[go: up one dir, main page]

JPS6310377B2 - - Google Patents

Info

Publication number
JPS6310377B2
JPS6310377B2 JP10977183A JP10977183A JPS6310377B2 JP S6310377 B2 JPS6310377 B2 JP S6310377B2 JP 10977183 A JP10977183 A JP 10977183A JP 10977183 A JP10977183 A JP 10977183A JP S6310377 B2 JPS6310377 B2 JP S6310377B2
Authority
JP
Japan
Prior art keywords
load cell
test piece
natural frequency
threads
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10977183A
Other languages
Japanese (ja)
Other versions
JPS601539A (en
Inventor
Akio Tanifuji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP10977183A priority Critical patent/JPS601539A/en
Publication of JPS601539A publication Critical patent/JPS601539A/en
Publication of JPS6310377B2 publication Critical patent/JPS6310377B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

【発明の詳細な説明】 本発明は、衝撃引張試験のための試験片支持方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for supporting a specimen for impact tensile testing.

従来、衝撃力の測定方法の一つにロードセルを
用いた方法がある。これは、ロードセル、試験片
及びチツプの各要素を順次直列に螺着することに
より荷重検出部を構成し、これによつて衝撃引張
荷重を測定するようにしたものである(第1図参
照)。
Conventionally, one of the methods for measuring impact force is a method using a load cell. This device constructs a load detection section by screwing each element of the load cell, test piece, and chip in series, and thereby measures the impact tensile load (see Figure 1). .

この衝撃引張荷重検出用ロードセルには固有振
動数の高いものを用いる必要があるが、現状では
約25kHzに振動数の限界がある。即ち、上記ロー
ドセルの固有振動数は、衝撃引張荷重の測定限度
及び測定精度に大きな影響を与え、その固有振動
数を高めることにより測定限度を大幅に上げると
共に測定精度を改善することができるが、衝撃引
張荷重検出用ロードセルで30kHz以上の固有振動
数をもつものは今日まで開発されていないだけで
なく、その改善方法も提案されていない。
It is necessary to use a load cell for detecting impact tensile loads with a high natural frequency, but currently the frequency limit is approximately 25kHz. That is, the natural frequency of the load cell has a great influence on the measurement limit and measurement accuracy of impact tensile load, and by increasing the natural frequency, the measurement limit can be significantly increased and the measurement accuracy can be improved. To date, no load cell for detecting impact tensile loads with a natural frequency of 30 kHz or higher has been developed, and no improvement method has been proposed.

本発明は、本発明者が行つた実験結果に基づ
き、簡単な手段でロードセルの固有振動数を従来
のものよりも著しく高められるようにした試験片
支持方法を提供しようとするものである。
The present invention is based on the results of experiments conducted by the present inventors, and is an object of the present invention to provide a method for supporting a test piece that allows the natural frequency of a load cell to be significantly increased compared to conventional methods using simple means.

上記目的を達成するため、本発明の方法は、衝
撃引張荷重を測定するロードセルに試験片を螺着
するためのねじ部を設け、このねじ部に試験片を
螺着して衝撃引張試験を行うに際し、上記ロード
セルと試験片の螺合ねじ山を3〜5として両者を
螺合させることを特徴とするものである。
In order to achieve the above object, the method of the present invention provides a threaded portion for screwing a test piece to a load cell that measures an impact tensile load, and performs an impact tensile test by screwing the test piece to this threaded portion. In this case, the load cell and the test piece are screwed together with 3 to 5 screw threads.

以下に本発明の方法を図面を参照しながら詳述
する。
The method of the present invention will be explained in detail below with reference to the drawings.

第1図は、衝撃引張荷重の測定に使用する荷重
検出部を示し、1はアンヴイル、2はロードセ
ル、3は試験片、4はチツプであつて、それらは
互いにねじにより結合され、ロードセル2の狭窄
部にはひずみゲージ5が貼着されている。上記ロ
ードセル2は、試験片3を螺着するためのねじ部
6を備え、そのねじ部6は試験片3を3〜5のね
じ山数で螺合させるものである。上記ねじ部6の
ねじの形状としては各種のものを採用でき、また
互いの螺合ねじ山数が少ないことにより必要な耐
荷重が得られない場合には、ねじ寸法を大きなも
のとするか、ねじ山の形状を角ねじ、台形ねじ等
の大きな耐荷重が得られるものとすればよい。
Fig. 1 shows a load detection part used for measuring impact tensile load, in which 1 is an anvil, 2 is a load cell, 3 is a test piece, and 4 is a chip, which are connected to each other by screws, and the load cell 2 is A strain gauge 5 is attached to the narrowed portion. The load cell 2 includes a threaded portion 6 for screwing the test piece 3, and the threaded portion 6 screws the test piece 3 with three to five threads. Various types of thread shapes can be adopted for the threaded portion 6, and if the required load capacity cannot be obtained due to a small number of mutually threaded threads, the thread size may be increased or The shape of the thread may be a square thread, a trapezoidal thread, etc. that can withstand a large load.

