JPS63103071A - Surface coated sintered hard alloy - Google Patents
Surface coated sintered hard alloyInfo
- Publication number
- JPS63103071A JPS63103071A JP24808686A JP24808686A JPS63103071A JP S63103071 A JPS63103071 A JP S63103071A JP 24808686 A JP24808686 A JP 24808686A JP 24808686 A JP24808686 A JP 24808686A JP S63103071 A JPS63103071 A JP S63103071A
- Authority
- JP
- Japan
- Prior art keywords
- carbide
- layer
- cemented carbide
- alloy
- binder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は切削工具ならびに耐摩耗性部品として工業上有
用な耐摩耗性を著しく向上させた表面被覆した超硬合金
に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a surface-coated cemented carbide with significantly improved wear resistance that is industrially useful as cutting tools and wear-resistant parts.
超硬合金は4a、5a、6a属の炭化物ならびに鉄族金
属が主体の焼結材料であり、炭化物微粒子を鉄族金属中
(以下結合金属という。)に分散させ、炭化物の硬さと
結合金属の靭性を兼ね備えた性質を有する。結合金属量
が多くなると靭性は増加するが、耐摩耗性が減少するの
で、種々の組成を有する超硬合金が用途に応じて使用さ
れている。一方、超硬合金からなる基体より耐摩耗性の
高い表面層を形成させ、靭性の低下を制限しながら耐摩
耗性を向上させる技術が進歩し、種々の表面被覆した工
具材料が実用化されている。更に表面被覆する以前に基
体に耐摩耗性の向上、耐衝撃性の向上を計る目的で超硬
合金の表面層を硬化及び/又は軟化した層を設けている
。Cemented carbide is a sintered material mainly composed of carbides of groups 4a, 5a, and 6a, and iron group metals. Carbide fine particles are dispersed in iron group metals (hereinafter referred to as bond metals), and the hardness of the carbides and the bond metals are It has properties that combine toughness. As the amount of bonded metal increases, toughness increases, but wear resistance decreases, so cemented carbide having various compositions are used depending on the application. On the other hand, advances have been made in technology that improves wear resistance while limiting deterioration in toughness by forming a surface layer that is more wear-resistant than on a base made of cemented carbide, and various surface-coated tool materials have been put into practical use. There is. Furthermore, before surface coating, a hardened and/or softened cemented carbide surface layer is provided on the substrate for the purpose of improving wear resistance and impact resistance.
以下に従来から製造されている表面被覆された超硬合金
の表面層を硬化及び/又は軟化した層の製造方法と特徴
を列記する。Listed below are the manufacturing methods and characteristics of conventionally manufactured hardened and/or softened surface layers of surface-coated cemented carbide.
(1)積層合金を形成する方法
表−が耐摩耗性に優れた超硬合金からなり、内部が靭性
に優れた超硬合金からなる。2種類の合金粉末から製造
される。積層合金は製造上に困難さがあるだけでなく、
耐摩耗性の向上が少ないので、今日ではほとんど製造さ
れていない。(1) Method for Forming a Laminated Alloy The inner layer is made of a cemented carbide with excellent wear resistance, and the inside is made of a cemented carbide with excellent toughness. Manufactured from two types of alloy powder. Laminated alloys are not only difficult to manufacture;
Very little is manufactured today as it offers little improvement in wear resistance.
(2)窒化物添加による方法
4a族の窒化物を微量添加することにより表面に脱β層
を生成し、(表面から数十ミクロンにわたりβ相を含ま
ない層)被覆後の皮膜からのクラック伝播性を向上させ
る。(2) Method by adding nitrides By adding a small amount of group 4a nitrides, a β-free layer is generated on the surface (a layer that does not contain β phase over several tens of microns from the surface) and crack propagation from the coating after coating. Improve your sexuality.
(3)結合金属を富化させる方法
最も靭性に富む結合金属を富化し、表面被覆合金として
の耐衝撃性を向上させる方法。(3) Method of enriching the bonding metal A method of enriching the bonding metal with the highest toughness to improve impact resistance as a surface coating alloy.
