JPS6310115B2 - - Google Patents
Info
- Publication number
- JPS6310115B2 JPS6310115B2 JP58252177A JP25217783A JPS6310115B2 JP S6310115 B2 JPS6310115 B2 JP S6310115B2 JP 58252177 A JP58252177 A JP 58252177A JP 25217783 A JP25217783 A JP 25217783A JP S6310115 B2 JPS6310115 B2 JP S6310115B2
- Authority
- JP
- Japan
- Prior art keywords
- carbide
- weight
- chromium carbide
- sintered body
- heated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Ceramic Products (AREA)
- Heat Treatments In General, Especially Conveying And Cooling (AREA)
- Furnace Charging Or Discharging (AREA)
Description
〔産業上の利用分野〕
本発明は、熱間圧延用、または熱間圧延鋼材熱
処理用等の加熱炉における被加熱材支持面用部材
であるウオーキングビーム用スキツドボタン、炉
内ロールあるいはウオーキングビーム用被加熱材
支持面部材(バルケン)として好適な炭化クロム
焼結体に関する。
〔従来技術と問題点〕
加熱炉内の被加熱材支持面用部材である熱間圧
延用加熱炉のウオーキングビーム用スキツドボタ
ン、熱間圧延鋼材の熱処理用加熱炉の炉内ロー
ル、あるいは熱間圧延鋼材熱処理用加熱炉のウオ
ーキングビーム用被加熱材支持面用部材(バルケ
ン)等は、被加熱材を熱効率よく、かつ偏熱を生
じないように所定温度に加熱し得ることが必要で
あり、また安定な炉操業を維持するためには、
1300℃をこえる高温炉内雰囲気において被加熱材
表面の酸化スケールとの反応を生じにくいこと、
および重量物である被加熱材の静的、動的負荷に
よる応力に耐え得ることなどの材質特性が要求さ
れる。
従来、これらの加熱炉における被加熱材の支持
面用材料としては、耐熱合金製のものを使用する
とともに、炉内の高温雰囲気による軟化、坐屈な
どの防止のために、内部水冷により支持面用部材
が過度に昇温しないようにしている。しかし、支
持面用部材を強く冷却すると、その上に載置され
た被加熱材は、支持面用部材との接触面から熱を
奪われるため、局部的に低温となり均一加温を達
成することができない。また、冷却水により炉外
に持ち去られる熱量が増大し、炉の熱経済性が低
下する。被加熱材の偏熱・加熱ムラを緩和するた
めに支持面用部材の冷却を抑えると、被加熱材表
面の溶融スケールとの反応、いわゆるピツクアツ
プ現象による支持面用部材自体の損耗・劣化が顕
著となり、またピツクアツプによつて形成された
ノツチ部分に静的・動的応力が集中し、割れ、折
損などが発生し易くなる。
近時は、セラミツク材料の耐熱性、断熱性、化
学的安定性などに着目し、これを被加熱材支持面
用材料として利用することが提案されている。セ
ラミツク焼結体としては例えば、特開昭58−
64268号、特開昭58−91066号等により、窒化けい
素、炭化けい素などからなる焼結体の材質改良お
よびその製造法等について開示されている。しか
し、これらの焼結体を被加熱材の支持面用部材と
して適用するには、耐衝撃性、抗折強度などに問
題があるほか、耐ピツクアツプ性も十分とは言え
ず、未だ実用化をみるには到つていない。
〔発明の目的〕
本発明は上記に対処するためになされたもの
で、耐ピツクアツプ性にすぐれるとともに、強靭
性などの所要の材料特性を備えた被加熱材支持面
用炭化クロム焼結体を提供する。
〔発明の構成および作用〕
本発明の被加熱材支持面用炭化クロム焼結体
は、炭化クロム、就中Cr3C2炭化クロムを主構成
分とし、これにCr7C3、Cr3C、Cr23C6の各炭化物
の1種または2種以上が配合された成分構成を有
するものである。
炭化クロムとしては、狭義にはCr3C2、Cr7C2、
およびCr4Cが知られている。これらの炭化クロ
ムは、ニユーセラミツクのなかでも、他の酸化
物、窒化物、炭化物などに比し特異の性質をも
ち、耐ピツクアツプ性などにすぐれているが、と
りわけCr3C2炭化クロムは溶融スケールに対する
極めて強い耐食性を有する。
上記主構成分であるCr3C2炭化クロムに配合さ
れるCr7C3、Cr3CおよびCr23C6の各炭化物は主と
して焼結性改善のための助剤としての作用を有す
る。主構成分であるCr3C2炭化クロム粉末単味で
は、焼結性が良くないが、上記炭化物を適量配合
することにより、焼結性の困難さが解消され、一
般的な焼成条件のもとで所定の焼結を達成するこ
とができ、焼結に要するコストも節減される。ま
た、焼結性の改善は、得られる焼結体の緻密化
(相対密度向上)、高温特性、ことに高温域での強
度、耐衝撃性、耐ピツクアツプ性の向上等の諸効
果をもたらす。
本発明の焼結体を構成するCr3C2炭化クロムと
これに配合される各炭化物の好適な組合せと配合
組成を示せず次のとおりである。
(A) Cr3C275〜99重量%、残部Cr23C6、
(B) Cr3C260〜99重量%、残部Cr7C3、
(C) Cr3C260〜99重量%、残部Cr3C、
(D) Cr3C250〜90重量%、Cr7C35〜45重量%、残
部Cr23C6、
(E) Cr3C230〜85重量%、Cr7C35〜40重量%、残
部Cr3C、
(F) Cr3C240〜80重量%、Cr7C35〜45重量%、
Cr23C65〜30重量%、残部Cr3C。
上記焼結体(A)〜(F)におけるCr3C2炭化クロム配
合量は、Cr3C2炭化クロムの特徴、特に耐ピツク
アツプ性の確保のために規定され、添加される各
炭化物の配合量は、焼結促進効果を確保し、かつ
Cr3C2炭化クロムの特徴を損なわない範囲として
規定されたものである。
本発明に使用される炭化クロムおよび各炭化物
粉末は99%以上の高純度を有するものが望まし
い。原料粉末に含まれる不純物は、高温焼成時に
蒸発して気孔の原因となり、あるいは低融点液相
を形成して得られる焼結体の高温特性を低下させ
るからである。また、原料粉末は、焼成上表面張
力が大なる程有利であり、この点から粒径50μm
以下の微細粒子が好ましく使用される。
本発明の被加熱材支持面用炭化クロム焼結体
