立てに多大の時
間を要するため、鋳造設備の可動率の低下をもたらすと
いう問題があった。(Problem to be Solved by the Invention) However, even if continuous casting molds with these protective films are used repeatedly, the protective layer at the bottom of the mold will wear out due to the sliding of the solidified shell, so the mold will need to be removed frequently. It is necessary to repair the worn surfaces. When repairing this mold, the casting equipment must first be stopped, the mold must be disassembled, and then reassembled after the mold is repaired. Disassembling and reassembling takes a lot of time, which reduces the operating rate of the casting equipment. There was a problem of bringing
しかも、保護層をメッキで形成したものでは、局部的な
補修ができないため、鋳型表面に残存している総てのメ
ッキ層を除去して再度メッキ層を形成しなければならず
、補修する度に銅の肉厚が薄くなり数回の補修で使用不
可能になるという問題があった。また、保護層を自溶合
金て形成したものでは、補修する度に熱処理しなければ
ならないことがら熱変形を生じ、その反復使用が制限さ
れるという問題があった。Moreover, with a protective layer formed by plating, local repairs cannot be performed, so all plating layers remaining on the mold surface must be removed and a new plating layer must be formed, and each time repairs are made, The problem was that the thickness of the copper became thinner, making it unusable after several repairs. Further, in the case where the protective layer is formed from a self-melting alloy, heat treatment must be performed each time it is repaired, resulting in thermal deformation, which limits repeated use.
他方、保護層形成材料として自溶合金以外の金属材料、
例えば、クロム、コバルト等を用い、その粉末をプラズ
マ溶射法により銅素材表面に溶射して保護層を形成する
ことが考えられるが、これらの金属の溶射波膜は銅素材
との密着力が弱いため、連続モードで操業される連続鋳
造用鋳型には適用することが不可能であった。On the other hand, metal materials other than self-fluxing alloys as protective layer forming materials,
For example, it is possible to use chromium, cobalt, etc. and spray the powder onto the surface of a copper material using a plasma spraying method to form a protective layer, but the sprayed wave coating of these metals has weak adhesion to the copper material. Therefore, it was impossible to apply it to continuous casting molds operated in continuous mode.
従って、本発明は、鋳型の耐摩耗性及び耐熱性を向上さ
せるため、金属化物系複合材料からなろ溶射皮膜を適用
できるようにすると共に、連続鋳造用鋳型を分解するこ
となくその設置場所で補修することができるようにする
ことを目的として為されたものである。Therefore, in order to improve the wear resistance and heat resistance of the mold, the present invention makes it possible to apply a thermally sprayed coating made of a metal compound composite material, and to repair the continuous casting mold at its installation site without disassembling it. This was done with the purpose of making it possible to do so.
(問題点を解決するための手段)
本発明は、前記問題を解決する手段として、多孔質材を
介在させてアノードを銅製鋳型の内壁面に当接さ仕、該
アノード及び多孔質Iオを介して電解メッキ液を銅製鋳
型表面に連続的に供給しながら前記アノードと銅製鋳型
との間に通電し、前記アノードを前記鋳型内壁面に沿っ
て移動させつつ電解メッキした後、形成された電解メッ
キ層上に、ニッケル及び/又は金属炭化物系複合材料を
溶射して漸変被膜を形成することを特徴とする連続鋳造
用鋳型の表面処理方法を提供するものである。(Means for Solving the Problems) The present invention, as a means for solving the above-mentioned problems, involves interposing a porous material to bring an anode into contact with the inner wall surface of a copper mold. Electricity is applied between the anode and the copper mold while continuously supplying the electrolytic plating solution to the surface of the copper mold through the electrolytic plating solution. The present invention provides a method for surface treatment of a continuous casting mold, characterized in that a nickel and/or metal carbide composite material is thermally sprayed onto a plating layer to form a gradual coating.
前記電解メッキ浴としては任意のものを採用できろが、
鋳型の材料である銅と溶射皮膜との間の密着性を図る上
では、ニッケルメッキ浴を使用するのが好ましい。Although any electrolytic plating bath can be used,
It is preferable to use a nickel plating bath in order to improve the adhesion between the copper, which is the material of the mold, and the sprayed coating.