これら目的に応じて処理した超硬合金の表面に化学蒸着
法により炭化物、炭窒化物の被覆処理をTi金属の塩化
物蒸気を水素雰囲気中でメタンガス又は窒素と反応させ
、900℃〜10oO℃に加熱された超硬合金上にTi
炭化物あるいは窒化物の薄膜を形成させる方法で製造さ
れる。現在市販されている被覆合金には炭窒化チタン被
覆合金および窒化チタン被覆合金、Al□○、被覆合金
。The surface of the cemented carbide treated according to these purposes is coated with carbides and carbonitrides by chemical vapor deposition by reacting chloride vapor of Ti metal with methane gas or nitrogen in a hydrogen atmosphere at 900°C to 100°C. Ti on heated cemented carbide
It is manufactured by forming a thin film of carbide or nitride. Coating alloys currently on the market include titanium carbonitride coating alloys, titanium nitride coating alloys, Al□○, coating alloys.
及びそれらの複層被覆合金等があり、いずれも耐摩耗性
が高く、2〜20ミクロンの皮膜により超硬合金の耐摩
耗性は3〜10倍増大する。and multi-layer coated alloys thereof, all of which have high wear resistance, and a coating of 2 to 20 microns increases the wear resistance of cemented carbide by 3 to 10 times.
現在市販されている表面処理した被覆合金の大部分は炭
化タングステン、コバルト、炭化チタン。The majority of surface-treated coating alloys currently on the market are tungsten carbide, cobalt, and titanium carbide.
炭化タンタルを主成分とする切削用超硬合金の表面に炭
化物、窒化物、酸化物を被覆したものであり、鋳鉄、鋼
の切削に広く使用されているが、鋼の切削時にしばしば
異常摩耗を示し、被覆層の優れた耐摩耗性が発揮できな
い場合がある。その原因を鋼切削の摩耗進行から観察す
ると、摩耗あるいは微小カケによって被覆層の1部が消
失した後、消失部分から摩耗が急速に進行するために、
刃先が均一に摩耗しないで、局部的に摩耗する現象が見
られる。又工具刃先に高熱高圧がかかると、超硬合金基
体が軟化し、塑性変形するために被覆層の耐摩耗性が十
分に発揮できない場合がある。The surface of a cemented carbide for cutting, whose main component is tantalum carbide, is coated with carbides, nitrides, and oxides.It is widely used for cutting cast iron and steel, but it often causes abnormal wear when cutting steel. In some cases, the coating layer may not be able to exhibit its excellent abrasion resistance. The reason for this is observed from the progress of wear in steel cutting. After part of the coating layer disappears due to wear or minute chips, wear progresses rapidly from the disappeared part.
There is a phenomenon where the cutting edge does not wear uniformly and wears locally. Furthermore, when high heat and high pressure are applied to the cutting edge of a tool, the cemented carbide base becomes softened and plastically deformed, so that the wear resistance of the coating layer may not be sufficiently exhibited.
本発明は、新しい現象の発見に基ずいた表面処理した超
硬合金に関するもので、従来の被覆超硬合金の性能上の
問題点を一挙に解決し、より耐摩耗性と汎用性を備えた
工具材料を提供するものである。The present invention relates to surface-treated cemented carbide based on the discovery of a new phenomenon, which solves all the performance problems of conventional coated cemented carbide, and makes it more wear resistant and versatile. It provides tool materials.
本発明は4a、5a、6a族の炭化物、炭窒化物及び鉄
族金属からなる超硬合金の表面が、平均4%以下の鉄属
金属とβ−固溶体を主体とした炭化物からなる厚さ1〜
10ミクロンの外層と前記炭化物からなり基体より軟質
の厚さ2〜40ミクロンの内層とよりなる超硬合金にお
いて、被覆層が四塩化チタン−水素−有機CN化合物及
び/又は窒素混合ガス中で加熱し、700℃〜900’
Cで超硬合金の表面に炭窒化チタン及び/又は窒化チタ
ンを被覆したことを特徴とする表面被覆超硬合金に関す
るものである。In the present invention, the surface of a cemented carbide made of carbides, carbonitrides, and iron group metals of groups 4a, 5a, and 6a has a thickness of 1 to 100 ml, which is made of carbides mainly composed of ferrous metals and β-solid solutions with an average content of 4% or less. ~
In a cemented carbide consisting of an outer layer of 10 microns and an inner layer of 2 to 40 microns thick made of the carbide and softer than the base, the coating layer is heated in a titanium tetrachloride-hydrogen-organic CN compound and/or nitrogen mixed gas. 700℃~900'
The present invention relates to a surface-coated cemented carbide characterized in that the surface of the cemented carbide is coated with titanium carbonitride and/or titanium nitride.
