JPS63100297A - Water supply facility - Google Patents
Water supply facilityInfo
- Publication number
- JPS63100297A JPS63100297A JP24315286A JP24315286A JPS63100297A JP S63100297 A JPS63100297 A JP S63100297A JP 24315286 A JP24315286 A JP 24315286A JP 24315286 A JP24315286 A JP 24315286A JP S63100297 A JPS63100297 A JP S63100297A
- Authority
- JP
- Japan
- Prior art keywords
- pump
- sub
- water
- main pump
- flow rate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims description 103
- 238000011010 flushing procedure Methods 0.000 claims description 10
- 238000001514 detection method Methods 0.000 claims description 6
- 238000010586 diagram Methods 0.000 description 7
- 230000007423 decrease Effects 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000008400 supply water Substances 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Landscapes
- Control Of Non-Positive-Displacement Pumps (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は給水装置に係シ、さらに詳しく述べると、通常
運転される可変速用の主ポンプと、主ポンプの運転時に
使用水量が増加したとき、主ポンプと共に運転される副
ポンプとを備えた給水装置に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a water supply system, and more specifically, the present invention relates to a water supply system, and more specifically, a variable speed main pump that is normally operated, and a variable speed main pump that uses an increased amount of water during operation of the main pump. The present invention relates to a water supply device including a main pump and a sub-pump operated together with the main pump.
一般のこの種の給水装置は、通常では可変速用の主ポン
プを運転させて給水しているが、使用水量が増加した場
合、主ポンプの給水量では不足するので、副ポンプを運
転させ主ポンプと共に給水できるようにしている。従っ
て、副ポンプは使用水−が増加しない限シ、運転が停止
されているので、内部に水が滞留したiまとなシ、その
ため、滞留水が時間の経過に従って赤水化してしまう。Normally, this type of water supply device operates a variable speed main pump to supply water, but when the amount of water used increases, the amount of water supplied by the main pump is insufficient, so a sub pump is operated to supply water. Water can be supplied together with a pump. Therefore, since the operation of the sub-pump is stopped unless the amount of water used increases, water accumulates inside the pump, and as a result, the accumulated water turns into red water over time.
この不具合を解消するため、従来技術の給水装置では、
副ポンプ内の滞留水を一定時間毎に排水させるように構
成された滞留水排水機構を備えている。In order to eliminate this problem, conventional water supply devices
A stagnant water drainage mechanism configured to drain the stagnant water in the sub-pump at regular intervals is provided.
ところで、従来技術では、副ポンプ内の滞留水が定時間
毎に排出されるので、その排出時には改たに滞留された
水が清浄であるものの、第4図に示す如く時間が経過す
るにつれて赤色化してしまう。その為、使用水量のパタ
ーンが時間的に定まっている場合を除くと、即ち水用水
量の増減のパターンが定まっていないと、滞留水の排水
後から副ポンプが始動されるまでの間に時間経過する場
合がある。そのような場合には、副ポンプによって赤水
化した滞留水も給水されてしまうので、清浄な水を常時
供給できない問題がある。By the way, in the conventional technology, the accumulated water in the sub-pump is discharged at regular intervals, and although the accumulated water is clean when it is discharged, it turns red as time passes as shown in Fig. 4. It turns into Therefore, unless the pattern of water consumption is fixed over time, that is, the pattern of increase/decrease in water consumption is not fixed, there will be a time difference between the time the accumulated water is drained and the sub-pump is started. It may pass. In such a case, since the auxiliary pump also supplies red-colored accumulated water, there is a problem that clean water cannot be constantly supplied.
また、その問題を解決するため、滞留水の排水頻度を多
くすることが容易に考えられるが、そのようにした場合
、排水量が多くなシ、それだけ不経済になる問題がある
。In addition, in order to solve this problem, it is easy to think of increasing the frequency of draining the accumulated water, but if this is done, there is a problem that the amount of drained water will be large and that it will become uneconomical.