第2図は、本発明の方法を実施するために用い
るロードセルについての他の構造例を示し、11
はアンヴイル、12はロードセル、13は試験
片、14はチツプであつて、それらは互いにねじ
により結合され、且つロードセル12の外周にひ
ずみゲージ15が貼着されている。而して、第1
図の場合と同様に、ロードセル12と試験片13
は3〜5のねじ山数で螺着される。
FIG. 2 shows another structural example of a load cell used to implement the method of the present invention, and shows 11
12 is an anvil, 12 is a load cell, 13 is a test piece, and 14 is a chip, which are connected to each other by screws, and a strain gauge 15 is attached to the outer periphery of the load cell 12. Therefore, the first
As in the case of the figure, the load cell 12 and the test piece 13
is screwed with 3 to 5 threads.

上述したようにロードセルと試験片との螺合ね
じ山数を5以下とした場合には、第3図に示す実
験結果から明らかなように、ロードセルの固有振
動数が従来のねじ山数を7〜10としていた場合の
限界値である約25kHzを大幅に越えたものにな
る。ここで、第3図について説明すると同時に上
記固有振動数が大幅に高められる理由について説
明する。
As mentioned above, when the number of screw threads between the load cell and the test piece is set to 5 or less, the natural frequency of the load cell becomes 7 or less than the conventional number of threads, as is clear from the experimental results shown in Figure 3. ~10, it significantly exceeds the limit of about 25kHz. Here, while explaining FIG. 3, the reason why the above-mentioned natural frequency is greatly increased will be explained.

従来のように、螺合ねじ山数が7〜10の場合、
その振動系はばねとしてのロードセルに質量とし
ての試験片が付設された状態と考えられ、そのた
めそれらは等価的に第4図Aに示すような振動系
として把握され、その固有振動数1は、 ただし、kはばね定数 mは振動質量 として表わされる。
As in the past, when the number of screw threads is 7 to 10,
The vibration system can be thought of as a load cell as a spring with a test piece as a mass attached, and therefore they can be equivalently understood as a vibration system as shown in Figure 4A, and its natural frequency 1 is: However, k is a spring constant and m is a vibration mass.

第3図では横軸にねじ山数を、縦軸に固有振動
数をとり、ねじ山数の変化に伴う固有振動数の変
化を曲線によつて示しているが、この曲線におけ
るねじ山数7以上の範囲が上記従来のロードセル
に相当するものである。
In Figure 3, the number of threads is plotted on the horizontal axis and the natural frequency is plotted on the vertical axis, and the change in the natural frequency as the number of threads changes is shown by a curve.The number of threads in this curve is 7. The above range corresponds to the conventional load cell described above.

これに対し、本発明のように螺合ねじ山数を5
以下とした場合、その振動系は試験片がロードセ
ル(ばね)に対して質量として作用せず、試験片
自体もばねとして機能することになり、この場合
の振動系は質量mを1/3とすればよいことが一般
的に知られているため、等価的に第4図Bに示す
ような振動系として把握でき、従つて固有振動数
2は、 として表わされ、この式から明らかなように、固
有振動数が従来のものに比して√3倍される。
On the other hand, as in the present invention, the number of screw threads is reduced to 5.
In the following case, in the vibration system, the test piece does not act as a mass on the load cell (spring), and the test piece itself functions as a spring.In this case, the vibration system has a mass m of 1/3. Since it is generally known that what is necessary is to
2 is As is clear from this equation, the natural frequency is multiplied by √3 compared to the conventional one.

第3図のねじ山数5における固有振動数の値が
本発明の方法によつて実験的に得られたものであ
り、従来の方法では基本的に点線(m)で示す計
算値に沿つて変化するが、本発明の方法では上記
点線(m)よりは上位の点線(m/3)に沿うもの となり、固有振動数が著しく高められる。
The value of the natural frequency at the thread number 5 in Fig. 3 was obtained experimentally by the method of the present invention, and the value of the natural frequency at the number of threads of 5 in Fig. 3 was obtained experimentally by the method of the present invention. Although it varies, in the method of the present invention, it follows the dotted line (m/3) above the dotted line (m), and the natural frequency is significantly increased.