4%以下の鉄族金属とβ−固溶体を主体としたに切削工
具として使用されることはきわめて稀れであるが、それ
が1〜10ミクロンの薄層として靭性の高い超硬合金上
に設けるならば、耐摩耗性の向上にきわめて有利である
。その厚さは1〜10ミクロンが適している。1ミクロ
ン未満ではその効果が少なく、10ミクロンを越えると
工具としての靭性を低下させる。Although it is extremely rare for cutting tools to be used as cutting tools mainly consisting of less than 4% iron group metal and β-solid solution, it is applied as a thin layer of 1 to 10 microns on a highly tough cemented carbide. If so, it is extremely advantageous for improving wear resistance. A suitable thickness is 1 to 10 microns. If the diameter is less than 1 micron, the effect will be small, and if it exceeds 10 microns, the toughness of the tool will decrease.
本発明は4a、5a、6a属の炭化物、炭窒化物および
鉄族金属からなる超硬合金の表面に、焼結時のガス雰囲
気を調整することにより1〜10ミクロンの深さにわた
り鉄族金属を減少させ、β−固溶体を主体とした炭化物
を富化させると同時にその内側に2〜40ミクロン巳の
厚さに結合金属を富化した表面層を形成し、次に四塩化
チタン−水素−有機CN化合物及び/又は窒素混合ガス
中で加熱し、700℃〜900℃で超硬合金に炭窒化チ
タン及び/又は窒化チタンを被覆したものである。In the present invention, iron group metals are added to the surface of a cemented carbide made of carbides, carbonitrides, and iron group metals of groups 4a, 5a, and 6a to a depth of 1 to 10 microns by adjusting the gas atmosphere during sintering. At the same time, a surface layer enriched with bonding metals with a thickness of 2 to 40 microns is formed inside the carbide, and then titanium tetrachloride-hydrogen- This is a cemented carbide coated with titanium carbonitride and/or titanium nitride by heating in an organic CN compound and/or nitrogen mixed gas at 700°C to 900°C.
化学蒸着法による炭窒化チタン、窒化チタン被覆処理は
、四塩化チタン、水素、有機CN化合物。Titanium carbonitride and titanium nitride coating treatment by chemical vapor deposition includes titanium tetrachloride, hydrogen, and organic CN compounds.
窒素からなる混合ガス中で行なう。有機CN化合物の分
圧は4塩化チタンの分圧より低くし、かつ水素分圧の1
/10以下が適している。反応温度は700〜900℃
が適している。上記条件で表面のβ固溶体を富化した超
硬合金に炭窒化チタン被覆を施すと、β固溶体が多く結
合相が減少しているため皮膜の密着性が改善される。本
発明は更に四塩化チタンと四塩化チタン−H2有機CN
化合物及び/又は窒素混合ガスを用いることにより蒸着
時の低温化を計り、基体と皮膜の境界に生じる脱炭層(
η−炭化物、MGC)を減少し5強度の低下を90〜9
5%と小さくした。It is carried out in a mixed gas consisting of nitrogen. The partial pressure of the organic CN compound should be lower than that of titanium tetrachloride, and 1 of the hydrogen partial pressure.
/10 or less is suitable. Reaction temperature is 700-900℃
is suitable. When a titanium carbonitride coating is applied to a cemented carbide whose surface is enriched with β solid solution under the above conditions, the adhesion of the coating is improved because the β solid solution is large and the binder phase is reduced. The present invention further provides titanium tetrachloride and titanium tetrachloride-H2 organic CN.