本発明の目的は、前記従来技術の問題点に鑑み、常に清
浄な水を供給でき、しかも経済的に供給できる給水装置
を提供することにある。SUMMARY OF THE INVENTION In view of the problems of the prior art, an object of the present invention is to provide a water supply device that can constantly supply clean water and can do so economically.
本発明では、可変速用の主ポンプと、該主ポンプの吐出
し側にその主ポンプと平行に接続される副ポンプと、主
ポンプを吐出し流量−吐出し圧性能曲線上の制御線との
交点を運転点として運転制御させ、かつ核上ポンプの運
転点が吐出し流it −吐出し圧性能曲線上における制
御縁との交点からずれて副ポンプ始動点に変動したとき
、前記副ポンプを始動させて副ポンプと主ポンプの双方
を双方の吐出し流量−吐出し圧性能曲線上の制御線との
交点を運転点として運転制御させる制御手段と、副ポン
プの停止時、副ポンプ内の滞留水を排水させる滞留水排
水機構とを備えている。In the present invention, a variable speed main pump, a sub pump connected to the discharge side of the main pump in parallel with the main pump, and a control line on the discharge flow rate-discharge pressure performance curve of the main pump are provided. The operation is controlled using the intersection of control means for starting the sub-pump and the main pump and controlling the operation of both the sub-pump and the main pump using the intersection point with the control line on the discharge flow rate-discharge pressure performance curve of both as the operating point; The system is equipped with a stagnant water drainage mechanism that drains stagnant water.
そして、前記滞留水排水機構は、主ポンプの運転点が吐
出し流量−吐出し圧性能曲線上を副ポンプ始動点方向に
変動したとき、該副ポンプ始動点よシ若干前の予め定め
られた排水開始点に達したことを検出する検出器と、該
検出器の検出時、高圧水を副ポンプ内に送り込んで副ポ
ンプ内に予め滞留している滞留水を排水させるフラッシ
ング手段とを有している。Then, when the operating point of the main pump fluctuates in the direction of the sub-pump starting point on the discharge flow rate-discharge pressure performance curve, the accumulated water drainage mechanism operates at a predetermined point slightly before the sub-pump starting point. It has a detector that detects that the drainage start point has been reached, and flushing means that sends high-pressure water into the sub-pump to drain the stagnant water that has previously accumulated in the sub-pump when the detector detects that the water has reached the drainage start point. ing.
主ポンプが吐出し流量−吐出し圧性能曲線上の制御線と
の交点を運転点として運転されているとき、使用水量が
増加すると、その運転点が吐出し流量−吐出し圧性能曲
線上において制御線からずれて副ポンプ始動点方向に変
動する。When the main pump is operated with the intersection of the control line on the discharge flow rate-discharge pressure performance curve as the operating point, if the amount of water used increases, the operating point will change to the point on the discharge flow rate-discharge pressure performance curve. It deviates from the control line and fluctuates toward the sub pump starting point.
その場合、主ポンプの運転点が前記性能曲線上の副ポン
プ始動点よシ若干前の排水開始点に位置すると、これを
滞留水排水機構の検出器が検出するので、該検出によシ
滞留水排水機構のフラッシング手段が作動し、高圧水が
副ポンプ内に送り込まれて副ポンプ内の滞留水を排水さ
せる。In that case, when the operating point of the main pump is located at the drainage start point slightly before the sub pump starting point on the performance curve, the detector of the accumulated water drainage mechanism will detect this. The flushing means of the water drainage mechanism is activated, and high-pressure water is sent into the sub-pump to drain the accumulated water within the sub-pump.
従って、主ポンプの運転点が副ポンプを始動させるよう
な位置まで変動したとき、副ポンプ内の滞留水を排出で
きるので、副ポンプの停止中の滞留水の排水から副ポン
プの始動までの間の時間を極めて短時間にでき、しかも
その排水動作が副ポンプの始動される略直前に行われる
ので、副ポンプ内の改たな滞留水を確実に清浄にできる
。Therefore, when the operating point of the main pump changes to a position where the sub-pump is started, the accumulated water in the sub-pump can be discharged, so the period from when the accumulated water is drained while the sub-pump is stopped until the sub-pump starts is The time required for this can be made extremely short, and the draining operation is performed almost immediately before the sub-pump is started, so that the accumulated water in the sub-pump can be reliably cleaned.
