[go: up one dir, main page]

JPS63103924A - Infrared light detecting element - Google Patents

Infrared light detecting element

Info

Publication number
JPS63103924A
JPS63103924A JP25022386A JP25022386A JPS63103924A JP S63103924 A JPS63103924 A JP S63103924A JP 25022386 A JP25022386 A JP 25022386A JP 25022386 A JP25022386 A JP 25022386A JP S63103924 A JPS63103924 A JP S63103924A
Authority
JP
Japan
Prior art keywords
photodetection
bpb
voltage
light
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25022386A
Other languages
Japanese (ja)
Inventor
Yoichi Enomoto
陽一 榎本
Juichi Noda
野田 壽一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP25022386A priority Critical patent/JPS63103924A/en
Publication of JPS63103924A publication Critical patent/JPS63103924A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

PURPOSE:To obtain a high-sensitivity detecting element which is improved in output electric power by using loss energy on the photodetection surface effectively by constituting a detection part in multilayered structure. CONSTITUTION:This element consists of a lower photodetection part 1-a and an upper photodetection part 1-b consisting of BPB (BaPb1-xBixO3) crystal thin films with intercrystalline Josephson junctions, a substrate 2 of sapphire, etc., a current terminal 3, and a voltage terminal 4 for measurement. Then, a DC current is applied 3 to place the Josephson junctions of the detection parts 1-a and 1-b in voltage state and hold a bias current constant, and light is made incident on the substrate 2 vertically to take a measurement 4 of variation in the super-conduction parameter of the BPB owing to light irradiation, thereby performing photodetection. Consequently, patterns with two-layer meander line structure are formed without overlapping with each other at the photodetection parts to provide the BPB photodetection parts over the light irradiated surface, so that the length of the detection parts can be increased twice even when they are equal in photodetection area. Therefore, an output voltage which is doubled is obtained and the S/N is improved about 1.5 times.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高感度な赤外光検出素子に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to a highly sensitive infrared light detection element.

〔従来の技術〕[Conventional technology]

赤外光検出素子として、超伝導体の狭いエネルギー・ギ
ャップ間の励起現象を使う素子が開発されている(特願
昭58−173668号参照)。
As an infrared light detection element, an element using an excitation phenomenon between a narrow energy gap of a superconductor has been developed (see Japanese Patent Application No. 173,668/1982).

この素子では、光照射にともなう超伝導パラメーターの
変化を、トンネル接合を用いて電圧に変換している。し
たがって出力電圧を大きくし、高感度化をはかる洗は、
直列に多数のトンネル接合を接続し、その加算効果を用
いることが有効で、その−例として、第4図に示すメア
ンダー・ライン構造が考案されている(特願昭58−2
37607号参照)。第4図で、1け粒界ジョセフソン
接合をもっBaPb+−xBixos (以下F3PB
と略す)薄膜、2はサファイア等の基板、3は電流端子
、4は測定用電圧端子でちる。メアンダーライン構造と
したため、検出部の距離が長くなるが、第4図かられか
るように、BPB検出部がない領域にも光が照射され効
率を低下させる。BPB検出部のない領域は、印加電圧
に耐えるギャップで充分な幅が必要であり、細かめパタ
ーン甥はど、光来照射領域の面積比が大きくなる。第4
図のパターン寸法W (VS )に依存し、次式で表わ
される。
In this device, changes in superconducting parameters caused by light irradiation are converted into voltage using a tunnel junction. Therefore, in order to increase the output voltage and increase the sensitivity,
It is effective to connect a large number of tunnel junctions in series and use the additive effect.As an example, the meander line structure shown in Fig. 4 has been devised (Japanese Patent Application No. 58-2
(See No. 37607). In Figure 4, BaPb+-xBixos (hereinafter F3PB
2 is a substrate such as sapphire, 3 is a current terminal, and 4 is a voltage terminal for measurement. Due to the meander line structure, the distance between the detection parts becomes long, but as can be seen from FIG. 4, light is also irradiated to areas where there is no BPB detection part, reducing efficiency. The region without the BPB detection part needs to have a gap that can withstand the applied voltage and has a sufficient width, and the area ratio of the light irradiation region becomes large when the pattern is fine. Fourth
It depends on the pattern dimension W (VS) in the figure and is expressed by the following equation.