By using a compound and/or nitrogen mixed gas, the temperature during vapor deposition is lowered, and a decarburized layer (
η-Carbide, MGC) decreases 5 strength decreases from 90 to 9
It was reduced to 5%.
第1図は従来の炭化チタン被覆超硬合金と本発明合金の
表面から微小ビッカース硬さを測定した結果を示したも
のであり、従来品は硬さが皮膜から超硬合金の硬さまで
低下しているのに対し、本発明品は硬さが高く結合金属
が減少しているβ固溶体に富む外層と、結合金属に富む
硬さが低い内層が超硬合金の中間にありf盲から基体ま
で硬さが変化している。Figure 1 shows the results of micro Vickers hardness measurements from the surfaces of a conventional titanium carbide-coated cemented carbide and the alloy of the present invention.The hardness of the conventional product decreased from the coating to that of the cemented carbide. On the other hand, the product of the present invention has an outer layer rich in β solid solution with high hardness and reduced amount of bonding metals, and an inner layer rich in bonding metals and low hardness, which are located between the cemented carbide and from the f-blind to the substrate. The hardness is changing.
本発明の表面処理した超硬合金は鋼及び鋳物の高速切削
に適している。すなわち従来の被覆合金より更に耐熱性
、耐組成変形性に優れている。又良好な仕上面を必要と
する切削に適している。The surface-treated cemented carbide of the present invention is suitable for high-speed cutting of steel and castings. That is, it has better heat resistance and resistance to compositional deformation than conventional coated alloys. It is also suitable for cutting that requires a good surface finish.
この理由はβ固溶体、外層の硬さが高く皮膜が摩耗して
もβ固溶体、外層の摩耗進行がゆるやかで異常摩耗を防
ぐ効果があるためである。The reason for this is that the β solid solution and the outer layer have high hardness, and even if the coating is worn out, the β solid solution and the outer layer wear progresses slowly, which is effective in preventing abnormal wear.
更にその内側の軟化層により皮膜からのクラック伝播が
1ずらく耐欠損に対しても向上する。Furthermore, the inner softened layer reduces crack propagation from the coating and improves chipping resistance.
以下実施例について詳細に説明する。Examples will be described in detail below.
実施例1
市販のWC粉末(平均粒度4μm)TiCN粉末(平均
粒度1μm)TaC粉末(同1.2μm)、Go粒粉末
同1μm)Ni粉末(同1μm)を用意し、これらを切
削用超硬合金P30相当の組成に配合し、ボールミル中
で湿式粉砕、混合を96時間行ない、乾燥処理後ITo
n/aJの圧力でプレス成形した。次に真空中1400
℃で焼結し、焼結終了後CH4,N、ガスを段階的に導
入し、徐冷し、窒化物を主とした外層と結合金属を富化
した内層を形成させて、その後低温化学蒸着法によりT
1CNを6μm被覆して本発明のチップを製造した。Example 1 Commercially available WC powder (average particle size: 4 μm), TiCN powder (average particle size: 1 μm), TaC powder (average particle size: 1.2 μm), Go grain powder (1 μm), and Ni powder (1 μm) were prepared. It was blended into a composition equivalent to Alloy P30, wet-pulverized and mixed in a ball mill for 96 hours, and after drying, ITo
Press molding was performed at a pressure of n/aJ. Then 1400 in vacuum
Sintered at ℃, and after sintering, CH4, N, and gases were introduced stepwise and slowly cooled to form an outer layer mainly made of nitride and an inner layer enriched with bonding metals, followed by low-temperature chemical vapor deposition. T by law
A chip of the present invention was manufactured by coating 1CN with a thickness of 6 μm.
次に鏡面にラップし、中間層の硬さをマイクロビッカー
ス(500g荷重)で測定した。Next, it was wrapped to a mirror surface, and the hardness of the intermediate layer was measured using a micro Vickers (load of 500 g).
第1図において外層は5μm、内層は20μmの例を示
しているがCH4,N、ガス分圧、冷却速度をコントロ
ールすることにより中間層の厚さ。Although FIG. 1 shows an example in which the outer layer is 5 μm and the inner layer is 20 μm, the thickness of the intermediate layer can be changed by controlling CH4, N, gas partial pressure, and cooling rate.
