JPS63103961A - Method and device for inspecting deterioration of lubricating oil - Google Patents
Method and device for inspecting deterioration of lubricating oilInfo
- Publication number
- JPS63103961A JPS63103961A JP24944086A JP24944086A JPS63103961A JP S63103961 A JPS63103961 A JP S63103961A JP 24944086 A JP24944086 A JP 24944086A JP 24944086 A JP24944086 A JP 24944086A JP S63103961 A JPS63103961 A JP S63103961A
- Authority
- JP
- Japan
- Prior art keywords
- lubricating oil
- deterioration
- column
- electrodes
- capillary tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Abstract
Description
【発明の詳細な説明】
−Eの1
本発明は、潤滑油の劣化を検査するための検査方法及び
装置に関するものであり、特に船舶、車両等のような可
動の装置に使用される潤滑油を任意の所望の場所にて検
査することのできる簡便な潤滑油の劣化検査方法及び装
置に関するものである。Detailed Description of the Invention -E-1 The present invention relates to an inspection method and device for inspecting deterioration of lubricating oil, and in particular to lubricating oil used in movable equipment such as ships and vehicles. The present invention relates to a simple lubricating oil deterioration testing method and device that can be used to test lubricating oil at any desired location.
′ の ず゛ び 、j へ例えば船舶、
車両及びその他の種々の機械において可動の部材が多く
使用されており、斯る可動部材の圧動を円滑にし、且つ
冷却効果をも達成するべく潤滑油が使用されている。潤
滑油を使用した機械類においては、潤滑油の性状が機械
の安定した作動を得るのに大きく影響し、通常潤滑油の
頻繁な交換が必要とされる。′ to j, for example, a ship,
Many movable members are used in vehicles and other various machines, and lubricating oil is used to smooth the pressure movement of such movable members and also to achieve a cooling effect. In machinery that uses lubricating oil, the properties of the lubricating oil greatly affect the stable operation of the machine, and the lubricating oil usually needs to be replaced frequently.
最近1種々の分野においてメインテナンスフリー化、省
エネルギー化が叫ばれており、潤滑油を使用した機械類
においても長期にわたる安定した性状を有する長寿命の
潤滑油が要望されると共に、潤滑油の適当な交換時期を
より正確に、且つより簡単に知り得る方法及び装置が望
まれている。Recently, there has been a call for maintenance-free and energy saving in various fields, and even for machinery that uses lubricants, there is a demand for long-life lubricants with stable properties over a long period of time, and there is a need for appropriate lubricant oils. There is a need for a method and device that can more accurately and easily determine the replacement time.
潤滑油の交換時期を判断するためにはf[!!1ffl
油の劣化程度を知得する必要があり、従来潤滑油の劣化
は機械から潤滑油を定期的にサンプリングし、規定の試
験法に基すき粘度、中和価、不溶解分等を測定して油の
劣化状態を把握する方法が採用されている。To determine when to change the lubricant, use f[! ! 1ffl
It is necessary to know the degree of deterioration of oil. Conventionally, deterioration of lubricating oil was measured by periodically sampling lubricating oil from machinery and measuring the viscosity, neutralization value, insoluble content, etc. based on specified test methods. A method is used to understand the state of deterioration.
°しかしながら、このような方法は、作業が複雑であり
、多大の時間を要し、迅速に結果をまとめることは不可
能であった。特に、船舶、車両等のように一定の場所に
固定されていない場合が多い機械類においては、上記方
法を実施するのは更に困難であった。°However, such a method is complicated and takes a lot of time, and it is impossible to quickly summarize the results. In particular, it has been more difficult to implement the above method for machinery that is often not fixed at a fixed location, such as ships and vehicles.