その結果、清浄な水を供給でき、しかも副ポンプの停止
時における滞留水の排水に要する水を節約できる。As a result, clean water can be supplied, and water required for draining accumulated water when the sub pump is stopped can be saved.
以下、本発明の実施例を第1図乃至第3図によシ説明す
る。第1図は本発明の一実施例を示す配管図、第2図は
ポンプの吐出し流量−吐出し圧性能曲線図、第3図は本
発明の実施例と従来例との比較説明図である。Embodiments of the present invention will be described below with reference to FIGS. 1 to 3. Fig. 1 is a piping diagram showing an embodiment of the present invention, Fig. 2 is a pump discharge flow rate-discharge pressure performance curve, and Fig. 3 is a comparative illustration of the embodiment of the present invention and a conventional example. be.
実施例の給水装置は、ポンプの吐出し圧が一定となるよ
うに制御される吐出し圧一定制御方式に利用されたもの
である。The water supply device of the embodiment is used in a constant discharge pressure control system in which the discharge pressure of the pump is controlled to be constant.
即ち、第1図に示すように、実施例の給水装置は、可変
速用の主ポンプ1の吐出側に該主ポンプ1と平行に副ポ
ンプ2が接続されている。そして、主、副ポンプ1,2
の吐出側には吐出し圧を検出する圧力伝送器3が設けら
れ、圧力伝送器3の出力側には制御装置4が接続されて
いる。That is, as shown in FIG. 1, in the water supply system of the embodiment, a sub pump 2 is connected to the discharge side of a variable speed main pump 1 in parallel with the main pump 1. And main and sub pumps 1 and 2
A pressure transmitter 3 for detecting discharge pressure is provided on the discharge side of the pressure transmitter 3, and a control device 4 is connected to the output side of the pressure transmitter 3.
制御装置4は、例えばマイクロコンピュータ等からなっ
ておシ、通常では第2図に示すように、主ポンプ1を吐
出し流量−吐出し圧性能曲線A〜N上の制御線Zとの交
点を運転点として運転制御させ、使用水量の増加時、主
ポンプ1の運転点が吐出し流量−吐出し圧性能曲線A上
における制御線2との交点からずれて副ポンプ始動点Y
に変動すると、副ポンプ2を始動させて副ポンプと主ポ
ンプの双方を双方の吐出し流量−吐出し圧性能曲線W上
の制御線2との交点を運転点として運転制御させるよう
にしている。なお第2図は、横軸にポンプの吐出し流量
を、縦軸にポンプの吐出し圧をとったポンプの性能曲線
図でちる。The control device 4 is composed of, for example, a microcomputer, and usually controls the main pump 1 to detect the intersection point with the control line Z on the flow rate-discharge pressure performance curves A to N, as shown in FIG. The operation is controlled as the operating point, and when the amount of water used increases, the operating point of the main pump 1 deviates from the intersection with the control line 2 on the discharge flow rate-discharge pressure performance curve A, and the sub-pump starting point Y
, the sub pump 2 is started and the operation of both the sub pump and the main pump is controlled using the intersection point with the control line 2 on the discharge flow rate-discharge pressure performance curve W of both as the operating point. . Note that FIG. 2 is a pump performance curve diagram in which the horizontal axis represents the pump discharge flow rate and the vertical axis represents the pump discharge pressure.
