JPS63104492A - Wavelength control distributed bragg-reflector semiconductor laser - Google Patents
Wavelength control distributed bragg-reflector semiconductor laserInfo
- Publication number
- JPS63104492A JPS63104492A JP25118986A JP25118986A JPS63104492A JP S63104492 A JPS63104492 A JP S63104492A JP 25118986 A JP25118986 A JP 25118986A JP 25118986 A JP25118986 A JP 25118986A JP S63104492 A JPS63104492 A JP S63104492A
- Authority
- JP
- Japan
- Prior art keywords
- wavelength
- dbr
- laser
- section
- filter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims description 8
- 230000010355 oscillation Effects 0.000 claims abstract description 15
- 239000000758 substrate Substances 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 2
- 239000000969 carrier Substances 0.000 abstract description 6
- 238000000034 method Methods 0.000 abstract description 6
- 230000005540 biological transmission Effects 0.000 abstract description 5
- 238000002834 transmittance Methods 0.000 abstract description 3
- 230000002411 adverse Effects 0.000 abstract 1
- 230000003287 optical effect Effects 0.000 description 10
- 230000000694 effects Effects 0.000 description 5
- 238000005253 cladding Methods 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 210000004709 eyebrow Anatomy 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000000411 transmission spectrum Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/06—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
- H01S5/062—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
- H01S5/0625—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
- H01S5/06255—Controlling the frequency of the radiation
- H01S5/06256—Controlling the frequency of the radiation with DBR-structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/12—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
- H01S5/125—Distributed Bragg reflector [DBR] lasers
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、光通信などにおいて光源として用いられる波
長制御分布ブラッグ反射型半導体レーザに関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a wavelength-controlled distributed Bragg reflection type semiconductor laser used as a light source in optical communications and the like.
(従来の技術)
将来の高密度波長分割多重光伝送方式においては、波長
が精度よく制御された半導体レーザ光源が必要とされる
。このためKは分布帰還型レーザや分布ブラッグ反射型
レーザ(以下DBRレーザ)などの単一軸モードレーザ
の利用が考えられる。(Prior Art) Future high-density wavelength division multiplexing optical transmission systems will require a semiconductor laser light source whose wavelength is precisely controlled. Therefore, for K, it is possible to use a single-axis mode laser such as a distributed feedback laser or a distributed Bragg reflection laser (hereinafter referred to as a DBR laser).
しかし、これらのレーザの発振波長を所望の値に制御す
ることは、多重する波長間隔が狭くなるほど難しくなる
。それは、レーザの製造段階で活性層厚等のばらつきが
生じるためであシ現状では1.3μm帯で5 nm間隔
程度が限度である。したがってさらK1nm間隔以下の
高密度の多重化を行おうとすれば、光源の側に■波長可
変機能と■波長を所望の値に保つ機能が要求される。■
の波長可変レーザについては、すでにいくつかの試作例
が報告されている。特に波長可変機能を有するDBRレ
ーザは、比較的広い波長範囲にわたって電気的に波長を
変えられ、かつ安定した単一軸モード動作ができる点で
優れている。これKついては例えばエレクトロニクスレ
ターズ誌(Y。However, controlling the oscillation wavelength of these lasers to a desired value becomes more difficult as the multiplexed wavelength interval becomes narrower. This is because variations in active layer thickness etc. occur during the manufacturing stage of the laser.Currently, the limit is about 5 nm spacing in the 1.3 μm band. Therefore, in order to perform high-density multiplexing with an interval of K1 nm or less, the light source is required to have (1) a wavelength variable function and (2) a function to maintain the wavelength at a desired value. ■
Several prototype examples of wavelength tunable lasers have already been reported. In particular, a DBR laser having a wavelength tunable function is excellent in that the wavelength can be electrically changed over a relatively wide wavelength range and stable single-axis mode operation can be performed. Regarding this, for example, Electronics Letters magazine (Y).
Tohmori et、 al+ Electro
n、Lett。Tohmori et al+ Electro
n, Lett.
22 (1986)138)などに報告例がある。22 (1986) 138).