又、潤滑油劣化検査方法(及び装置)としては、油の導
電率や誘電率等を測定する方法(特開昭58−8531
4号、特開昭58−128411J+等を参照せよ、)
や、油温、エンジン回転数及び負荷から劣化度を算出す
る方法(特開昭59−43299号、特開昭61−65
007号、特開昭61−65008号等を参照せよ、)
が提案されている。しかしながら、前者の場合は油の使
用条件或いは油中の添加剤成分によって油の導電率や誘
電率が大さく変化することのために、又後者の場合は直
接油の性状を測定しないために、潤滑油の実用性能上の
劣化を必ずしも正確に判断することはできないという問
題を有している。In addition, as a lubricating oil deterioration inspection method (and device), a method of measuring the electrical conductivity and dielectric constant of oil (Japanese Patent Application Laid-Open No. 58-8531
No. 4, JP-A-58-128411J+, etc.)
method for calculating the degree of deterioration from oil temperature, engine speed, and load (JP-A-59-43299, JP-A-61-65)
Please refer to No. 007, JP-A No. 61-65008, etc.)
is proposed. However, in the former case, the electrical conductivity and dielectric constant of the oil vary greatly depending on the oil usage conditions or additive components in the oil, and in the latter case, because the properties of the oil are not directly measured. There is a problem in that it is not always possible to accurately determine the deterioration in the practical performance of lubricating oil.
本発明者等は、斯る問題を解決するべく多くの研究実験
を行なった結果、潤滑油が流動する際に発生する流動電
圧が潤滑油の劣化に伴なって変化することを見出した。The inventors of the present invention conducted many research experiments to solve this problem, and found that the flowing voltage generated when lubricating oil flows changes as the lubricating oil deteriorates.
本発明は斯る新規な知見に基ずくものである。The present invention is based on this new knowledge.
1に11
本発明の目的は、潤滑油の劣化の程度を簡単に且つ正確
に検知し測定することのできる潤滑油劣化検査方法及び
装置を提供することである。1 to 11 An object of the present invention is to provide a lubricating oil deterioration testing method and apparatus that can easily and accurately detect and measure the degree of deterioration of lubricating oil.
本発明の他の目的は、特に船舶、車両等の可動機械の潤
滑油の劣化の程度を測定するのに適した簡単で且つ正確
な潤滑油劣化検査方法及び装置を提供することである。Another object of the present invention is to provide a simple and accurate lubricating oil deterioration testing method and apparatus particularly suitable for measuring the degree of deterioration of lubricating oil in movable machines such as ships and vehicles.
1、 直 るため
上記諸口的は本発明に係る潤滑油劣化検査方法及び装置
にて達成される。要約すれば本発明は、検査すべき潤滑
油を互いに離隔して配置された二つの電極を貫通する態
様で流動せしめ、該二つの電極間に発生する流動電位を
測定することにより潤滑油の劣化の程度を検査すること
を特徴とする潤滑油劣化検査方法である。1. The above-mentioned problems are achieved by the lubricating oil deterioration testing method and device according to the present invention. In summary, the present invention allows the lubricating oil to be inspected to flow through two electrodes placed apart from each other, and measures the flowing potential generated between the two electrodes to detect the deterioration of the lubricating oil. This is a lubricating oil deterioration testing method characterized by testing the degree of deterioration of lubricating oil.
該検査方法は、内部に充填材が充填され、検査すべき1
11滑油の流動を可渣とするカラムと、該カラムの入口
及び出口部分に配設された電極と、前記電極に接□続さ
れカラムを流動する潤滑油の流動電位を測定する電位差
計と、前記カラムに潤滑油を供給する手段と、好ましく
はカラム内の潤滑油の圧力を測定する圧力計とが設けら
れた潤滑油劣化検査装Jにて好適に実施することができ
る。In this inspection method, a filler is filled inside and a part to be inspected is used.
11 A column that allows the flow of lubricating oil, electrodes disposed at the inlet and outlet portions of the column, and a potentiometer connected to the electrode to measure the flow potential of the lubricating oil flowing through the column. This can be suitably carried out using a lubricating oil deterioration inspection device J that is equipped with means for supplying lubricating oil to the column, and preferably a pressure gauge that measures the pressure of the lubricating oil in the column.