なお、螺合ねじ山数を5より小さくしても、固
有振動数は点線(m/3)に沿つて変化し、従つて ねじの耐荷重強度が得られる範囲内で山数を3〜
5とするのが有効である。
Note that even if the number of screw threads is reduced to less than 5, the natural frequency changes along the dotted line (m/3).
It is effective to set it to 5.

以上においては、本発明による試験片支持方法
について説明したが、次にその理論的根拠の概要
について説明する。
The method for supporting a test specimen according to the present invention has been described above, and next, an outline of its theoretical basis will be described.

ばね定数の理論的計算に関しては、例えば、山
本晃著「ねじ締結の理論と計算」(株式会社養賢
堂発行、1971)において詳細に示されている。同
書に示された理論式を用いてばね定数を計算し、
またそれを裏付ける本発明者の実験の結果によれ
ば、ねじ山のかみ合い数nとばね定数kとの関係
は、nが5〜7程度以下の小さい値をとる間はk
が次第に増加するが、nがある値に達したあたり
からkが一定または漸減の傾向を示す。一方、振
動質量mはねじ山数が増えると直線的に増加す
る。
Theoretical calculation of the spring constant is described in detail in, for example, "Theory and Calculation of Screw Fastening" by Akira Yamamoto (published by Yokendo Co., Ltd., 1971). Calculate the spring constant using the theoretical formula shown in the book,
Further, according to the results of experiments conducted by the present inventors that support this, the relationship between the number of engagements n of threads and the spring constant k is such that as long as n takes a small value of about 5 to 7 or less, k
gradually increases, but after n reaches a certain value, k tends to remain constant or gradually decrease. On the other hand, the vibrating mass m increases linearly as the number of threads increases.

従つて、k/mに依存する固有振動数1は、ね
じ山数nが5以下において高い値を示す。しかし
ながら、ねじ山の最初の部分は完全なねじではな
く、一部が欠損したりしているため、必ずしも理
論的な値を示さない。また、耐荷重性も不十分で
あり、螺合するねじ相互の軸心も正確に一致しな
い。そのため、ねじ山数は少なくとも3以上が必
要であり、固有振動数が高くなる範囲としては、
ねじ山数が3〜5の範囲が適当である。
Therefore, the natural frequency 1 which depends on k/m shows a high value when the number n of threads is 5 or less. However, since the first part of the thread is not a complete thread and a part is missing, it does not necessarily indicate a theoretical value. In addition, the load bearing capacity is insufficient, and the axes of the screws that are screwed together do not match accurately. Therefore, the number of threads must be at least 3, and the range where the natural frequency becomes high is as follows:
A range of 3 to 5 screw threads is appropriate.

また、上述した理論式は、JISに規定する三種
類のねじ(三角ねじ、角ねじ、梯形ねじ)に対し
て、そのねじ山の形状に無関係に適用することが
でき、従つて、本発明はねじ山の形状とは無関係
に適用することができる。
Furthermore, the above-mentioned theoretical formula can be applied to the three types of screws specified in JIS (triangular screws, square screws, and trapezoidal screws) regardless of the shape of the threads, and therefore, the present invention It can be applied regardless of the shape of the thread.

このように本発明によれば、極めて簡単な構成
によりロードセルの固有振動数を上昇させること
ができ、それにより衝撃引張試験における高応答
性荷重検出に極めて有効で、衝撃引張荷重の測定
限度を大幅に上昇させ得ると共に、測定精度を改
善することができる。
As described above, according to the present invention, it is possible to increase the natural frequency of the load cell with an extremely simple configuration, which is extremely effective for highly responsive load detection in impact tensile tests, and greatly increases the measurement limit of impact tensile loads. The measurement accuracy can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の方法を適用する衝
撃引張荷重検出部のそれぞれ異なる構成例を示す
部分正面図、第3図は螺合ねじ山数とロードセル
の固有振動数との関係を示す線図、第4図A,B
は従来例及び本発明のロードセルと試験片の振動
系についての説明図である。 2,12……ロードセル、3,13……試験
片、6……ねじ部。
Figures 1 and 2 are partial front views showing different configuration examples of the impact tensile load detection section to which the method of the present invention is applied, and Figure 3 shows the relationship between the number of screw threads and the natural frequency of the load cell. Diagram shown in Figure 4 A, B
FIG. 2 is an explanatory diagram of a vibration system of a load cell and a test piece according to a conventional example and the present invention. 2, 12... Load cell, 3, 13... Test piece, 6... Threaded portion.