は、Cr3C2炭化クロムに前記所定の炭化物粉末が
適量配合された原料粉末を混練調製し、必要に応
じ適当な成形助剤を適量配合し、更に必要ならば
常法により適当な粒径に造粒したのち、焼結工程
を経て製造される。焼結は、好ましくはホツトプ
レス法や熱間静水圧焼結法などの熱間加圧焼結法
により行なわれる。ホツトプレス法による場合
は、加圧力50〜350Kgf/cm2、焼成温度1350〜
1550℃、一方熱間静水圧焼結法では、加圧力500
Kgf/cm2以上、温度1400〜1500℃の条件下に好結
果を得ることができる。
こうして得られる焼結体は、理論密度の98%以
上と極めて緻密で、殆んど気孔がなく、粒径も微
細であり、ヤング率、剪断弾性係数、破壊率など
にすぐれ、かつ高温下での被加熱材の溶融スケー
ルに対し、卓抜した耐ピツクアツプ性を具備す
る。
〔実施例〕
本発明の被加熱材支持面用炭化クロム焼結体の
製造および耐ピツクアツプ性能について実施例に
より説明する。
(1) 焼結体の製造:
Cr3C2炭化クロムおよびCr7C3、Cr3C、
Cr23C6の各炭化物(いづれも、純度99.9%、平
均粒径5μm)を第1表に示す割合で混合した
粉末100重量部に対し、パルフイン3重量部を
添加し均一混練したのち、成形圧力1.5トン/
10mm×30mm×6mmで加圧成形し、これを真空
中、780℃で10分間予備焼結し、ついで真空中、
1450℃で60分を要して本焼結を完了した。
試番(10)〜(13)は前記焼結体(A)、(22)〜
(25)は焼結体(B)、(31)〜(33)は焼結体(C)、
(47)〜(53)は焼結体(D)、(73)〜(78)は焼
結体(E)、(84)〜(95)は焼結体(F)の成分構成
に対応する。その他の試番の焼結体は本発明に
規定の成分構成から逸脱する比較例である。
(2) 耐ピツクアツプ性試験:
相手材として、1300℃に1時間保持後炉冷し
て表面にスケールを生成させたS45C材を使用
し、これに上記で得られた各焼結体(1)〜(108)
を20Kgf/cm2の荷重で押圧せしめ、大気中1300
℃で10時間保持する。しかるのち、相手材から
供試材(焼結体)を引剥し、その接触面を表面
から肉厚方向に、0.2mmのピツチで切削し、各
切削面の鉄分の有無をX線回折により判定し
た。第1表中、「鉄分有無」欄の〇印は鉄分検
出なし(スケール反応なし)、×印は鉄分検出
(スケール反応生起)を意味する。同表に示さ
れるように、本発明規定の前記(A)〜(F)の成分構
成を有する各焼結体はスケール反応が皆無で耐
ピツクアツプ性にすぐれていることがわかる。
[Industrial Field of Application] The present invention relates to a skid button for a walking beam, which is a member for supporting a material to be heated in a heating furnace for hot rolling or heat treatment of hot rolled steel materials, an in-furnace roll, or a covering for a walking beam. The present invention relates to a chromium carbide sintered body suitable as a heating material support surface member (balken). [Prior art and problems] A skid button for a walking beam in a heating furnace for hot rolling, which is a member for the support surface of a material to be heated in a heating furnace, a roll in the furnace for a heating furnace for heat treatment of hot rolled steel materials, or a roll in a heating furnace for heat treatment of hot rolled steel materials, The member for supporting surface of the heated material (Balken) for the walking beam of the heating furnace for steel heat treatment must be able to heat the heated material to a predetermined temperature with high thermal efficiency and without causing uneven heat. In order to maintain stable furnace operation,
It is difficult to react with the oxide scale on the surface of the heated material in the high-temperature furnace atmosphere exceeding 1300℃,
Additionally, material properties such as being able to withstand stress due to static and dynamic loads of heavy materials to be heated are required. Conventionally, the material for the support surface of the heated material in these heating furnaces is made of heat-resistant alloy, and in order to prevent softening and buckling due to the high temperature atmosphere inside the furnace, the support surface is heated by internal water cooling. This prevents the temperature of the parts used to rise excessively. However, when the