■の波長を所望の値に保つ機能については、レーザ自体
にこのような機能を付加したものは、現在存在しない。Regarding the function (2) of keeping the wavelength at a desired value, there is currently no laser that has such a function added to the laser itself.
波長をある値に保つためには、波長可変レーザの波長を
モニタし、この波長が一定となるようにレーザにフィー
ドバックをかけることが必要である。このだめKは、何
らかの波長選択器が必要であシ、従来は、ファプリーベ
ロー干渉計や回折格子などの光学機器が使われていた。In order to keep the wavelength at a certain value, it is necessary to monitor the wavelength of the tunable laser and apply feedback to the laser so that this wavelength remains constant. This K requires some kind of wavelength selector, and conventionally optical equipment such as a Fapley-Bello interferometer or a diffraction grating has been used.
これらの波長選択器で選択された所望の波長の光出力を
受光器でモニタし、この出力が一定となるように、波長
可変レーザの波長制御部に電気的なフィードバックをか
けることによって波長制御が行われていた。The optical output of the desired wavelength selected by these wavelength selectors is monitored by a receiver, and wavelength control is performed by applying electrical feedback to the wavelength control section of the tunable laser so that this output remains constant. It was done.
(発明が解決しようとする問題点)
上述のように、レーザの波長を精度よく制御するために
は、レーザの波長可変機能とともに、波長選択機能が重
要である。しかしながら、従来のように、ファプリーベ
ロー干渉計などの光学機器を波長選択器として使用する
ことは、大きさや製造の容易性やコストの点で問題があ
った。さらに長期の安定性の面でも不十分であった。(Problems to be Solved by the Invention) As described above, in order to accurately control the wavelength of a laser, the wavelength selection function as well as the wavelength variable function of the laser are important. However, conventionally, using an optical device such as a Fapley-Bello interferometer as a wavelength selector has been problematic in terms of size, ease of manufacture, and cost. Furthermore, it was insufficient in terms of long-term stability.
本発明の目的は、以上の問題点を改善し、波長を精度よ
く制御でき、小型で安定に動作し、しかも製造が容易な
波長制御レーザを提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to improve the above-mentioned problems and provide a wavelength-controlled laser that can accurately control wavelength, is compact, operates stably, and is easy to manufacture.
(問題点を解決するだめの手段)
本発明では、活性領域と、この活性領域に接続してあり
発振波長に対して、透明な分布ブラッグ反射器(以下D
BR)部と、前記DBR部に接続してありこのDBR部
と同じ組成からなる導波型グレーテイングフイルター部
とを1つの半導体基板上に有し、前記DBR部と前記フ
ィルター部との実効屈折率を互いに独立に制御する電極
が前記DBR部および前記フィルター部にそれぞれ備え
てあることを特徴とする波長制御DBRレーザによって
、上述の問題点を解決する。(Means for solving the problem) The present invention includes an active region and a distributed Bragg reflector (hereinafter referred to as D) connected to the active region and transparent to the oscillation wavelength.
BR) part and a waveguide grating filter part connected to the DBR part and having the same composition as the DBR part on one semiconductor substrate, and the effective refraction of the DBR part and the filter part is The above-mentioned problems are solved by a wavelength-controlled DBR laser characterized in that the DBR section and the filter section are each provided with electrodes that control the rate independently of each other.