支亙摺
次に、本発明に係る潤滑油劣化測定方法及び装置を一実
施例に即して更に詳しく説明する。Next, the lubricating oil deterioration measuring method and apparatus according to the present invention will be explained in more detail based on one embodiment.
先ず、第1図〜第3図を参照して本発明に係る潤滑油劣
化検査方法の原理について説明する。毛゛細管100
(又は多孔質相)を通してイオンや荷電粒子を含む液体
を流動せしめた場合、該毛細管100の入口及び出口の
両端に形成した電極102.104間には電位差が生じ
ることが分かつている。更に説明すると、第2図Aに図
示されるように、毛細管100を通してイオンや荷電粒
子を含む液体を流動させると、毛細管100の内壁表面
と液体との接触面、つまり固液界面にはイオン或いは荷
電粒子が吸着することによって電気二重層106が形成
され、その時の電位状態が第2図Bに示される。第2図
Bにて理解されるように、毛細管100の内壁面にては
所定の大きさのマイナス電位とされ、毛m管中心部に行
くに従って電位が低下し、零電位となっている。斯る状
態にて液体を流動させると、二重層中の電荷の一部も液
体と共に運搬され、毛細管中にて電荷の偏在が生じ、毛
細管の入口と出口の両端には電位差が発生することとな
る。First, the principle of the lubricating oil deterioration inspection method according to the present invention will be explained with reference to FIGS. 1 to 3. capillary tube 100
It has been found that when a liquid containing ions or charged particles is caused to flow through a porous phase (or a porous phase), a potential difference is generated between electrodes 102 and 104 formed at both ends of the inlet and outlet of the capillary tube 100. To explain further, as shown in FIG. 2A, when a liquid containing ions and charged particles is caused to flow through the capillary tube 100, ions or other particles are present at the contact surface between the inner wall surface of the capillary tube 100 and the liquid, that is, at the solid-liquid interface. An electric double layer 106 is formed by adsorption of charged particles, and the potential state at that time is shown in FIG. 2B. As understood from FIG. 2B, the inner wall surface of the capillary tube 100 has a predetermined negative potential, and as it approaches the center of the capillary tube, the potential decreases to zero potential. When a liquid is allowed to flow under such conditions, some of the charges in the double layer are carried along with the liquid, resulting in uneven distribution of charges in the capillary and a potential difference between the entrance and exit of the capillary. Become.
該電位差(流動電位)Eは、液体を流動させる圧力差Δ
Pに比例し、
E=にΔP (1)が成立し、
その比例定数には次式で示される。The potential difference (flowing potential) E is the pressure difference Δ that causes the liquid to flow.
Proportional to P, ΔP (1) holds for E=,
The proportionality constant is expressed by the following formula.
K=(εζ)/(4πη入) (2)ここで、
ε:液体の誘rrL率
ζ:ゼータ電位(電気二重層における液体のすべり面1
06aにおける電位)
η:液体の粘性係数
入:液体の導電率
前記比例定数には式(2)から明らかなように、液体の
粘度、誘電率、導電率及びゼータ電位によって決定され
る。K=(εζ)/(4πη included) (2) Here, ε: Liquid rrL rate ζ: Zeta potential (slip surface 1 of liquid in electric double layer)
(potential at 06a) η: viscosity coefficient of the liquid; electrical conductivity of the liquid As is clear from equation (2), the proportionality constant is determined by the viscosity, permittivity, conductivity, and zeta potential of the liquid.