yAAI(v)= 10Vxw (sue)この式は、
粒界ジョセフソン接合のバイアス電圧2m V / l
接合とWの長さに含まれる接合数(結晶粒径(0.2μ
m)の逆数に比例)の積に力るものである。例えばWが
5朝の場合、VAA’は100Vに達し、液体ヘリウム
の絶縁破壊電圧から、ギャップ幅として5μm以上の距
離が必要となる。
yAAI(v)=10Vxw (sue) This formula is
Bias voltage of grain boundary Josephson junction 2 m V / l
The number of junctions included in the length of the junction and W (crystal grain size (0.2 μ
(proportional to the reciprocal of m). For example, when W is 5 hours, VAA' reaches 100V, and a gap width of 5 μm or more is required from the dielectric breakdown voltage of liquid helium.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このように、光検出に寄与しない領域が受光面内に存在
ししかもその受光面内に占める割合は、高感度化がはか
れる細いパターン幅はど大きくなp問題となつていた。
As described above, the existence of a region that does not contribute to light detection within the light receiving surface, and the proportion of the region occupying the light receiving surface, has become a problem as the narrow pattern width for achieving higher sensitivity becomes larger.

本発明は、この受光面での損失エネルギーを有効に使用
するととくよシ、出力電圧の向上をはかった高感度々赤
外光検出素子を提供することを目的とする。
An object of the present invention is to provide a high-sensitivity infrared light detection element that effectively uses the energy lost at the light-receiving surface and improves the output voltage.

〔問題点を解決するための手段と作用〕本発明は上記目
的を達成するために、メアンダ−−−ライン構造をもつ
下部光検出部と、その上に設けられる中間層となる使用
波長域で光学反射率が低い絶縁層と、下部光検出部への
光入射を妨げずしかも下部光検出部のない領域に設けら
れるメアンダーライン構造をもつ上部光検出部の3r@
構造からなるものであり、検出部を多層構造とすること
を最も主要な特徴とする。従来の構造は、平面的である
ため、検出部に加わる電圧を受光面内で保つため、光検
出に対して蕪駄な領域を必要としたが、本発明は、電圧
印加方向を基板に垂直方向と立体的にすることによシ、
受光面全面にわたって光検出部を設けることができる。
[Means and effects for solving the problems] In order to achieve the above object, the present invention includes a lower photodetecting section having a meander-line structure and an intermediate layer provided thereon in the wavelength range used. 3r@ of the upper photodetecting section which has an insulating layer with low optical reflectance and a meander line structure that does not prevent light from entering the lower photodetecting section and is provided in an area where there is no lower photodetecting section.
The main feature is that the detection part has a multilayer structure. Since the conventional structure is planar, it requires a rough area for photodetection in order to maintain the voltage applied to the detection part within the light receiving surface, but the present invention has a structure in which the voltage application direction is perpendicular to the substrate. By making the direction and three-dimensional,
A photodetector can be provided over the entire light-receiving surface.

それにより、光検出感度の向上がはかれるため、赤外域
の微弱光を検出することができる。
As a result, the light detection sensitivity is improved, so that weak light in the infrared region can be detected.

〔実施例〕〔Example〕

(実施例1) 第1図は本発明の第1の実施例を説明する図でありて、
1−aは粒界ジ1セフソン接合をもつBPB多結晶薄膜
からなる下部光検出部であ勺、1、−bはBPB結晶薄
膜からなる上部光検出部であシ、2はサファイア等の基
板、3は電流端子、4は測定用電圧端子である。
(Example 1) FIG. 1 is a diagram explaining the first example of the present invention,
1-a is a lower photodetector made of a BPB polycrystalline thin film with a grain boundary junction, 1 and -b are upper photodetectors made of a BPB crystal thin film, and 2 is a substrate made of sapphire or the like. , 3 is a current terminal, and 4 is a voltage terminal for measurement.