(作 用)
第1図は、本発明の基本的な構造を示す、レーザ共振器
軸方向の断面図である。本発明のレーザは活性領域io
oとDBR部200、導波型グレーテイングフイルター
部300とからなり、いずれも半導体基板500上に形
成され集積化されている。このレーザの波長可変機構に
ついては、すでに先に述べた文献等で説明されているが
、以下簡単に説明する。活性領域100に電気注入する
ことにより発光した光は、DBR部200で特定の波長
の光のみが強く反射され、はぼこの波長でレーザ発振が
起る。この波長は主に、DBR部200の実効屈折率と
回折格子のピッチすなわちブラッグ波長によって決まる
。そこでDBR部200の実効屈折率を電気的に変える
ことによシ、ブラッグ波長を変え、レーザの発振波長を
変化させることができる。実効屈折率を電気的に変える
方法としては、DBR部200の光ガイド眉501にキ
ャリアを注入する方法や、電気光学効果を用いる方法が
ある。キャリアを注入する方法では、1.5μm帯で連
続可変波長範囲とし7て1. nm 、不4一
連続的には数nm以上が可能である。この様子は第2図
(a)に模式的に示しである。ここでIDはDBR部2
00への注入電流であシ、この時活性領域100の電流
は一定としている。なお、本発明では直接ふれていない
が、図に示すような不連続的な波長変化は、このような
波長可変I)BRレーザに位相制御部を付加することに
より連続可変とすることが可能であり、この点について
は、すでに公知である。以下処述べる波長制御について
は、そのような連続波長可変レーザの場合にも同様に適
用できる。(Function) FIG. 1 is a cross-sectional view in the axial direction of a laser resonator, showing the basic structure of the present invention. The laser of the present invention has an active region io
2, a DBR section 200, and a waveguide grating filter section 300, all of which are formed and integrated on a semiconductor substrate 500. The wavelength variable mechanism of this laser has already been explained in the above-mentioned literature, but will be briefly explained below. Of the light emitted by electrical injection into the active region 100, only light of a specific wavelength is strongly reflected by the DBR section 200, and laser oscillation occurs at a vague wavelength. This wavelength is mainly determined by the effective refractive index of the DBR section 200 and the pitch of the diffraction grating, that is, the Bragg wavelength. Therefore, by electrically changing the effective refractive index of the DBR section 200, the Bragg wavelength can be changed and the oscillation wavelength of the laser can be changed. Methods for electrically changing the effective refractive index include a method of injecting carriers into the light guide eyebrow 501 of the DBR section 200 and a method of using an electro-optic effect. In the method of injecting carriers, the continuously variable wavelength range is 7 and 1.5 μm. nm, several nm or more is possible in a continuous manner. This situation is schematically shown in FIG. 2(a). Here ID is DBR section 2
00, and the current in the active region 100 is kept constant at this time. Although not directly mentioned in the present invention, the discontinuous wavelength change as shown in the figure can be made continuous by adding a phase control section to such wavelength tunable I) BR laser. Yes, this point is already known. The wavelength control described below can be similarly applied to such a continuously variable wavelength laser.
次に波長制御機構について述べる。第2図(a)に示す
ような波長可変レーザの波長を特定の波長に制御するた
めの波長選択器としてフィルター部300を用いる。こ
のフィルター部300はDBR部200と同じ光ガイド
層501と回折格子を有しているために、反射特性は、
DBR部200とほぼ同じような特性を示す。すなわち
、フィルター部300の実効屈折率を電気的に変えるこ
とにより、反射あるいは透過特性を変化させることがで
きる。この様子は第2図(b)に示しである。Next, the wavelength control mechanism will be described. A filter unit 300 is used as a wavelength selector for controlling the wavelength of a wavelength tunable laser to a specific wavelength as shown in FIG. 2(a). Since this filter section 300 has the same optical guide layer 501 and diffraction grating as the DBR section 200, the reflection characteristics are as follows.
It exhibits almost the same characteristics as the DBR section 200. That is, by electrically changing the effective refractive index of the filter section 300, reflection or transmission characteristics can be changed. This situation is shown in FIG. 2(b).
すなわち、フィルター部300にキャリアを注入するこ
とによって、DBR部200から入射した特定の波長の
光の透過率を変えることができる(第2図(b)ではフ
ィルター部300の注入電流をIFとしている)。この
ことは逆に、フィルターの透過特性を電気的に制御しで
ある状態に固定して、透過光量を受光することによシ、
発振波長の変動をモニタできることを示している。した
がって、受光レベルを一定値に保つようにDBR部20
0の注入電流を電気的なフィードバック回路を用いて、
制御することによって発振波長を一定値に保つことがで
きる。波長の安定性はフィルターの特性によって異なる
が、0.3nm程度に安定させることが可能であシ、ま
た波長制御範囲もレーザの波長可変範囲とほぼ同程度の
数nm以上にわたって行うことができる。That is, by injecting carriers into the filter section 300, it is possible to change the transmittance of light of a specific wavelength incident from the DBR section 200 (in FIG. 2(b), the current injected into the filter section 300 is designated as IF). ). Conversely, this can be achieved by electrically controlling the transmission characteristics of the filter, fixing it in a certain state, and receiving the amount of transmitted light.