前記漸変皮膜は、アンダーコートをニッケルで形成し、
トップコートを金属炭化物系複合材料で形成するのが好
ましい。The gradual change film has an undercoat made of nickel,
Preferably, the top coat is formed from a metal carbide composite material.
金属炭化物系複合材料としては、コバルト、ニッケルお
よびクロムのうち少なくとも一種を含有するタングステ
ンカーバイトまたはチタンカーバイトが特に好適である
が、これらに限定されるものではない。As the metal carbide composite material, tungsten carbide or titanium carbide containing at least one of cobalt, nickel, and chromium is particularly suitable, but the material is not limited thereto.
(作用)
本発明は、基本的には、金属炭化物系複合材料からなる
溶射皮膜を形成できるようにするため、溶射皮膜の形成
に先立って、いわゆる筆メッキ法によりニッケル、銅等
の金属の肉盛りを施し、これによって溶射皮膜と鋳型材
料である銅との密着性を向上させると同時に、複数層の
溶射皮膜の内側の居中にニッケルを含有させることによ
りスラグとの反応を抑制し、かつ、高硬度であるが脆く
熱衝撃によるクラックを発生し易いという金属炭化物系
複合材料からなる溶射皮膜の欠点を補うようにしたもの
である。(Function) Basically, in order to form a thermally sprayed coating made of a metal carbide composite material, the present invention basically uses a so-called brush plating method to coat metals such as nickel and copper prior to forming the thermally sprayed coating. This improves the adhesion between the thermal spray coating and the copper mold material, and at the same time suppresses the reaction with the slag by containing nickel in the interior of the multi-layer thermal spray coating. This is intended to compensate for the drawbacks of thermal sprayed coatings made of metal carbide composite materials, which have high hardness but are brittle and prone to cracking due to thermal shock.
しかし、通常の電解メッキ法ではメッキ槽の使用が避け
られず、従って、鋳型の分解、再組み立てが必要となる
ことから、本発明方法においては、電解メッキ方法とし
て、銅製鋳型の内壁面に当接する多孔質材にアノードを
介して電解メッキ液を連続的に供給し鋳型内壁面とアノ
ードとの間に流動メッキ浴層を形成させると共に、前記
アノードと前記鋳型との間に通電して前記多孔質材をア
ノードと一体的に前記鋳型内壁面に沿って移動させつつ
電解メッキする方法を採用することにより前記問題を解
決している。However, in the ordinary electrolytic plating method, the use of a plating bath is unavoidable, and therefore the mold must be disassembled and reassembled. Therefore, in the method of the present invention, the inner wall surface of the copper mold is An electrolytic plating solution is continuously supplied to the porous material in contact with the porous material through the anode to form a fluidized plating bath layer between the inner wall surface of the mold and the anode, and electricity is applied between the anode and the mold to remove the porous material. The above-mentioned problem is solved by adopting a method of performing electrolytic plating while moving the material together with the anode along the inner wall surface of the mold.
なお、溶射法としては、簡便かつ小形の装置を採用でき
るガスフレーム溶射法を使用するのが好ましい。In addition, as the thermal spraying method, it is preferable to use a gas flame thermal spraying method which can employ a simple and small-sized apparatus.
さらに、溶射皮膜中のニッケルの含有量をその表面側か
ら内側に向かって段階的にあるいは連続的に増大させる
、換言すれば、鋳型表面から溶射皮膜の表面側へ行くほ
ど金属炭化物系複合材料の含有量を連続的にあるいは段
階的に増大させることにより、積層構造の溶射皮膜の欠
陥である各層間の物理的性質の相違による熱衝撃や層間
の剥離を緩和し、溶射被膜の延展性および密着力を向上
させ、耐用度を向上させている。Furthermore, the content of nickel in the sprayed coating is increased stepwise or continuously from the surface to the inside. In other words, the metal carbide composite material increases from the mold surface to the surface of the sprayed coating. By increasing the content continuously or stepwise, thermal shock and interlayer peeling caused by differences in physical properties between each layer, which are defects in thermal sprayed coatings with a laminated structure, are alleviated, and the spreadability and adhesion of thermal sprayed coatings are improved. Improves strength and durability.