本発明者等は、上記式(2)を検討する過程にて、例え
ば液体が潤滑油である場合には、I11滑油が劣化すれ
ば比例定数Kが大きく変化し、とりわけ、ゼータ電位は
毛細管へのイオンの吸着によって変化することを見出し
た。又、該イオンの吸着の仕方によりゼータ電位の絶対
値が変化すると共に、第3図に図示されるように、電位
の符合、即ち傾きの方向も変化することが分かった。例
えば、エンジン油(11!I滑油)には清浄分散剤とい
われる一種の界面活性剤が添加されているが、新油の場
合には毛細管内壁面、つまり固相にこの界面活性剤が選
枳的に吸着しており、油の劣化が進行すると、カルボン
最のような極性物質が生成し。In the process of studying the above equation (2), the present inventors found that, for example, when the liquid is lubricating oil, if the I11 lubricating oil deteriorates, the proportionality constant K changes significantly, and in particular, the zeta potential We found that this changes depending on the adsorption of ions to. Furthermore, it has been found that the absolute value of the zeta potential changes depending on the way the ions are adsorbed, and the sign of the potential, that is, the direction of the slope, also changes, as shown in FIG. For example, a type of surfactant called a detergent and dispersant is added to engine oil (11!I lubricating oil), but in the case of new oil, this surfactant is selected on the inner wall surface of the capillary tube, that is, the solid phase. It is naturally adsorbed, and as the oil deteriorates, polar substances like carvone are generated.
界面活性剤の固相への吸着状態が変化することによりゼ
ータ電位が変化することが分かった。It was found that the zeta potential changes as the adsorption state of the surfactant to the solid phase changes.
本発明者等は、上記ゼータ電位の変化が流動電位の変化
となって現出するので、該流動電位を検出することによ
り潤滑油の劣化程度を測定し得ることを見出した。つま
り、本発明は、検査すべき潤滑油を互いに離隔して配置
された二つの電極を貫通する態様で流動せしめ、該二つ
の電極間に発生する流動電位を測定することにより潤滑
油の劣化の程度を検査することを特徴とする潤滑油劣化
検査方法である。The present inventors have discovered that since the change in the zeta potential appears as a change in the streaming potential, the degree of deterioration of the lubricating oil can be measured by detecting the streaming potential. In other words, the present invention allows the lubricating oil to be inspected to flow through two electrodes placed apart from each other, and measures the flowing potential generated between the two electrodes to detect deterioration of the lubricating oil. This is a lubricating oil deterioration testing method characterized by testing the degree of deterioration.
次に、上記の如き本発明に係る潤滑油劣化検査方法を好
適に実施し得る装置を第4図を参照してその一実施例を
説明する。Next, an embodiment of an apparatus that can suitably implement the lubricating oil deterioration inspection method according to the present invention as described above will be described with reference to FIG.
本発明に係る潤滑油劣化検査装置lは、カラム2を有し
、該カラム2の内部には充填剤4が収容され、又該カラ
ム2の入口部と出口部には夫々電極6.8が配設される
。カラム2はガラス、セラミックス、例えばテフロン(
米国デュポン社商品名)′:4のような合成樹脂、素焼
、紙、金属等で作製される。該カラム2は、特に耐圧性
が考慮されればよく、寸法形状が特定のものに限定され
るも′のではないが、本実施例では例えば直径15 m
mの円筒状ガラス製カラムとされ、その内部には厚さ
5mmとなるように直径5pmの充填剤4、例えばガラ
ス玉が充填される。充填剤としては、カラム4と同様の
材料にて作製され、他にセラミックス、合成樹脂、素焼
、紙、金属等の球状、円柱状のものが好適に使用される
。又、該充填剤は。The lubricating oil deterioration testing device 1 according to the present invention has a column 2 in which a filler 4 is housed, and electrodes 6.8 at the inlet and outlet of the column 2, respectively. will be placed. Column 2 is made of glass, ceramics, such as Teflon (
It is made of synthetic resin such as DuPont (trade name)':4, bisque, paper, metal, etc. The column 2 only needs to be particularly pressure-resistant, and its size and shape are not limited to a specific one, but in this example, it has a diameter of 15 m, for example.
The column is made of cylindrical glass and is filled with a filler 4 having a diameter of 5 pm, such as glass beads, so as to have a thickness of 5 mm. The filler is made of the same material as the column 4, and spherical or cylindrical fillers such as ceramics, synthetic resins, unglazed ceramics, paper, and metals are also preferably used. Also, the filler.