This shows that it is possible to monitor fluctuations in the oscillation wavelength. Therefore, the DBR unit 20 maintains the received light level at a constant value.
0 injection current using an electrical feedback circuit,
By controlling it, the oscillation wavelength can be kept at a constant value. The wavelength stability varies depending on the characteristics of the filter, but it can be stabilized to about 0.3 nm, and the wavelength control range can also be controlled over several nm or more, which is approximately the same as the wavelength variable range of the laser.
(実施例) 第3図は、本発明の実施例を示す斜視図である。(Example) FIG. 3 is a perspective view showing an embodiment of the present invention.
基本的には第1図と同様の構造で、活性領域100゜D
BR部200、フィルター部300とからなっておシ、
同−InP基板上に集積化されている。Basically, the structure is similar to that shown in Fig. 1, and the active region is 100°D.
Consisting of a BR section 200 and a filter section 300,
It is integrated on the same InP substrate.
活性領域100、DBR部200、フィルター部300
の長さはそれぞれ150μm、500μm1500μm
である。以下、製作手順を簡単に述べる。まずn形In
P基板500上のDBR部200とフィルター部300
とに周期240 nmの回折格子を形成する。次に1回
目のLPEによってn形InGaAsP光ガイド層50
1、InPバッファ一層502、InGaAsP活性層
503P形InPクラッド層504を順次成長する。次
に回折格子のあるDBR部200とフィルター部300
のクラッド層504と活性層503を選択的に除去する
。光ガイド層501は残しておく。2回目のLPE成長
において、全体にP形InPクラッド層505を形成す
る。次に埋め込み構造とするために、メサエッチングを
行った後、3回目のLPE成長によって、埋め込み成長
を行う。本実施例では、2重チャンネルプレーナ埋め込
み型を用いたが、他のストライプ構造でも本質的には効
果は変らなり。次に基板側と、成長側の活性領域100
、DBR部200、フィルター部300に電極を形成す
る。各部分の電気的な分離は成長層の一部をエツチング
し、溝を設けることによシ行った。光ガイド層501は
レーザの発振波長に対して透明である。またp −n接
合が形成されているため、DBR部200とフィルター
部300にキャリアを注入することによって、この部分
の実効屈折率を変化させることができる。乙のように製
作した素子の特性の一例を次に示す。しきい値16 m
A、。Active region 100, DBR section 200, filter section 300
The length is 150μm, 500μm and 1500μm respectively.
It is. The manufacturing procedure will be briefly described below. First, n-type In
DBR section 200 and filter section 300 on P substrate 500
A diffraction grating with a period of 240 nm is formed. Next, by the first LPE, the n-type InGaAsP light guide layer 50 is
1. An InP buffer layer 502, an InGaAsP active layer 503, and a P-type InP cladding layer 504 are sequentially grown. Next, a DBR section 200 with a diffraction grating and a filter section 300
The cladding layer 504 and active layer 503 are selectively removed. The light guide layer 501 is left as is. In the second LPE growth, a P-type InP cladding layer 505 is formed over the entire structure. Next, in order to form a buried structure, mesa etching is performed, and then buried growth is performed by a third LPE growth. In this embodiment, a double channel planar embedded type was used, but other striped structures can also have essentially the same effect. Next, active regions 100 on the substrate side and the growth side
, electrodes are formed on the DBR section 200 and the filter section 300. Electrical isolation of each part was achieved by etching a part of the grown layer and providing grooves. The light guide layer 501 is transparent to the laser oscillation wavelength. Further, since a p-n junction is formed, by injecting carriers into the DBR section 200 and the filter section 300, the effective refractive index of this section can be changed. An example of the characteristics of the device manufactured as shown in Part B is shown below. Threshold 16 m
A.