第2図よシ制御装置4を具体的に述べると、主ポンプ1
が夫々の回転速度Na=Nnで駆動されると、とによっ
て吐出し流量−吐出し圧性能曲線A−Nが得られるが、
その際使用水量の増減との関係から主ポンプlの運転点
が該曲線A−N上の制御線2との交点にもってくるよう
に制御している。例えば、主ポンプ1を回転速度Nbで
駆動させ、か、つ吐出し流量Q−吐出し圧H性能曲線B
の魚目を運転点として運転しているとした場合、使用水
量が増加すると、吐出し圧が下がるが、前記圧力伝送器
3によって検出された吐出し圧が送付されるととにより
、該検出圧から目標圧を演算し、その目標圧となるよう
に回転速度をNaに上げ、その吐出し流量−吐出し圧性
能曲線A上の点イを運転点とすることにより、主ポンプ
1の吐出し圧が一定となるようにしている。To describe the control device 4 in detail in FIG. 2, the main pump 1
are driven at respective rotational speeds Na=Nn, a discharge flow rate-discharge pressure performance curve A-N is obtained by and,
At this time, control is performed so that the operating point of the main pump 1 comes to the intersection with the control line 2 on the curve AN in view of the increase or decrease in the amount of water used. For example, if the main pump 1 is driven at a rotational speed Nb, and the discharge flow rate Q - discharge pressure H performance curve B
When operating with the fish eye as the operating point, when the amount of water used increases, the discharge pressure decreases, but as the discharge pressure detected by the pressure transmitter 3 is sent, the detection By calculating the target pressure from the pressure, increasing the rotation speed to Na to reach the target pressure, and setting point A on the discharge flow rate-discharge pressure performance curve A as the operating point, the discharge of the main pump 1 can be adjusted. The pressure is kept constant.
また、使用水量がさらに増加した場合、主ポンプ1の吐
出し圧が降圧し、主ポンプの運転点が吐出し流量−吐出
し圧性能曲線A上の副ポンプ2の始動点Yに達すると、
これを前記圧力伝送器3が検出することによって副ポン
プ2を始動させ、主ポンプ1及び副ポンプ2の吐出し圧
に基づいて演算した目標圧となるように、主ポンプ1+
副ポンプ2の運転点を、吐出し流量−吐出し圧性能曲線
W上の点ハとすることによシ、吐出し圧を一定にして使
用水量の増加に対応できるようにしている。In addition, when the amount of water used further increases, the discharge pressure of the main pump 1 decreases, and when the operating point of the main pump reaches the starting point Y of the sub pump 2 on the discharge flow rate-discharge pressure performance curve A,
When the pressure transmitter 3 detects this, the sub pump 2 is started, and the main pump 1 +
By setting the operating point of the sub pump 2 to point C on the discharge flow rate-discharge pressure performance curve W, the discharge pressure can be kept constant to cope with an increase in the amount of water used.
前記副ポンプ2は、主ポンプ1の給水能力では使用水量
の増加に対応し切れない分を補うものであって、通常で
は停止されているので、内部に滞留水をもっていて、例
えば定速タイプのもので構成されている。The auxiliary pump 2 is used to compensate for the increase in the amount of water used when the water supply capacity of the main pump 1 is not sufficient to cope with the increase in the amount of water used. It is made up of things.
しかして、副ポンプ2内の滞留水が時間経過によって赤
水化されるので、副ポンプ2の停止時に滞留水を排水す
るため滞留水排水機構(符号せず)が設けられている。Since the accumulated water in the sub pump 2 becomes red water over time, a accumulated water drainage mechanism (not referenced) is provided to drain the accumulated water when the sub pump 2 is stopped.
該滞留水排水機構は、第1図に示すように、主ポンプ1
及び副ポンプ2の給水管5における下流側に流量計6が
設けられている。一方、副ポンプ2の吐出し側及び前記
給水管5間には供給弁8を有するバイパス管7が接続さ
れると共に、副ポンプ2には内部の水を外部に排出する
為排水弁9を有する排水管10が接続され、かつ供給弁
8及び排水弁9を開閉させる開閉制御部11が制御装置
4に設けられて、フラッシング手段を構成している。The accumulated water drainage mechanism includes a main pump 1 as shown in FIG.
A flow meter 6 is provided on the downstream side of the water supply pipe 5 of the sub pump 2. On the other hand, a bypass pipe 7 having a supply valve 8 is connected between the discharge side of the sub pump 2 and the water supply pipe 5, and the sub pump 2 has a drain valve 9 for discharging internal water to the outside. An opening/closing control unit 11 to which a drain pipe 10 is connected and which opens and closes the supply valve 8 and the drain valve 9 is provided in the control device 4, and constitutes a flushing means.