カラム内に供給される潤滑油との接触面積が大きい方が
電位差検出には好ましいので、粒径は小さい方が好まし
い、又、本実施例にて前記カラム2の入口部と出口部の
電極6.8は網状の白金電極とされ、電位差計10に接
続される。Since a larger contact area with the lubricating oil supplied into the column is preferable for potential difference detection, a smaller particle size is preferable. .8 is a platinum electrode in the form of a mesh, and is connected to a potentiometer 10.
前記カラム2の入口及び出口電極に隣接してカラム内の
圧力を測定する圧力センサー12.14が配lされ、該
圧力センサーの信号は差圧変換器16へと送信される。A pressure sensor 12.14 is arranged adjacent to the inlet and outlet electrodes of the column 2 to measure the pressure within the column, the signal of which is transmitted to a differential pressure transducer 16.
上記構成にて、測定されるべき潤滑油は、貯槽20から
ポンプ22にてカラム2へと供給される。このとき、ポ
ンプ22からカラム2へと供給される潤滑油は含有する
異物をフィルタ24にてろかするのが好ましい、カラム
2に送給された潤滑油はカラム中の充填剤部分4を通過
する間に、両電極6.8間に流動電位を生ぜしめ、電位
差計lOにてその大きさ及び正負が測定される。カラム
2を通過した検査後の潤滑油は溜め26へと回収される
。又、潤滑油のカラム通過時には、同時にカラム内の圧
力(即ち、カラム内を通過する潤滑油の流量を示す)が
差圧変換器16にて測定され、該電位差計10及び差圧
変換器16からの信号は演算処理部18へと送信される
。該演算処理部18では、各信号を所定プログラムに従
って処理した後、表示装置19、例えばX−Yプロッタ
ー等にて測定結果をオペレータに表示する。With the above configuration, the lubricating oil to be measured is supplied from the storage tank 20 to the column 2 by the pump 22. At this time, it is preferable that foreign substances contained in the lubricating oil supplied from the pump 22 to the column 2 be filtered out by a filter 24.The lubricating oil supplied to the column 2 passes through the filler portion 4 in the column. In between, a flowing potential is generated between both electrodes 6.8, and its magnitude and sign are measured with a potentiometer IO. The inspected lubricating oil that has passed through column 2 is collected into reservoir 26 . Furthermore, when the lubricating oil passes through the column, the pressure within the column (that is, the flow rate of the lubricating oil passing through the column) is measured at the same time by the differential pressure transducer 16. The signal from is transmitted to the arithmetic processing section 18. The arithmetic processing section 18 processes each signal according to a predetermined program, and then displays the measurement results to the operator on a display device 19, such as an X-Y plotter.
オペレータはx−Yプロッターにて表示されるグラフ等
を検討することにより潤滑油の劣化の程度を知得し得る
。勿論自動的に数値等にて劣化の程度を表示せしめるこ
とも可能である。The operator can learn the degree of deterioration of the lubricating oil by examining the graphs etc. displayed on the x-y plotter. Of course, it is also possible to automatically display the degree of deterioration using a numerical value or the like.
上記測定装置lを使用して、試験油A、B、Cの劣化度
の検査を行なった。xYプロッターにて表示された検査
結果が第5図に図示される。The degree of deterioration of test oils A, B, and C was examined using the measuring device 1 described above. The test results displayed on the xY plotter are illustrated in FIG.
試験油Aは、新しい潤滑油であり、その成分組成は、3
2ニユートラル油にZnジアルキルジチオフォスフェー
ト(酸化防IF及び耐摩耗剤)と、カルシウムスルフォ
ネート(清詐分散剤)と、コハク酸イミド(無灰清炸分
散剤)を合計7.6Wt0%配合したものである。Test oil A is a new lubricating oil, and its component composition is 3
2 Neutral oil contains Zn dialkyl dithiophosphate (antioxidant IF and anti-wear agent), calcium sulfonate (cleaning dispersant), and succinimide (ashless clearing dispersant) at a total of 7.6 Wt0%. This is what I did.