前面からの外部微分量子効率25%、発振波長1.55
μmであった。DBR部に電流注入した場合の可変波長
範囲は連続でQ、 9 nm 、不連続的には4.5n
mであった。フィルター部300からの光出力特性、す
なわちフィルター特性は、フィルター部300の注入電
流を一定とし、DBR部200への注入電流によυ、発
振波長を変えて測定した。フィルター部300からの光
出力は、最大で前面からの光出力の8チ、最小で1%で
あった。また透過スペクトルの半値全幅は0.6n、m
であった。この素子に(作用)の項で述べたような簡単
な電気的フィードバックを行い、DBR部200の電流
を制御した。活性領域100の注入電流を増大させ、発
熱による波長変動を生じさせた時に、フィードバックが
ない場合、Inm程度の長波長側への波長シフトが生じ
たのに対し、フィードバックがある場合には03 nm
の波長シフトにおさえることができた。External differential quantum efficiency from the front 25%, oscillation wavelength 1.55
It was μm. When current is injected into the DBR section, the variable wavelength range is Q, 9 nm continuously, and 4.5 nm discontinuously.
It was m. The optical output characteristics from the filter section 300, that is, the filter characteristics, were measured by keeping the current injected into the filter section 300 constant and changing the oscillation wavelength by υ depending on the current injected into the DBR section 200. The maximum light output from the filter section 300 was 8% of the light output from the front surface, and the minimum was 1%. The full width at half maximum of the transmission spectrum is 0.6n, m
Met. Simple electrical feedback as described in the (effect) section was applied to this element to control the current of the DBR section 200. When the current injected into the active region 100 is increased to cause wavelength fluctuations due to heat generation, in the absence of feedback, a wavelength shift of about Inm occurs, whereas in the case of feedback, the wavelength shift is about 0.3 nm.
We were able to suppress the wavelength shift to .
なお、上述の実施例では、実効屈折率の変化をキャリア
注入により行ったが、電気光学効果を用いてもよい。こ
の場合は、さらに光ガイド層501を量子井戸構造にす
ることにより高性能化が期待できる。またフィルター部
300からの光出力をモニタする受光部を同時九集積化
すれば、フィードバック系をさらに小型化することも可
能である。In the above-described embodiment, the effective refractive index was changed by carrier injection, but an electro-optic effect may also be used. In this case, higher performance can be expected by further forming the optical guide layer 501 into a quantum well structure. Further, by simultaneously integrating nine light receiving sections for monitoring the optical output from the filter section 300, it is possible to further downsize the feedback system.
(発明の効果)
以上のように本発明によれば、小型で安定な波長制御半
導体レーザが実現できる。すなわち、活性領域での発熱
や劣化などによる発振波長の変動を、簡単なフィードバ
ック回路を付加するだけで補正することができる。この
ようなレーザは将来の高密度の波長分割多重光伝送用光
源として有効である。(Effects of the Invention) As described above, according to the present invention, a small and stable wavelength-controlled semiconductor laser can be realized. That is, fluctuations in the oscillation wavelength due to heat generation, deterioration, etc. in the active region can be corrected by simply adding a simple feedback circuit. Such a laser is effective as a light source for future high-density wavelength division multiplexed optical transmission.
第1図は本発明の基本的な構造を示す断面図、第2図(
a)は第1図の構造におけるDBR部の注入電流制御に
よる発振波長の変動を示す特性図、第2図(b)は第1
図の構造におけるフィルター部の透過率と発振波長の関
係を示す特性図、第3図は本発明の一実施例を示す斜視
図である。
図中、100は活性領域、200はDBR部、300は
フィルター部、500は基板、501は光ガイド層、5
02はバッファ一層、503は活性層、504,505
はクラッド層である。
代理人 弁理士 本 庄 伸 介
3SセL乍東上八 〇BR9フィルター杏
P第1図
0 ジ主人、LIo eJA疾&
(a) (b)Figure 1 is a sectional view showing the basic structure of the present invention, Figure 2 (
a) is a characteristic diagram showing the fluctuation of the oscillation wavelength due to injection current control of the DBR section in the structure of Fig.