support surface member is strongly cooled, the heated material placed on it loses heat from the contact surface with the support surface member, resulting in a locally low temperature, making it difficult to achieve uniform heating. I can't. Furthermore, the amount of heat carried away from the furnace by the cooling water increases, reducing the thermoeconomic efficiency of the furnace. If cooling of the support surface member is suppressed to alleviate uneven heating and uneven heating of the heated material, the support surface member itself will noticeably wear out and deteriorate due to a reaction with the melted scale on the surface of the heated material, a so-called pick-up phenomenon. In addition, static and dynamic stress concentrates on the notch portion formed by the pick-up, making it more likely that cracks and breakage will occur. Recently, attention has been focused on the heat resistance, heat insulation, chemical stability, etc. of ceramic materials, and it has been proposed to use them as materials for supporting surfaces of heated materials. As a ceramic sintered body, for example, JP-A-58-
No. 64268, JP-A-58-91066, etc. disclose improvements in the quality of sintered bodies made of silicon nitride, silicon carbide, etc. and methods for producing the same. However, in order to apply these sintered bodies as members for supporting surfaces of heated materials, there are problems with impact resistance, bending strength, etc., and pick-up resistance is not sufficient, so it is still difficult to put them into practical use. I haven't gotten around to seeing it yet. [Object of the Invention] The present invention has been made to address the above-mentioned problems, and provides a sintered chromium carbide body for the support surface of a heated material, which has excellent pick-up resistance and has required material properties such as toughness. provide. [Structure and operation of the invention] The chromium carbide sintered body for the supporting surface of a heated material of the present invention has chromium carbide, particularly Cr 3 C 2 chromium carbide as a main component, and Cr 7 C 3 and Cr 3 C , Cr 23 C 6 , and has a component composition in which one or more of the following carbides are blended. In a narrow sense, chromium carbide includes Cr 3 C 2 , Cr 7 C 2 ,
and Cr4C are known. Among news ceramics, these chromium carbides have unique properties compared to other oxides, nitrides, carbides, etc., and are excellent in pick - up resistance. It has extremely strong corrosion resistance against scale. Each of the carbides of Cr 7 C 3 , Cr 3 C and Cr 23 C 6 blended into the Cr 3 C 2 chromium carbide, which is the main component, functions primarily as an auxiliary agent for improving sinterability. The main component, Cr 3 C 2 chromium carbide powder alone, does not have good sintering properties, but by adding an appropriate amount