この素子を動作するには、電流端子3よシ直流電流を導
入し、検出部1−a、1−bのBPB多結晶薄膜の結晶
粒界にあるジョセフソン接合を電圧状態とした後、バイ
アス電流は一定に保つ。この状態で光を基板2に垂直に
入射させ、光照射にともなうBPBの超伝導パラメータ
の変化を電圧端子4によシ測定することによシ光検出を
行なうことができる。第1図かられかるように、2層の
メアンダーライン構造をもつパターンが受光部では互い
に重なシ合わないように形成されているため、光照射全
面にわたってBPB光検出部を設けることができる。し
たがって、−1f5の場合に比べ、同一受光面積であっ
ても検出部の長さが、第2図の等価回路に示すように2
倍に伸ばすことができ、2倍の出力電圧が得られるとと
もIC,S/N比を1.5倍に改善できる。第2図中7
はジUセフンン接合を示す。なお上部検出パターンと下
部検出パターンとの間には、バイアス電圧に対応する電
圧が印加されるため、両者を分離させるため絶縁層が必
要となる。但し、この電圧分離に用いる固体の絶縁破壊
電圧は、気体、液体よシも高く、シたがりて薄くするこ
とができる。更に、絶縁体は、光学的反射率が低く、入
射効率を上げることも可能である。本実施例で使用した
A、/、、 0.は10’ V/Uの耐電圧をもつため
、本実施例の構造では、数μmの厚さで充分となる。し
かも、同一平面内パターン間に加わる電圧7人A/に対
してもこの構造では、パターンがAA、 O,でコート
されることによシ、ギャップ幅を更に狭くすることが可
能となシ、パターン長を長く、高感度化をはかることが
できる。
To operate this device, a DC current is introduced through the current terminal 3 to bring the Josephson junctions at the grain boundaries of the BPB polycrystalline thin films of the detection sections 1-a and 1-b into a voltage state, and then the bias voltage is applied. Keep the current constant. In this state, light is perpendicularly incident on the substrate 2, and the change in the superconducting parameter of the BPB due to the light irradiation is measured by the voltage terminal 4, thereby making it possible to perform optical detection. As can be seen from Figure 1, the pattern with a two-layer meander line structure is formed so that it does not overlap each other in the light receiving area, so the BPB photodetecting area can be provided over the entire surface of the light irradiation area. . Therefore, compared to the case of -1f5, even if the light receiving area is the same, the length of the detection part is 2 as shown in the equivalent circuit in Figure 2.
The output voltage can be doubled, and the IC and S/N ratio can be improved by 1.5 times. 7 in Figure 2
indicates a di-U cehun junction. Note that since a voltage corresponding to the bias voltage is applied between the upper detection pattern and the lower detection pattern, an insulating layer is required to separate the two. However, the dielectric breakdown voltage of the solid used for this voltage separation is higher than that of gas and liquid, and it is possible to make the material thinner. Furthermore, the insulator has a low optical reflectance, and it is also possible to increase the incidence efficiency. A, /, 0. used in this example. has a withstand voltage of 10' V/U, so in the structure of this embodiment, a thickness of several μm is sufficient. Moreover, in this structure, the gap width can be further narrowed by coating the patterns with AA, O, even for a voltage of 7 A/A applied between the patterns in the same plane. It is possible to increase the pattern length and increase the sensitivity.

(実施例2) 第3図は、本発明の第2の実施例の構造断面と製造工程
を説明する素子の断面図である。1−a。
(Example 2) FIG. 3 is a sectional view of a device illustrating the structural cross section and manufacturing process of a second example of the present invention. 1-a.

1−b、1−cはそれぞれ粒界ジョセフソン接合をもつ
BPB多結晶薄膜からなるメアンダーライン構造をもつ
第1層、第2層および第3層の光検出部である。2はサ
ファイア基板、3はBPB膜上K A u蒸着した電流
端子、4はBPB膜上のAu蒸着膜からなる測定用電圧
端子、5は各層の光検出部を電気的に分離する中間絶縁
層である。この素子の動作方法は、上記実施例1と同じ
で、電流端子3よシ直流バイアス電流を導入し、測定用
電圧端子4によシ光照射で起きる電圧変化で光信号を検
出する。第3図(vl)の最終構造図かられかるように
、基板2に垂直に入射する光が、受光部全面にわたって
BPB検出部に吸収されることになシ、入射光の有効利
用をはかることができる。
1-b and 1-c are first, second, and third layer photodetecting portions each having a meander line structure made of a BPB polycrystalline thin film having grain-boundary Josephson junctions. 2 is a sapphire substrate, 3 is a current terminal made of K Au vapor deposited on a BPB film, 4 is a measurement voltage terminal made of an Au vapor deposited film on the BPB film, and 5 is an intermediate insulating layer that electrically separates the photodetecting parts of each layer. It is. The operating method of this device is the same as in the first embodiment, in which a DC bias current is introduced through the current terminal 3, and an optical signal is detected by the voltage change caused by light irradiation through the measurement voltage terminal 4. As can be seen from the final structure diagram in FIG. 3 (vl), the light that is perpendicularly incident on the substrate 2 is not absorbed by the BPB detection section over the entire surface of the light receiving section, so that the incident light can be used effectively. Can be done.