FIG. 3 is a characteristic diagram showing the relationship between the transmittance of the filter section and the oscillation wavelength in the structure shown in the figure, and FIG. 3 is a perspective view showing an embodiment of the present invention. In the figure, 100 is an active region, 200 is a DBR section, 300 is a filter section, 500 is a substrate, 501 is a light guide layer, 5
02 is a buffer layer, 503 is an active layer, 504, 505
is the cladding layer. Agent Patent Attorney Shinsuke Honsho 3S SE L 乍東上八 〇BR9filter 杏P 1 0 ji master, LIo eJA disease &
(a) (b)
Claims (1)
して透明な分布ブラッグ反射器部と、前記反射器部に接
続してありこの反射器部と同じ組成からなる導波型グレ
ーテイングフイルター部とを1つの半導体基板上に有し
、前記反射器部と前記フィルター部との実効屈折率を互
いに独立に制御する電極が前記反射器部と前記フィルタ
ー部とにそれぞれ備えてあることを特徴とする波長制御
分布ブラッグ反射型半導体レーザ。an active region, a distributed Bragg reflector section connected to the active region and transparent to the oscillation wavelength, and a waveguide grating filter connected to the reflector section and having the same composition as the reflector section. on one semiconductor substrate, and each of the reflector section and the filter section is provided with an electrode that controls the effective refractive index of the reflector section and the filter section independently of each other. A wavelength-controlled distributed Bragg reflection type semiconductor laser.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25118986A JPS63104492A (en) | 1986-10-22 | 1986-10-22 | Wavelength control distributed bragg-reflector semiconductor laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25118986A JPS63104492A (en) | 1986-10-22 | 1986-10-22 | Wavelength control distributed bragg-reflector semiconductor laser |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63104492A true JPS63104492A (en) | 1988-05-09 |
Family
ID=17219004
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25118986A Pending JPS63104492A (en) | 1986-10-22 | 1986-10-22 | Wavelength control distributed bragg-reflector semiconductor laser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63104492A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02246291A (en) * | 1989-01-27 | 1990-10-02 | American Teleph & Telegr Co <Att> | Dispersed braggreflector laser for frequency modulated comminucation system |
-
1986
- 1986-10-22 JP JP25118986A patent/JPS63104492A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02246291A (en) * | 1989-01-27 | 1990-10-02 | American Teleph & Telegr Co <Att> | Dispersed braggreflector laser for frequency modulated comminucation system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2137596C (en) | Alternating grating tunable dbr laser | |
JP3611593B2 (en) | Method for fabricating semiconductor optical device | |
US7622315B2 (en) | Tunable laser source with integrated optical modulator | |
US8040933B2 (en) | Diffraction grating device, laser diode, and wavelength tunable filter | |
EP0653821B1 (en) | Reflective digitally tunable laser | |
US7983318B2 (en) | Optical semiconductor device | |
WO2017092094A1 (en) | Wavelength tunable semiconductor laser | |
CN104993375A (en) | Distributed feedback laser with short cavity length | |
WO2016082541A1 (en) | Wide-range tunable laser and tuning method thereof | |
US4796274A (en) | Semiconductor device with distributed bragg reflector | |
JP2002299755A (en) | Fast and broadband tunable laser | |
JPH07273400A (en) | Semiconductor laser | |
CN105490164A (en) | Distributed feedback laser | |
JP2003289169A (en) | Semiconductor laser device | |
CN117498135A (en) | Large-range wavelength tuning laser | |
JPH01126621A (en) | Variable wavelength filter | |
KR100626270B1 (en) | Wideband Tunable Coupled Ring Reflector Laser Diode | |
US6363093B1 (en) | Method and apparatus for a single-frequency laser | |
JPS63104492A (en) | Wavelength control distributed bragg-reflector semiconductor laser | |
JPH11150324A (en) | Semiconductor laser | |
JP3529275B2 (en) | WDM light source | |
JPS6373585A (en) | Frequency tunable distributed bragg reflection-type semiconductor laser | |
JPS62245692A (en) | Distributed feedback semiconductor laser with external resonator | |
JPS60178685A (en) | Single-axial mode semiconductor laser device | |
JPH0680857B2 (en) | Integrated distributed Bragg reflector semiconductor laser |