of the above carbide, the difficulty in sintering is overcome, and it can be used under general firing conditions. A predetermined sintering can be achieved with this, and the cost required for sintering can also be reduced. Furthermore, the improvement in sinterability brings about various effects such as densification (improvement in relative density) of the obtained sintered body, high-temperature properties, especially improvement in strength, impact resistance, and pick-up resistance in the high-temperature range. The preferred combination and blending composition of Cr 3 C 2 chromium carbide and each carbide blended therein constituting the sintered body of the present invention are as follows. (A) Cr3C2 75-99% by weight , balance Cr23C6 , (B) Cr3C2 60-99 % by weight, balance Cr7C3 , (C ) Cr3C2 60-99 % by weight , balance Cr3C , (D) Cr3C2 50-90 % by weight, Cr7C3 5-45 % by weight, balance Cr23C6 , (E ) Cr3C2 30-85 % by weight, Cr7 C 3 5-40% by weight, balance Cr 3 C, (F) Cr 3 C 2 40-80% by weight, Cr 7 C 3 5-45% by weight,
Cr23C6 5-30% by weight, balance Cr3C . The blending amount of Cr 3 C 2 chromium carbide in the above sintered bodies (A) to (F) is determined to ensure the characteristics of Cr 3 C 2 chromium carbide, especially the pick-up resistance, and the blend of each added carbide. The amount is to ensure the sintering promotion effect and
This is defined as a range that does not impair the characteristics of Cr 3 C 2 chromium carbide. The chromium carbide and each carbide powder used in the present invention preferably have a high purity of 99% or more. This is because impurities contained in the raw material powder evaporate during high-temperature firing, causing pores, or forming a low-melting liquid phase, which deteriorates the high-temperature properties of the obtained sintered body. In addition, the larger the surface tension of the raw material powder is, the more advantageous it is when firing, and from this point of view, the particle size is 50 μm.
The following fine particles are preferably used. The chromium carbide sintered body for the support surface of a heated material of the present invention is prepared by kneading raw material powder in which an appropriate amount of the above-mentioned predetermined carbide powder is blended with Cr 3 C 2 chromium carbide, and adding an appropriate amount of an appropriate forming aid as necessary. After blending and, if necessary, granulating to a suitable particle size by a conventional method, the particles are manufactured through a sintering process. Sintering is preferably performed by a hot pressure sintering method such as a hot press method or a hot isostatic pressure sintering method. When using the hot press method, the pressing force is 50 to 350 kgf/cm 2 and the firing temperature is 1350 to 350 kgf/cm 2
1550℃, while in the hot isostatic sintering method, the pressure is 500℃.