結合相量を変化させることができる。更に基体中のCと
Nの比率を変えた場合にはCH4,N2ガス分圧を調整
することが必要である。The amount of bonded phase can be varied. Furthermore, when changing the ratio of C and N in the substrate, it is necessary to adjust the CH4 and N2 gas partial pressures.
実施例2
実施例1の合金を用いて下記の条件で切削試験を行ない
、その性能を評価した。尚比較の目的で従来のCVD法
によるチップも試験した。Example 2 A cutting test was conducted using the alloy of Example 1 under the following conditions, and its performance was evaluated. For comparison purposes, a conventional CVD chip was also tested.
■寿命試験
被剛材 30M440 (Hs40)チップ S
NMN432 (ホーニング0.03+om)切削速度
200 m /min
送り 0 、2 mm / rev切り込み
2m
切削時間 10+in
評価 逃げ面摩耗
■耐欠損性試験
被削材 30M440 (Hs40)(4ツ溝入
)
チップ SNMN432 (ホーニング0.03mm)
切削速度 100 m/min
送り 0.3〜1゜Omm / rev切り込
み 2m
切削時間 1 min
評価 0.3an/revより開始し、クリアー
した場合には、0.05an
/rev送りを上げ更に切削試験
を続は順次送りを増加した。■Life test material 30M440 (Hs40) chip S
NMN432 (Honing 0.03+om) Cutting speed 200 m/min Feed 0, 2 mm/rev depth of cut
2m Cutting time 10+in Evaluation Flank wear ■ Fracture resistance test Work material 30M440 (Hs40) (4 grooves) Insert SNMN432 (honing 0.03mm)
Cutting speed 100 m/min Feed 0.3~1゜Omm/rev Depth of cut 2 m Cutting time 1 min Evaluation Start from 0.3 an/rev, and if cleared, increase feed by 0.05 an/rev and conduct further cutting test. Subsequently, the feed rate was increased sequentially.
本発明チップは逃げ面摩耗量V B = 0 、12
m mに対し比較チップはVB=0.13mrnと大差
ないが断続切削を伴う場合には欠損を起こさない送り量
が本発明チップは送り量0.7mm/revに対し比較
チップは送り量0.3mrn/revと大き1く差がつ
いた。本発明合金は中間層を形成させることにより耐摩
耗性と靭性を兼ね備えた性能を示すことが明らかである
。The chip of the present invention has a flank wear amount V B = 0, 12
m m, the comparative chip has VB=0.13 mrn, which is not much different, but when intermittent cutting is involved, the feed rate that does not cause chipping is 0.7 mm/rev for the inventive chip, whereas the comparative chip has a feed rate of 0.7 mm/rev. There was a big difference of 3 mrn/rev. It is clear that the alloy of the present invention exhibits performance that combines wear resistance and toughness by forming an intermediate layer.
本願表面被覆超硬合金は、基体と被覆層の中間にβ固溶
体に富む外層と結合金属に富む内層を設けることにより
基体の耐塑性変形性、耐摩耗性及び耐欠損性を向上し、
表面被覆の効果を発揮することにより耐摩耗性、耐熱性
、耐溶着性が大巾に向上し、切削工具として好適なもの
である。The surface-coated cemented carbide of the present invention improves the plastic deformation resistance, wear resistance, and chipping resistance of the substrate by providing an outer layer rich in β solid solution and an inner layer rich in bonding metal between the substrate and the coating layer,
By exhibiting the effect of surface coating, wear resistance, heat resistance, and welding resistance are greatly improved, making it suitable as a cutting tool.
第1図は本発明の中間層のマイクロビッカース硬さを測
定した結果を示す図である。FIG. 1 is a diagram showing the results of measuring the micro-Vickers hardness of the intermediate layer of the present invention.