以下、本発明方法を連続鋳造用鋳型の補修に適用した場
合について添付の図面を参照して説明する。Hereinafter, a case where the method of the present invention is applied to repairing a continuous casting mold will be explained with reference to the attached drawings.
図に於いて、1は銅製鋳型、2はその長辺側鋳型壁、3
は短辺側鋳型壁、4は多孔質材で包囲されたアノード、
5はスタイラス、6は電源装置、7はトレー、8はメッ
キ液循環用ポンプ8で、アノード4は黒鉛などの導電性
材料で形成され、ポンプ8からアノード4に連続的に供
給されたメッキ液は、多孔質材を介して短辺側鋳型壁3
の表面に送られ、溢れたメッキ液がトレー7に収集され
、再びポンプ8によりアノード4に供給されるようにし
である。In the figure, 1 is a copper mold, 2 is the long side wall of the mold, 3
4 is the short side mold wall, 4 is the anode surrounded by porous material,
5 is a stylus, 6 is a power supply device, 7 is a tray, 8 is a plating solution circulation pump 8, the anode 4 is made of a conductive material such as graphite, and the plating solution is continuously supplied from the pump 8 to the anode 4. is the short side mold wall 3 through the porous material.
The overflowing plating solution is collected in a tray 7 and supplied to the anode 4 again by a pump 8.
本発明方法によれば、前記鋳型の補修は、例えば、次の
ようにして達成される。即ち、黒鉛製アノード4をスポ
ンジ状の多孔質材で包み、これをスタイラス5に装着す
ると共に、電源装置6の正極をリード線9でアノード4
に、負極を鋳型lに接続する。他方、ポンプ8からアノ
ード4及び多孔質材を介して短辺側鋳型壁3にニッケル
メッキ液を供給する一方、鋳型壁面に沿って降下してく
るニッケルメッキ液をトレー7で収集し、ポンプ8で再
びアノード4に供給するようにする。それと同時に、前
記アノード4と鋳型壁3との間に電源装置6から直流電
圧を印加し、アノード4を手動または駆動機構により鋳
型壁面に沿って移動させることにより、メッキ液中のニ
ッケルが鋳型壁3の表面に電着させる。According to the method of the present invention, repair of the mold is accomplished, for example, in the following manner. That is, the graphite anode 4 is wrapped in a sponge-like porous material, and this is attached to the stylus 5, and the positive electrode of the power supply device 6 is connected to the anode 4 with a lead wire 9.
Then, connect the negative electrode to the mold l. On the other hand, the nickel plating solution is supplied from the pump 8 to the short side mold wall 3 via the anode 4 and the porous material, while the nickel plating solution falling down along the mold wall is collected in the tray 7 and pump 8 Then, supply is made to the anode 4 again. At the same time, by applying a DC voltage from the power supply 6 between the anode 4 and the mold wall 3 and moving the anode 4 along the mold wall surface manually or by a drive mechanism, nickel in the plating solution is transferred to the mold wall. Electrodeposit on the surface of 3.
このようにして、鋳型壁面にニッケルメッキをした後、
洗浄、乾燥させ、そのニッケルメッキ層上に、ニッケル
とコバルト含有タングステンカーバイトの粉末を材料と
して用い、粉末式フレーム溶射法により溶射して、アン
ダーコートがニッケルで、トップコートがコバルト含有
タングステンカーバイトからなる漸変皮膜を形成するこ
とにより、補修を行う。After nickel plating the mold wall in this way,
After cleaning and drying, the nickel plating layer is thermally sprayed using a powder flame spraying method using tungsten carbide powder containing nickel and cobalt as a material to form an undercoat of nickel and a top coat of tungsten carbide containing cobalt. Repair is performed by forming a gradual change film consisting of:
なお、これとは別に曲げ試験片を用意し、前記方法によ
り電解ニッケルメッキしてU字曲げ試験を行ったところ
剥離は全く認められなかった。Separately, a bending test piece was prepared, electrolytically nickel plated using the method described above, and subjected to a U-shaped bending test. No peeling was observed at all.