Good results can be obtained under conditions of Kgf/cm 2 or more and a temperature of 1400 to 1500°C. The sintered body obtained in this way is extremely dense with a theoretical density of 98% or more, has almost no pores, has a fine grain size, has excellent Young's modulus, shear modulus of elasticity, fracture rate, etc., and is resistant to high temperatures. Excellent pick-up resistance against melting scale of heated materials. [Example] The production and pick-up resistance of the sintered chromium carbide body for the support surface of a heated material according to the present invention will be explained using examples. (1) Production of sintered bodies: Cr 3 C 2 chromium carbide and Cr 7 C 3 , Cr 3 C,
3 parts by weight of parfine was added to 100 parts by weight of powder obtained by mixing Cr 23 C 6 carbides (each with a purity of 99.9% and an average particle diameter of 5 μm) in the proportions shown in Table 1, and after uniformly kneading, molding was performed. Pressure 1.5 tons/
Pressure molded into 10mm x 30mm x 6mm, pre-sintered in vacuum at 780℃ for 10 minutes, then in vacuum,
Main sintering was completed at 1450°C for 60 minutes. Trial numbers (10) to (13) are the sintered bodies (A) and (22) to
(25) is a sintered body (B), (31) to (33) are sintered bodies (C),
(47) to (53) correspond to the composition of the sintered body (D), (73) to (78) correspond to the composition of the sintered body (E), and (84) to (95) correspond to the composition of the sintered body (F). . The other sample sintered bodies are comparative examples that deviate from the composition specified in the present invention. (2) Pick-up resistance test: As a counterpart material, S45C material, which was kept at 1300℃ for 1 hour and then cooled in a furnace to form scale on the surface, was used, and each of the sintered bodies obtained above (1) was used as the counterpart material. ~(108)
is pressed with a load of 20Kgf/ cm2 , and
Hold at °C for 10 hours. After that, the test material (sintered body) was peeled off from the mating material, the contact surface was cut from the surface in the thickness direction at a pitch of 0.2 mm, and the presence or absence of iron on each cut surface was determined by X-ray diffraction. did. In Table 1, the circle mark in the "Presence or absence of iron content" column means that iron content is not detected (no scale reaction), and the x mark means that iron content is detected (scale reaction occurs). As shown in the table, it can be seen that the sintered bodies having the compositions (A) to (F) specified in the present invention have no scale reaction and are excellent in pick-up resistance.
【表】【table】
【表】【table】
【表】【table】
【表】【table】
【表】
更に、本発明焼結体の実炉における耐ピツクア
ツプ性試験として、第2表に示される成分構成の
焼結体(1)〜(18)を前記試験のそれと同じ成形・
焼結条件により製造し、得られた各焼結体をスラ
ブ熱延用加熱炉の均熱帯のウオーキングビーム上
に設置するとともに、炉内にスラブを送通させ、
スラブの表面から落下するスケールと接触する条
件下に12ケ月にわたる曝露試験を行つた。比較例
として、本発明の規定から逸脱する成分構成を有
する炭化クロム焼結体(19)〜(25)および他の
セラミツク焼結体(炭化けい素系、窒化けい素
系、アルミナ系および酸化ジルコニウム系)(26)
〜(29)について同様の実炉試験を実施し、試験
後の各供試焼結体のピツクアツプの有無を前記試
験と同じ要領でX線回折により判定し、第2表に
示す結果を得た。比較例ではいづれも鉄分の侵入
が認められ、とくに試番(26)〜(29)の焼結体
では、鉄分侵入深さの測定が不可能な程スケール
反応が著しいのに対し、本発明例ではいずれもス
ケール反応は皆無で、良好な耐ピツクアツプ性を
有している。[Table] Further, as a pick-up resistance test of the sintered bodies of the present invention in an actual furnace, sintered bodies (1) to (18) having the composition shown in Table 2 were molded and molded in the same manner as in the above test.
Each sintered body produced under sintering conditions is placed on a walking beam in the soaking zone of a heating furnace for slab hot rolling, and the slab is passed through the furnace.
A 12-month exposure test was conducted under conditions of contact with scale falling from the surface of the slab. As comparative examples, chromium carbide sintered bodies (19) to (25) having compositions that deviate from the provisions of the present invention and other ceramic sintered bodies (silicon carbide-based, silicon nitride-based, alumina-based, and zirconium oxide) were used. (26)
A similar actual furnace test was conducted for ~(29), and the presence or absence of pick-up in each sample sintered body after the test was determined by X-ray diffraction in the same manner as the above test, and the results shown in Table 2 were obtained. . In all of the comparative examples, iron penetration was observed, and in particular, in the sintered bodies of sample numbers (26) to (29), the scale reaction was so severe that it was impossible to measure the depth of iron penetration, whereas in the present invention example All of them have no scale reaction and have good pick-up resistance.