実施例1と比較すると、実施例2は、次に説明するとお
り、製造工程式が増えるが、検出部BPB電極パターン
幅が、耐電圧領域に比べ狭くなった場合に、有効で両者
の比に合わせて層数を増やすことによシ、感度の向上を
はかることができる。
Compared to Example 1, Example 2 requires more manufacturing processes as described below, but is effective when the detection part BPB electrode pattern width is narrower than the withstand voltage region. By increasing the number of layers, sensitivity can be improved.

第3図をもとに製造工程を説明する。サファイア基板2
上に高周波スパッタによ’) 、 Ba Pb1−xB
ixOs (0.05≦x≦0.35)多結晶薄膜を形
成する。ここでXは超伝導体となる領域である。
The manufacturing process will be explained based on FIG. Sapphire substrate 2
Ba Pb1-xB
ixOs (0.05≦x≦0.35) A polycrystalline thin film is formed. Here, X is a region that becomes a superconductor.

次に示トリソゲラフで6のレジストパターンを形成L(
i)、第17AノB P B薄I%(1−a)をメアン
ダーライン構造に化学法によシエッチングする(ii)
Next, form a resist pattern 6 using the lithogelaph shown below.
i), etching the 17th A B P B thin I% (1-a) into a meander line structure by a chemical method (ii)
.

次に、(iiilに示す構造に、リフトオフ法を用いて
A/、03絶縁層5を真空蒸着法によシ形成する。
Next, on the structure shown in (iii), an A/03 insulating layer 5 is formed by vacuum evaporation using a lift-off method.

A7.o、は高温においてもBPBと反応せず、また基
板と同じ熱膨張係数であるため、極低温と室温間の温度
サイクルに対して熱歪が小さく安定であるため選択され
た。この他Tie!も安定であり、使用波長域によシ選
択される。その後、高周波スパッタ法によりBPB[を
形成後、第1層光検出部1−aのメアンダーライン構造
からパターン幅だけ移動したメアンダーライン構造を有
する第2層の光検出部1.−bをエツチング法によ!l
l製作する(1v)。その後再びA、g、O8絶縁層5
を第2層の光検出部1−b上に形成する(vl。その上
に(vDに示すように、第3層の光検出部1−c用のB
PBパターンを上記(i) 、 (ii)と同様の手法
で製作することによシ赤外光検出素子を製作することが
できる。
A7. o, was selected because it does not react with BPB even at high temperatures and has the same coefficient of thermal expansion as the substrate, resulting in small thermal strain and stability against temperature cycles between cryogenic temperatures and room temperature. Besides this, Tie! It is also stable and can be selected depending on the wavelength range used. Thereafter, after forming BPB[ by high frequency sputtering method, the second layer photodetector 1-a has a meander line structure shifted by the pattern width from the meander line structure of the first layer photodetector 1-a. -b by etching method! l
Make one (1v). Then again A, g, O8 insulating layer 5
is formed on the second layer photodetection section 1-b (vl. As shown in (vD), B for the third layer photodetection section 1-c is formed on the second layer photodetection section 1-b.
An infrared light detection element can be manufactured by manufacturing a PB pattern using the same method as in (i) and (ii) above.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、光検出感度の向上がはかれるため
、赤外域の微弱光検出に利点がある。このため、弱い光
源出力しか得られていない遠赤外分光器用あるいは、天
体観測用の光検出器として有効となる。
As explained above, there is an advantage in detecting weak light in the infrared region because the light detection sensitivity can be improved. Therefore, it is effective as a photodetector for far-infrared spectrometers or for astronomical observation where only a weak light source output is obtained.