Claims (1)

【特許請求の範囲】[Claims] 1 衝撃引張荷重を測定するロードセルに試験片
を螺着するためのねじ部を設け、このねじ部に試
験片を螺着して衝撃引張試験を行うに際し、上記
ロードセルと試験片の螺合ねじ山を3〜5として
両者を螺合させることを特徴とする衝撃引張試験
のための試験片支持方法。
1. A load cell for measuring impact tensile load is provided with a threaded part for screwing the test piece, and when performing an impact tensile test by screwing the test piece into this threaded part, the screw thread of the load cell and the test piece is A method for supporting a test piece for an impact tensile test, characterized in that the two are screwed together with a value of 3 to 5.
JP10977183A 1983-06-17 1983-06-17 Test-piece supporting method for impact tensile test Granted JPS601539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10977183A JPS601539A (en) 1983-06-17 1983-06-17 Test-piece supporting method for impact tensile test

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10977183A JPS601539A (en) 1983-06-17 1983-06-17 Test-piece supporting method for impact tensile test

Publications (2)

Publication Number Publication Date
JPS601539A JPS601539A (en) 1985-01-07
JPS6310377B2 true JPS6310377B2 (en) 1988-03-07

Family

ID=14518808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10977183A Granted JPS601539A (en) 1983-06-17 1983-06-17 Test-piece supporting method for impact tensile test

Country Status (1)

Country Link
JP (1) JPS601539A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4620956B2 (en) * 2004-03-01 2011-01-26 新日本製鐵株式会社 High-precision tensile or compressive load measuring device for strain rate of high-speed deformation
JP4741272B2 (en) * 2005-04-05 2011-08-03 新日本製鐵株式会社 Dynamic load measuring device
JP4621060B2 (en) * 2005-04-05 2011-01-26 新日本製鐵株式会社 High-precision tensile or compression testing equipment over a wide range of strain rates including high-speed deformation
KR100726089B1 (en) 2005-12-29 2007-06-08 주식회사 포스코 Load measuring device of high speed tensile testing machine for reducing load shaking phenomenon
CN103674697A (en) * 2013-12-30 2014-03-26 重庆长安汽车股份有限公司 High-speed tensile test steel plate sample piece clamp

Also Published As

Publication number Publication date
JPS601539A (en) 1985-01-07

Similar Documents

Publication Publication Date Title
Young et al. An automated hydraulic bulge tester
Miner Cumulative damage in fatigue
CN109268375A (en) A kind of dynamometry bolt
CN105332728B (en) A kind of Double tray anchor-holding force of anchor bolt method of real-time and device
CN105865688A (en) Tensioning instrument for screw detection and application thereof
JPS6310377B2 (en)
JP2000508775A (en) Method and apparatus for determining strength of vertically anchored column
CN113588911B (en) Evaluation method and online monitoring system of solid propellant acoustic resonance hybrid safety state
CN108387780B (en) Test device for piezoresistive/shear resistance properties of magneto-sensitive devices under controlled magnetic field
Basinski et al. Transients in steady-state plastic deformation produced by changes of strain rate
US7131340B2 (en) Device for low-vibration force measurement in rapid dynamic tensile experiments on material samples
CN206248462U (en) Anchorage, fixture and connector static load anchoring test overall strain measurement apparatus
CN212432783U (en) Multi-point testing device for hoop strain of layered rock mass
CN206019890U (en) Tensioning instrument is used in screw rod detection
Carden et al. Comparison of the flow curves of 6061 aluminum alloy at high and low strain rates
RU211575U1 (en) CLAMPING DEVICE FOR TESTING A THREADED JOINT ON FLAT SPECIMENS
CN205156885U (en) True area of contact measuring device of faying face
RU181366U1 (en) DEVICE FOR DETERMINING THE Friction Coefficient of Woven Samples
SU1037150A1 (en) Method of measuring strength of adhesion of dispersed filler with bonding one
SU1381367A1 (en) Method of determining dynamic hardness
CN205620287U (en) Measure under different angles and to peel off bearing capacity device between fibre cloth - concrete
CN100356152C (en) Force sensor for automatic tester
SU1631320A2 (en) Multiple limits dynamometer
Clark et al. Torsion Tests of Aluminum-Alloy Stiffened Circular Cylinders
JPS60100704A (en) Testing and measuring device for reinforcing bar or the like