【表】【table】
本発明の炭化クロム焼結体からなるスキツドボ
タンは、卓抜した耐ピツクアツプ性を有するとと
もに耐熱性、高温強度、耐衝撃性等にすぐれるの
で、従来の耐熱合金製、あるいは他のニユーセラ
ミツクである酸化物系、窒化物系、炭化物系など
のセラミツク焼結品に比し、高温雰囲気中、静
的・動的応力の作用と高温スケールとの接触の著
しい苛酷な使用条件によく耐え、従来材では得ら
れない長期の耐用寿命を示し、炉操業の安定・向
上をもたらす。また、耐熱性、断熱性にすぐれる
ので、耐熱合金製支持面用部材などの場合のよう
な昇温防止のための強い冷却は不要であるため、
被加熱材の局部的降温・偏熱を生じることがな
く、均一加熱による被加熱材品質の向上をみる一
方、冷却水により炉外に持出される熱量が低減す
ることにより炉の熱経済性も高められるなどの諸
効果をもたらす。
The skid button made of the chromium carbide sintered body of the present invention has excellent pick-up resistance, heat resistance, high temperature strength, impact resistance, etc. Compared to ceramic sintered products such as solid-based, nitride-based, and carbide-based ceramics, it can withstand extremely harsh usage conditions in high-temperature atmospheres, static and dynamic stress, and contact with high-temperature scales, and is superior to conventional materials. It exhibits an unprecedentedly long service life and stabilizes and improves furnace operation. In addition, it has excellent heat resistance and insulation properties, so there is no need for strong cooling to prevent temperature rise, as is the case with support surface members made of heat-resistant alloys.
The quality of the heated material is improved by uniform heating without localized temperature drop or uneven heating of the heated material, while the thermoeconomic efficiency of the furnace is also improved by reducing the amount of heat taken out of the furnace by cooling water. It brings about various effects such as being enhanced.
第1図〜第3図はそれぞれ本発明炭化クロム焼
結体を被加熱材支持面用部材として使用した炉床
構造の例を示す要部断面図である。
1:ウオーキングビーム、2:レール、3・
1,3・2:被加熱材支持面用部材。
FIGS. 1 to 3 are sectional views of essential parts showing examples of hearth structures using the chromium carbide sintered body of the present invention as a member for supporting surfaces of heated materials. 1: Walking beam, 2: Rail, 3.
1, 3, 2: Member for supporting surface of heated material.
Claims (1)
炭化物からなる加熱炉の被加熱材支持面用炭化ク
ロム焼結体。 2 Cr3C2炭化クロム60〜99重量%、残部Cr7C3
炭化物からなる加熱炉の被加熱材支持面用炭化ク
ロム焼結体。 3 Cr3C2炭化クロム60〜99重量%、残部Cr3C炭
化物からなる加熱炉の被加熱材支持面用炭化クロ
ム焼結体。 4 Cr3C2炭化クロム50〜90重量%、Cr7C3炭化
物5〜45重量%、残部Cr23C6炭化物からなる加熱
炉の被加熱材支持面用炭化クロム焼結体。 5 Cr3C2炭化クロム30〜85重量%、Cr7C3炭化
物5〜40重量%、残部Cr3C炭化物からなる加熱
炉の被加熱材支持面用炭化クロム焼結体。 6 Cr3C2炭化クロム40〜80重量%、Cr7C3炭化
物5〜45重量%、Cr23C6炭化物5〜30重量%、残
部Cr3C炭化物からなる加熱炉の被加熱材支持面
用炭化クロム焼結体。[Claims] 1 Cr 3 C 2 chromium carbide 75-99% by weight, balance Cr 23 C 6
A chromium carbide sintered body made of carbide for the support surface of heated materials in heating furnaces. 2 Cr 3 C 2 Chromium carbide 60-99% by weight, balance Cr 7 C 3
A chromium carbide sintered body made of carbide for the support surface of heated materials in heating furnaces. 3 A chromium carbide sintered body for a support surface of a heated material in a heating furnace, comprising 60 to 99% by weight of Cr 3 C 2 chromium carbide and the remainder Cr 3 C carbide. 4 A chromium carbide sintered body for a support surface of a heated material in a heating furnace, comprising 50 to 90% by weight of Cr3C2 chromium carbide , 5 to 45% by weight of Cr7C3 carbide, and the balance Cr23C6 carbide. 5 A chromium carbide sintered body for a support surface of a heated material in a heating furnace, comprising 30 to 85% by weight of Cr3C2 chromium carbide , 5 to 40% by weight of Cr7C3 carbide, and the balance Cr3C carbide. 