そして、主ポンプ1が吐出し流量−吐出し圧性能曲線A
上の点イを運転点として運転されているときに、使用水
量の増加によシ主ポンプ1の運転点が、前記曲線A上の
副ポンプ始動点Y方向に変動し、その始動点Yよシ前の
予め定められている排水開始点Xに位置すると、それに
伴なって変化した吐出し流量を前記流量計6が検出し、
該流量計6の検出によりフラッシング手段の開閉制御部
11が供給弁8.排水弁9を開き、主ポンプ1から吐出
された流量の一部がバイパス管7から副ポンプ2内に送
り込まれることによシ副ポンプ2内の滞留水を排出管1
0から排水するようにしている。Then, the main pump 1 has a discharge flow rate-discharge pressure performance curve A
When the main pump 1 is operated with point A above as the operating point, the operating point of the main pump 1 changes in the direction of the sub pump starting point Y on the curve A due to an increase in the amount of water used. When located at a predetermined drainage start point X, the flow meter 6 detects the discharge flow rate that has changed accordingly,
Detection by the flow meter 6 causes the opening/closing control section 11 of the flushing means to open the supply valve 8. When the drain valve 9 is opened, a portion of the flow discharged from the main pump 1 is sent into the sub pump 2 from the bypass pipe 7, thereby draining the accumulated water in the sub pump 2 into the drain pipe 1.
I am trying to drain water from 0.
前記曲線A上の排水開始点Xとしては、使用水量の増加
の程度にもよるが、滞留水排水機構の排水動作が副ポン
プ2の始動時には副ポンプ2内の滞留水を排水しつくす
程度であれば良い。The drainage start point X on the curve A is determined at a point where the drainage operation of the stagnant water drainage mechanism completely drains the stagnant water in the auxiliary pump 2 when the auxiliary pump 2 is started, although it depends on the degree of increase in the amount of water used. It's good to have.
次に実施例の給水装置の動作を述べる。Next, the operation of the water supply device of the embodiment will be described.
今、主ポンプ1が吐出し流量−吐出し圧性能曲線A上の
点イを運転点として運転されているとき、使用水量が増
加すると、主ポンプ1の運転点は前記曲線A上を副ポン
プ始動点Y方向に次第に変動する。Now, when the main pump 1 is operated with point A on the discharge flow rate-discharge pressure performance curve A as the operating point, if the amount of water used increases, the operating point of the main pump 1 will change on the curve A to the sub pump. The starting point gradually changes in the Y direction.
その場合、主ポンプlの運転点が前記曲線A上の始動点
Yよシ前の所望点Xに位置すると、滞留水排水機構の流
量計6が吐出し流量の変化からそれを検出する。そして
、流量計6の検出によシフラッシング手段の開閉制御部
11が供給弁8.排水弁9を開き、主ポンプlから吐出
された高圧流量の一部をバイパス管7を経て副ポンプ2
内に送り込むことによシ副ポンプ2の滞留水を排出管1
0から排水させることができる。In that case, when the operating point of the main pump I is located at a desired point X on the curve A before the starting point Y, the flow meter 6 of the accumulated water drainage mechanism detects this from a change in the discharge flow rate. Then, the opening/closing control section 11 of the sifting flushing means is activated by the detection by the flow meter 6 to control the supply valve 8. The drain valve 9 is opened and a portion of the high-pressure flow discharged from the main pump 1 is sent to the auxiliary pump 2 via the bypass pipe 7.
The accumulated water in the sub pump 2 is pumped into the drain pipe 1.
It can be drained from 0.