試験油Bは、上記試験油A100部に対し、劣化油(1
50ニユートラル油をISO酸化安定度試験装置で16
5.5℃にて48時間劣化させたもの)20部を混合し
粘度調整のため白灯油少量を加えたものである。Test oil B was prepared by adding degraded oil (1 part) to 100 parts of test oil A above.
50 neutral oil in ISO oxidation stability tester.
20 parts of the mixture was mixed with 20 parts of the product aged at 5.5°C for 48 hours, and a small amount of white kerosene was added to adjust the viscosity.
試験油Cは、上記試験油A100部に対し、劣化油(1
50ニユートラル油をISO酸化安定度試験装置で16
5.5℃にて56時間劣化させたもの)30部を混合し
粘度調整のため白灯油少量を加えたものである。Test oil C was a mixture of 100 parts of the above test oil A and 1 part of degraded oil.
50 neutral oil in ISO oxidation stability tester.
A mixture of 30 parts of 100% (degraded at 5.5°C for 56 hours) and a small amount of white kerosene was added to adjust the viscosity.
第1表に試験油A、B、Cの性状が示される。Table 1 shows the properties of test oils A, B, and C.
第1表 試験油の性状
第5図から、試験油A、B、Cの比例定数K(流動電位
/圧力)を計算により求めた。結果は次の通りであった
。Table 1 Properties of test oils From FIG. 5, the proportionality constant K (flowing potential/pressure) of test oils A, B, and C was determined by calculation. The results were as follows.
試験油A −1,4mV/gecm’試験油B
試験+0.73 mV/g−crn’試験油試
験 +0.95 mV/gacrn”上記結果
より、次の如き結論が得られる。つまり、
(1)圧力が増加すると、流動電位は大略直線的に変化
する。Test oil A -1,4mV/gecm' Test oil B
Test +0.73 mV/g-crn'Test oil test +0.95 mV/gacrn'' From the above results, the following conclusions can be drawn: (1) As the pressure increases, the streaming potential changes approximately linearly. do.
(2)新油(試験油A)では比例定数Kが負であるのに
対し、劣化油(試験油B、C)では正に変化する。これ
は新油ではゼータ電位が負であったものが、劣化したこ
とにより正に変化したことを意味する。(2) While the proportionality constant K is negative in new oil (test oil A), it changes positively in deteriorated oils (test oils B and C). This means that the zeta potential of the new oil was negative, but it changed to positive due to deterioration.
(3)又、劣化の程度に応じ、比例定数Kが変化するた
め、潤滑油の劣化度合を検出することができる。(3) Furthermore, since the proportionality constant K changes depending on the degree of deterioration, the degree of deterioration of the lubricating oil can be detected.
魚」Lの」L里
以上の如くに構成される本発明に従った潤滑油劣化検査
方法及び装置は、潤滑油の劣化の程度を簡単に且つ正確
に検知し測定することができ、特に船舶、車両等の可動
機械の潤滑油の劣化程度の測定に好適であるという特長
を有する。The lubricating oil deterioration testing method and device according to the present invention configured as above can easily and accurately detect and measure the degree of deterioration of lubricating oil, and is particularly suitable for ships. It has the advantage of being suitable for measuring the degree of deterioration of lubricating oil in moving machines such as vehicles.