6 40 to 80% by weight of Cr 3 C 2 chromium carbide, 5 to 45% by weight of Cr 7 C 3 carbide, 5 to 30% by weight of Cr 23 C 6 carbide, and the remainder Cr 3 C carbide, supporting surface of the material to be heated in the heating furnace. Chromium carbide sintered body for use.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58252177A JPS60145954A (en) | 1983-12-29 | 1983-12-29 | Chromium carbide sintered body for heated material supporting surface of heating furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58252177A JPS60145954A (en) | 1983-12-29 | 1983-12-29 | Chromium carbide sintered body for heated material supporting surface of heating furnace |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60145954A JPS60145954A (en) | 1985-08-01 |
JPS6310115B2 true JPS6310115B2 (en) | 1988-03-03 |
Family
ID=17233562
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58252177A Granted JPS60145954A (en) | 1983-12-29 | 1983-12-29 | Chromium carbide sintered body for heated material supporting surface of heating furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60145954A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6483611A (en) * | 1987-09-24 | 1989-03-29 | Nippon Steel Corp | Member for supporting material to be heated in heating furnace |
US4927791A (en) * | 1987-10-06 | 1990-05-22 | Denki Kagaku Kogyo Kabushiki Kaisha | Chromium carbide sintered body |
US5580833A (en) * | 1994-10-11 | 1996-12-03 | Industrial Technology Research Institute | High performance ceramic composites containing tungsten carbide reinforced chromium carbide matrix |
WO2015034985A1 (en) * | 2013-09-05 | 2015-03-12 | Mahle Industries, Inc. | Wire alloy for plasma wire arc coating |
-
1983
- 1983-12-29 JP JP58252177A patent/JPS60145954A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS60145954A (en) | 1985-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1084393C (en) | Iron aluminide useful as electrical resistance heating element | |
JP3916465B2 (en) | Molten metal member made of sintered alloy having excellent corrosion resistance and wear resistance against molten metal, method for producing the same, and machine structure member using the same | |
JPS6310115B2 (en) | ||
JP4295491B2 (en) | Copper-tungsten alloy and method for producing the same | |
JPH1149568A (en) | Graphite-silicon carbide crucible for nonferrous molten metal and its production | |
JPS59107058A (en) | Heat-resistant ceramic material | |
JPS6310114B2 (en) | ||
JPS631266B2 (en) | ||
JPH0657873B2 (en) | Roll for heat treatment furnace | |
JPS63388B2 (en) | ||
JPH01255643A (en) | Composite material for supporting member for material to be heated in heating furnace | |
JPS6315341B2 (en) | ||
JPH075379B2 (en) | Method for manufacturing refractory for molten steel | |
JP2005131656A (en) | Components for molten aluminum | |
JPH0193470A (en) | Ceramic sintered material | |
JPS63391B2 (en) | ||
JP2802768B2 (en) | Composite sintered alloy and steel support in heating furnace | |
JPS63389B2 (en) | ||
JPH0672059B2 (en) | High corrosion resistance sintered body | |
JPS631384B2 (en) | ||
JP2681602B2 (en) | Method for manufacturing titanium carbonitride sintered body | |
JPH04301049A (en) | Heat-resistant alloy for supporting surface members of heated steel materials in heating furnaces | |
JPH0729849B2 (en) | Manufacturing method of silicon carbide sintered body | |
JPH03287716A (en) | Supporting member for material to be heated in heating furnace | |
JPS5833193B2 (en) | Skid rail heat resistant stand |