(発明の効果)
以上の説明から明らかなように、本発明によれば、メッ
キ槽を必要とせず、従って、鋳型の分解、組み立てが不
要となり、また、メッキ装置自体も鋳型装置内にセット
するのはアノードとスタイラスだけで良く、しかも、溶
射装置も小型のものを使用できるので、現場での局部的
な補修を行うことができる。(Effects of the Invention) As is clear from the above description, according to the present invention, a plating tank is not required, and disassembly and assembly of the mold are not required, and the plating device itself can be set in the mold device. All you need is an anode and a stylus, and you can also use a small thermal spraying device, so you can perform localized repairs on-site.
さらに、本発明方法によれば、ニッケルと金属化物系複
合材料からなる漸変皮膜を密着性良く形成することがで
きるので、鋳型の耐摩耗性及び耐熱性を向上させ、耐久
性に優れた連続鋳造用鋳型を製造することもできるだけ
でなく、局部的に摩耗した場合であっても全体の溶射皮
膜を除去することなく補修をもすることができるなど優
れた効果が得られる。Furthermore, according to the method of the present invention, it is possible to form a graded film made of nickel and a metal compound composite material with good adhesion, which improves the abrasion resistance and heat resistance of the mold, and provides a highly durable continuous film. Not only can casting molds be manufactured, but even if there is local wear, the sprayed coating can be repaired without removing the entire thermal sprayed coating, providing excellent effects.
第1図は本発明方法を連続鋳造用鋳型の補修に適用する
場合の一例を示す要部斜視図である。
1〜銅製鋳型、2〜その長辺側鋳型壁、3〜短辺側鋳型
壁、4〜多孔質材で包囲されたアノード、5〜スタイラ
ス、6〜電源装置、7〜トレー、8〜メツキ液循環用ポ
ンプ。FIG. 1 is a perspective view of a main part showing an example of applying the method of the present invention to repair of a continuous casting mold. 1-copper mold, 2-long side mold wall, 3-short side mold wall, 4-anode surrounded by porous material, 5-stylus, 6-power supply device, 7-tray, 8-plating liquid Circulation pump.
Claims (4)
面に当接させ、該アノード及び多孔質材を介して電解メ
ッキ液を銅製鋳型表面に連続的に供給しながら前記アノ
ードと銅製鋳型との間に通電し、前記アノードを前記鋳
型内壁面に沿って移動させつつ電解メッキした後、形成
された電解メッキ層上に、ニッケル及び/又は金属炭化
物系複合材料を溶射して漸変被膜を形成することを特徴
とする連続鋳造用鋳型の表面処理方法。(1) An anode is brought into contact with the inner wall surface of a copper mold through a porous material, and an electrolytic plating solution is continuously supplied to the surface of the copper mold through the anode and the porous material while the anode and the copper mold are brought into contact with each other. After electrolytically plating the anode while moving the anode along the inner wall surface of the mold, nickel and/or metal carbide-based composite material is thermally sprayed onto the formed electrolytically plated layer to form a gradual coating. 1. A method for surface treatment of a continuous casting mold, characterized by forming a continuous casting mold.
請求の範囲第1項記載の方法。(2) The method according to claim 1, wherein the electrolytic plating bath is a nickel plating bath.
し、トップコートを金属炭化物系複合材料で形成する特
許請求の範囲第1項又は第2項記載の方法。(3) The method according to claim 1 or 2, wherein the undercoat of the gradual change coating is formed of nickel, and the top coat is formed of a metal carbide composite material.