第1図は1本発明に係る潤滑油劣化検査方法の原理を説
明する説明図である。
第2図A及びBは、潤滑油新油の場合の電気二重層部の
断面詳細図及び電位分布図を示す。
第3図A及びBは、潤滑油劣化油の場合の電気二重層部
の断面詳細図及び電位分布図を示す。
第4図は、本発明に係る潤滑油劣化検査装置の概略図で
ある。
第5図は、本発明に従って検査された潤滑油の結果を表
わすグラフである。
2:カラム
4:充填剤
6・8:電極
lO:電位差計
12.14:圧力センサー
16:圧力変換器
18:信号演算処理部
19:表示装置
22:潤滑油供給ポンプ
第1図
第2図 第3図
第5図
圧力 PFIG. 1 is an explanatory diagram illustrating the principle of a lubricating oil deterioration inspection method according to the present invention. FIGS. 2A and 2B show a detailed cross-sectional view and a potential distribution diagram of the electric double layer portion in the case of fresh lubricating oil. FIGS. 3A and 3B show a detailed cross-sectional view and a potential distribution diagram of the electric double layer portion in the case of degraded lubricating oil. FIG. 4 is a schematic diagram of a lubricating oil deterioration inspection device according to the present invention. FIG. 5 is a graph representing the results of lubricating oils tested in accordance with the present invention. 2: Column 4: Filler 6, 8: Electrode lO: Potentiometer 12.14: Pressure sensor 16: Pressure transducer 18: Signal calculation processing section 19: Display device 22: Lubricating oil supply pump Figure 1 Figure 2 Figure 3 Figure 5 Pressure P
Claims (1)
の電極を貫通する態様で流動せしめ、該二つの電極間に
発生する流動電位を測定することにより潤滑油の劣化の
程度を検査することを特徴とする潤滑油劣化検査方法。 2)潤滑油は毛細管又は充填剤を充填したカラム内を流
動し、電極は潤滑油の入口及び出口部に配設されて成る
特許請求の範囲第1項記載の方法。 3)内部に充填材が充填され、検査すべき潤滑油の流動
を可能とするカラムと、該カラムの入口及び出口部に配
設された電極と、前記電極に接続されカラムを流動する
潤滑油の流動電位を測定する電位差計と、前記カラムに
潤滑油を供給する手段とを具備することを特徴する潤滑
油劣化検査装置。 4)カラムには該カラム内の潤滑油の圧力を測定し、該
カラム内を流動する潤滑油の流量を測定するための圧力
計が設けられて成る特許請求の範囲第3項記載の装置。 5)充填材が、ガラス、セラミックス、合成樹脂、素焼
、紙、金属製の球状又は円柱状体である特許請求の範囲
第3項又は第4項記載の装置。[Claims] 1) The lubricating oil to be tested is made to flow through two electrodes placed apart from each other, and the flowing potential generated between the two electrodes is measured. A lubricating oil deterioration testing method characterized by testing the degree of deterioration. 2) The method according to claim 1, wherein the lubricating oil flows in a capillary tube or a column filled with a filler, and electrodes are disposed at the inlet and outlet of the lubricating oil. 3) A column filled with a filler to allow the lubricating oil to be tested to flow, electrodes disposed at the inlet and outlet of the column, and lubricating oil connected to the electrodes to flow through the column. A lubricating oil deterioration inspection device comprising: a potentiometer for measuring the flowing potential of the column; and means for supplying lubricating oil to the column. 4) The apparatus according to claim 3, wherein the column is provided with a pressure gauge for measuring the pressure of the lubricating oil within the column and measuring the flow rate of the lubricating oil flowing within the column. 5) The device according to claim 3 or 4, wherein the filler is a spherical or cylindrical body made of glass, ceramics, synthetic resin, bisque, paper, or metal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24944086A JPS63103961A (en) | 1986-10-22 | 1986-10-22 | Method and device for inspecting deterioration of lubricating oil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24944086A JPS63103961A (en) | 1986-10-22 | 1986-10-22 | Method and device for inspecting deterioration of lubricating oil |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63103961A true JPS63103961A (en) | 1988-05-09 |
Family
ID=17192998
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24944086A Pending JPS63103961A (en) | 1986-10-22 | 1986-10-22 | Method and device for inspecting deterioration of lubricating oil |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63103961A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007333624A (en) * | 2006-06-16 | 2007-12-27 | Hitachi Ltd | Solid-liquid interface reaction evaluation method and solid-liquid interface reaction evaluation apparatus |