Claims (1)
らなる超硬合金の表面が、平均4%以下の鉄属金属とβ
−固溶体を主体とした炭化物、炭窒化物及び鉄族金属か
らなる厚さ1〜10ミクロンの外層と前記炭化物、炭窒
化物及び鉄族金属からなり基体より軟質の厚さ2〜40
ミクロンの内層とよりなる超硬合金において、被覆層が
四塩化チタン−水素−有機CN化合物及び/又は窒素混
合ガス中で加熱し、700℃〜900℃で超硬合金の表
面に炭窒化チタン及び/又は窒化チタンを被覆したこと
を特徴とする表面被覆超硬合金。The surface of the cemented carbide made of carbides, carbonitrides, and iron group metals of groups 4a, 5a, and 6a contains an average of 4% or less of ferrous metals and β
- An outer layer with a thickness of 1 to 10 microns consisting of carbides, carbonitrides, and iron group metals mainly composed of solid solutions, and an outer layer with a thickness of 2 to 40 micrometers, which is softer than the substrate and consists of the carbides, carbonitrides, and iron group metals.
In a cemented carbide consisting of an inner layer of microns, the coating layer is heated in a titanium tetrachloride-hydrogen-organic CN compound and/or nitrogen mixed gas to coat the surface of the cemented carbide with titanium carbonitride and A surface-coated cemented carbide characterized by being coated with/or titanium nitride.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24808686A JPS63103071A (en) | 1986-10-17 | 1986-10-17 | Surface coated sintered hard alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24808686A JPS63103071A (en) | 1986-10-17 | 1986-10-17 | Surface coated sintered hard alloy |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63103071A true JPS63103071A (en) | 1988-05-07 |
Family
ID=17172999
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24808686A Pending JPS63103071A (en) | 1986-10-17 | 1986-10-17 | Surface coated sintered hard alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63103071A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH024972A (en) * | 1988-06-23 | 1990-01-09 | Mitsubishi Metal Corp | Surface-coated cermet for cutting tools |
JPH0390574A (en) * | 1989-09-01 | 1991-04-16 | Sumitomo Electric Ind Ltd | Coated cemented carbide for wear-resistant tools |
-
1986
- 1986-10-17 JP JP24808686A patent/JPS63103071A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH024972A (en) * | 1988-06-23 | 1990-01-09 | Mitsubishi Metal Corp | Surface-coated cermet for cutting tools |
JPH0390574A (en) * | 1989-09-01 | 1991-04-16 | Sumitomo Electric Ind Ltd | Coated cemented carbide for wear-resistant tools |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4341834A (en) | Coated super-hard alloy articles | |
US4101703A (en) | Coated cemented carbide elements | |
US3999954A (en) | Hard metal body and its method of manufacture | |
AU619272B2 (en) | A surface-coated cemented carbide and a process for the production of the same | |
US4162338A (en) | Coated cemented carbide elements and their manufacture | |
US5283030A (en) | Coated cemented carbides and processes for the production of same | |
CZ305139B6 (en) | Cutting tool insert provided with a coating and process for producing such insert | |
JP4731645B2 (en) | Cemented carbide and coated cemented carbide and method for producing the same | |
JP3236899B2 (en) | Manufacturing method of surface coated tungsten carbide based cemented carbide cutting tool with excellent wear and fracture resistance | |
JPH10237650A (en) | Wc base cemented carbide and its production | |
JP4351521B2 (en) | Surface coated cutting tool | |
JPS63103071A (en) | Surface coated sintered hard alloy | |
JPH0364469A (en) | Coated sintered hard alloy tool | |
JP2645340B2 (en) | Manufacturing method of coated cemented carbide tool | |
JPS63103072A (en) | Surface coated sintered hard alloy | |
JPS63103069A (en) | Surface coated sintered hard alloy | |
JPH04294907A (en) | Hard layer coated tungsten carbide group sintered hard alloy-made cutting tool | |
JP4936742B2 (en) | Surface coating tools and cutting tools | |
JPS60174876A (en) | Manufacture of coated cutting tool | |
JPH0547633B2 (en) | ||
CN118880145B (en) | Metal ceramic with double-layer surface structure and preparation method thereof | |
JPH03122280A (en) | Coated cemented carbide tool | |
JPS6119777A (en) | Wear-resistant and heat-resistant coated cemented carbide parts | |
JPH0387368A (en) | Coated sintered hard alloy tool | |
JPS5914534B2 (en) | Tough cermet with a softened surface layer |