およびクロムのうち少なくとも一種を含有するタングス
テンカーバイトまたはチタンカーバイトである特許請求
の範囲第1項〜第3項のいづれか一項記載の方法。(4) The method according to any one of claims 1 to 3, wherein the metal carbide composite material is tungsten carbide or titanium carbide containing at least one of cobalt, nickel, and chromium.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25238486A JPS63104752A (en) | 1986-10-22 | 1986-10-22 | Surface treatment method for continuous casting molds |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25238486A JPS63104752A (en) | 1986-10-22 | 1986-10-22 | Surface treatment method for continuous casting molds |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63104752A true JPS63104752A (en) | 1988-05-10 |
JPH0457425B2 JPH0457425B2 (en) | 1992-09-11 |
Family
ID=17236569
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25238486A Granted JPS63104752A (en) | 1986-10-22 | 1986-10-22 | Surface treatment method for continuous casting molds |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63104752A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0496890A (en) * | 1990-08-13 | 1992-03-30 | Omron Corp | Card processor |
EP0593785A4 (en) * | 1992-05-15 | 1995-01-11 | Yuasa Battery Co Ltd | ACCUMULATOR AND METHOD FOR THE PRODUCTION THEREOF. |
WO2003099490A1 (en) * | 2002-05-27 | 2003-12-04 | Concast Ag | Method for the galvanic coating of a continuous casting mould |
JP2006346733A (en) * | 2005-06-20 | 2006-12-28 | Mishima Kosan Co Ltd | Mold for continuous casting, and its manufacturing method |
US7560015B2 (en) | 2002-05-27 | 2009-07-14 | Concast Ag | Process for electrolytic coating of a strand casting mould |
-
1986
- 1986-10-22 JP JP25238486A patent/JPS63104752A/en active Granted
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0496890A (en) * | 1990-08-13 | 1992-03-30 | Omron Corp | Card processor |
EP0593785A4 (en) * | 1992-05-15 | 1995-01-11 | Yuasa Battery Co Ltd | ACCUMULATOR AND METHOD FOR THE PRODUCTION THEREOF. |
WO2003099490A1 (en) * | 2002-05-27 | 2003-12-04 | Concast Ag | Method for the galvanic coating of a continuous casting mould |
CN100335200C (en) * | 2002-05-27 | 2007-09-05 | 康卡斯特股份公司 | Process for electrolytic coating of a strand casting mould |
US7560015B2 (en) | 2002-05-27 | 2009-07-14 | Concast Ag | Process for electrolytic coating of a strand casting mould |
JP2006346733A (en) * | 2005-06-20 | 2006-12-28 | Mishima Kosan Co Ltd | Mold for continuous casting, and its manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JPH0457425B2 (en) | 1992-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102925842A (en) | Supersonic air plasma spraying method of ceramic coating on crystallizer copper plate surface | |
JPS6137955A (en) | Roll for molten metal bath | |
CN103302442A (en) | Method for repairing surface of copper roller of amorphous nanocrystalline crystallizer | |
JPS63104752A (en) | Surface treatment method for continuous casting molds | |
JPS6117912B2 (en) | ||
JP2728254B2 (en) | Method of manufacturing conductor roll | |
JP2949443B2 (en) | Method for forming molten metal corrosion resistant film | |
JP2000345313A (en) | Production of roll used for continuous casting improved in heat resistance, corrosion resistance and wear resistance of surface of base material of roll barrel part applied with repeated thermal impact and sliding wear | |
JP4027153B2 (en) | Coating method for continuous casting mold | |
KR100797827B1 (en) | Coating method on carbon fiber-epoxy composite | |
JP2728264B2 (en) | Method for producing conductor roll having excellent electrical conductivity and conductor roll | |
JP2739409B2 (en) | Manufacturing method of corrosion and wear resistant multilayer metal coating | |
JP3912266B2 (en) | Conductor roll and manufacturing method and repair method thereof | |
JPS6046395A (en) | Conductor roll for electroplating | |
JPH08187555A (en) | Mold for continuous casting | |
JPS63199892A (en) | Current roll for electroplating | |
JP2852187B2 (en) | Continuous casting mold coated with composite film and method for producing the same | |
JPH05156485A (en) | Conductor roll for plating extremely thin metallic foil | |
JPS58218351A (en) | Casting mold for continuous casting and its production | |
JPH10245695A (en) | Corrosion resistant conductor roll for immersion | |
JPH10317119A (en) | Roll for molten metal, and its production | |
JPH09276995A (en) | Continuous casting mold and method of manufacturing the same | |
KR200372870Y1 (en) | insulated a plating device | |
JPH02243793A (en) | Production of tin and tin alloy plated material | |
JPH01118355A (en) | Coated die and core for aluminum die casting |