WO2014097402A1 (en) * | 2012-12-18 | 2014-06-26 | 日立化成株式会社 | Zeta potential measurement method and zeta potential measurement system |
WO2021149701A1 (en) * | 2020-01-21 | 2021-07-29 | 出光興産株式会社 | Method for using lubricating oil composition and method for evaluating degradation |
-
1986
- 1986-10-22 JP JP24944086A patent/JPS63103961A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007333624A (en) * | 2006-06-16 | 2007-12-27 | Hitachi Ltd | Solid-liquid interface reaction evaluation method and solid-liquid interface reaction evaluation apparatus |
JP4528285B2 (en) * | 2006-06-16 | 2010-08-18 | 株式会社日立製作所 | Solid-liquid interface reaction evaluation method and solid-liquid interface reaction evaluation apparatus |
WO2014097402A1 (en) * | 2012-12-18 | 2014-06-26 | 日立化成株式会社 | Zeta potential measurement method and zeta potential measurement system |
WO2021149701A1 (en) * | 2020-01-21 | 2021-07-29 | 出光興産株式会社 | Method for using lubricating oil composition and method for evaluating degradation |
US12222344B2 (en) | 2020-01-21 | 2025-02-11 | Idemitsu Kosan Co., Ltd. | Method for using lubricating oil composition and method for evaluating degradation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5973503A (en) | Process and measurement systems for measuring physical quantities of poorly conductive and nonconductive fluids | |
US4047814A (en) | Method and apparatus for segregating particulate matter | |
Nagy et al. | Application of silicone rubber-based graphite electrodes for continuous flow measurements: Part II. Voltammetric study of active substances injected into electrolyte streams | |
TWI480551B (en) | Degradation of lubricating oil ‧ Method for measuring variable mass and its measuring device | |
DE60212179T2 (en) | CONTACT POTENTIAL DIFFERENTIAL SENSOR FOR MONITORING OIL PROPERTIES | |
US9222822B2 (en) | Oil sensor | |
US7109729B2 (en) | Method for analysis of a working fluid using impedance spectroscopy | |
Ulrich et al. | Simultaneous estimation of soot and diesel contamination in engine oil using electrochemical impedance spectroscopy | |
ATE11455T1 (en) | METHOD AND DEVICE FOR DETERMINING THE ABRASION PROPERTIES OF FLUIDS, METHOD USING THIS METHOD FOR CONTROLLING THE WEAR OF BEARINGS AND MACHINE EQUIPPED WITH THIS DEVICE. | |
JPS63103961A (en) | Method and device for inspecting deterioration of lubricating oil | |
CN208334373U (en) | Marine diesel lubricating oil moisture prior-warning device | |
US1989627A (en) | Method and apparatus for testing lubricants | |
Dittes | Condition monitoring of water contamination in lubricating grease for tribological contacts | |
DE10243510A1 (en) | Device for determining the condition of oil | |
Asango et al. | Investigating the effect of carbon nanoparticles on the viscosity of lubricant oil from light duty automotive diesel engines | |
Lorenz | Electrokinetic Relations in the Quartz–Acetone System | |
RU154133U1 (en) | DEVICE FOR A NON-CONTACT METHOD FOR DETERMINING SUBSTANCE UNIFORMITY | |
DE19755183C2 (en) | Micro split cell | |
RU2356042C1 (en) | Method of magnetic powder control and device to this end | |
JPH11223618A (en) | Contamination and deterioration detecting device for liquid | |
CN114034745B (en) | A capacitive oil pollutant frequency conversion distinguishing device and method | |
Kasai et al. | Evaluation of Engine Oil Deterioration Using a Comb-Shaped Electrode | |
DE19542225A1 (en) | Method and device for determining rheological and mechanical parameters | |
JPS60260838A (en) | Instrument for measuring oil quality | |
JPS62147357A (en) | Control and controlling apparatus for magnetic powder liquid |