【図面の簡単な説明】 第1図は本発明光検出素子の特徴を表わしている第1実
施例の斜視図、第2図は本発明第1実施例の等価回路図
、第3図は本発明の第2実施例の各製造工程における素
子構造の断面図、第4図は従来のメアンダーライン構造
をもつ光検出素子の平面図である。 1−B P B薄膜、l−a、l−b、l−c ・−・
光検出部、2・・・サファイア基板、3・・・電流端子
、4・・・測定用電圧端子、5・・・中間絶縁層、6・
・・レジストパターン。 出願人代理人 弁理士  鈴  江  武  彦第3図 第4図
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a perspective view of the first embodiment showing the features of the photodetecting element of the present invention, FIG. 2 is an equivalent circuit diagram of the first embodiment of the present invention, and FIG. 3 is the present invention. FIG. 4 is a cross-sectional view of the device structure in each manufacturing process of the second embodiment of the invention, and a plan view of a photodetecting device having a conventional meander line structure. 1-B P B thin film, 1-a, 1-b, 1-c ・-・
Photodetection section, 2... Sapphire substrate, 3... Current terminal, 4... Voltage terminal for measurement, 5... Intermediate insulating layer, 6...
...Resist pattern. Applicant's agent Patent attorney Takehiko Suzue Figure 3 Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)メアンダーライン構造をもつ下部光検出部と、そ
の上に設けられる中間層となる使用波長域で光学反射率
が低い絶縁層と、下部光検出部への光入射を妨げずしか
も下部光検出部のない領域に設けられるメアンダーライ
ン構造をもつ上部光検出部の3層構造からなることを特
徴とする赤外光検出素子。
(1) A lower photo-detecting section with a meander line structure, an insulating layer with low optical reflectance in the wavelength range used as an intermediate layer provided on the lower photo-detecting section, and a lower photo-detecting section that does not prevent light from entering the lower photo-detecting section. An infrared light detection element comprising a three-layer structure including an upper photodetection section having a meander line structure provided in an area without a photodetection section.
(2)光検出部が酸化物超伝導体BaPb_1_−_x
Bi_xO_3(0.05≦x≦0.35)薄膜からな
り、中間層がAl_2O_3あるいはTiO_2からな
ることを特徴とする特許請求の範囲第1項記載の赤外光
検出素子。
(2) The photodetector is an oxide superconductor BaPb_1_-_x
The infrared light detection element according to claim 1, characterized in that it is made of a Bi_xO_3 (0.05≦x≦0.35) thin film, and the intermediate layer is made of Al_2O_3 or TiO_2.
JP25022386A 1986-10-21 1986-10-21 Infrared light detecting element Pending JPS63103924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25022386A JPS63103924A (en) 1986-10-21 1986-10-21 Infrared light detecting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25022386A JPS63103924A (en) 1986-10-21 1986-10-21 Infrared light detecting element

Publications (1)

Publication Number Publication Date
JPS63103924A true JPS63103924A (en) 1988-05-09

Family

ID=17204666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25022386A Pending JPS63103924A (en) 1986-10-21 1986-10-21 Infrared light detecting element

Country Status (1)

Country Link
JP (1) JPS63103924A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6225629B1 (en) * 1998-08-31 2001-05-01 Daewoo Electronics Co., Ltd. Bolometer with a serpentine stress balancing member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6225629B1 (en) * 1998-08-31 2001-05-01 Daewoo Electronics Co., Ltd. Bolometer with a serpentine stress balancing member

Similar Documents

Publication Publication Date Title
DE68923589T2 (en) Infrared detector.
US5264375A (en) Superconducting detector and method of making same
US5684302A (en) Pyrodetector element having a pyroelectric layer produced by oriented growth, and method for the fabrication of the element
EP0590738B1 (en) Light detecting device and light detecting method using a superconductor
JP3974338B2 (en) Infrared detector and infrared detector
US5457318A (en) Thermal detector apparatus and method using reduced thermal capacity
US5057485A (en) Light detecting superconducting Josephson device
CA1326059C (en) Thermal imaging device
US5602392A (en) Thermal crosstalk reduction for infrared detectors with common electrodes
JPS63103924A (en) Infrared light detecting element
EP0291050A2 (en) Superconducting device
JPH11183259A (en) Infrared detection element
US5965900A (en) Tunnel-effect superconductive detector cell
KR100538446B1 (en) Uncooled infrared sensor with 2-layer structure and its manufacturing method
JP2715321B2 (en) Photo detector
JPH04342177A (en) Thermopile
KR100416755B1 (en) Ramp-edge high-temperature superconducting josephson junction structure using gallium doping ybco and fabricating method thereof
JP2759508B2 (en) Photo detector
JP2737006B2 (en) Signal detector
JP2748167B2 (en) Optical signal detection element
JPH02114576A (en) Superconducting electromgnetic-wave detection element
JPH02206733A (en) Infrared ray sensor
JPH03276778A (en) Superconductor photosensor
JPS6359271B2 (en)
Gousseynov et al. Noncooled detectors of radiation for the middle range of the IR spectrum based on CdxHg1-xTe