従って、主ポンプ1の運転点が副ポンプ2を始動させる
ような曲線A上の位置まで変動したとき、滞留水排水機
構が副ポンプ2内の滞留水を排水させることかできるの
で、第3図に示すように、滞留水の排水から副ポンプ2
の始動までの間の時間を従来例に比較すると、T2から
T1に短縮でき、極めて短時間にできる。しかも排水動
作が副ポンプ2の始動される略直前に行われるので、副
ポンプ2内の滞留水を清浄にできる。Therefore, when the operating point of the main pump 1 changes to a position on the curve A that starts the sub pump 2, the accumulated water drainage mechanism can drain the accumulated water in the sub pump 2, as shown in FIG. As shown in the figure, the secondary pump 2 is used to drain the accumulated water.
Compared to the conventional example, the time required until the engine starts can be shortened from T2 to T1, making it extremely short. Moreover, since the drainage operation is performed almost immediately before the sub pump 2 is started, the water stagnant in the sub pump 2 can be cleaned.
その結果、副ポンプ2が赤水化した滞留水を供給してし
まうと云うことがなく、清浄な水を常に供給でき、しか
も滞留水の排水頻度を徒らに多くすることが不要になシ
、それだけ排水量を節約できる。As a result, the auxiliary pump 2 does not supply red-colored stagnant water, and clean water can always be supplied, and there is no need to unnecessarily increase the frequency of draining stagnant water. That's how much waste water can be saved.
なお図示実施例では、滞留水排水機構の検出器として流
量計6を用いた例を示したが、可変速用の主ポンプ1の
運転点が変動すれば、吐出し圧が変動するので、吐出し
圧用の検出器で代用でき、またフラッシング手段として
は設置されたタンク内の高圧水を利用することも可能で
ある。In the illustrated embodiment, the flow meter 6 is used as a detector for the accumulated water drainage mechanism, but if the operating point of the variable speed main pump 1 changes, the discharge pressure will change. A pressure detector can be used instead, and high-pressure water in an installed tank can also be used as a flushing means.
従って、本発明においては図示実施例に限定されるもの
ではなく、要は所期の機能を有していれば良い。Therefore, the present invention is not limited to the illustrated embodiments, but only needs to have the desired function.
以上述べたように、本発明によれば、可変速用の主ポン
プと、該主ポンプの吐出し側にその主ポイプと平行に接
続される副ポンプと、主ポンプを吐出し流量−吐出し圧
性能曲線上の制御線との交点を運転点として運転制御さ
せ、かつ該主ポンプ 4の運転点が吐出し流に一吐出し
圧性能曲線上における制御線との交点からずれて副ポン
プ始動点に変動したとき、前記副ポンプを始動させて副
ポンプと主ポンプの双方を双方の吐出し流量−吐出し
1圧性能曲線上の制御線との交点を運転点として運転制
御させる制御手段と、副ポンプの停止時、副ポンプ内の
滞留水を排水させる滞留水排水機構とを備え、該滞留水
排水機構は、主ポンプの運転点が吐出し流量−吐出し圧
性能曲線上を副ポンプ始動点方向に変動したとき、該副
ポンプ始動点より若干前の予め定められた排水開始点に
達したことを検出する検出器と、該検出器の検出時、高
圧水を副ポンプ内に送り込んで副ポンプ内に予め滞留し
ている滞留水を排水させるフラッシング手段とを有して
構成したので、副ポンプ内の滞留水の排水から副ポンプ
が始動されるまでの間を極めて短かくでき、また副ポン
プ内の滞留水を確実に清浄にできる結果、清浄な水を常
に供給でき、しかも滞留水の排水に要する水を節約でき
る。As described above, according to the present invention, the main pump for variable speed, the sub pump connected to the discharge side of the main pump in parallel with the main pump, and the main pump discharge flow rate - discharge. The operation is controlled using the intersection with the control line on the pressure performance curve as the operating point, and the sub pump is started when the operating point of the main pump 4 deviates from the intersection with the control line on the discharge pressure performance curve. When the flow rate changes to a point, the sub-pump is started and both the sub-pump and the main pump are adjusted so that the discharge flow rate of both - the discharge flow rate.
A control means for controlling operation using an intersection point with a control line on a 1-pressure performance curve as an operating point, and a stagnant water drainage mechanism for draining stagnant water in the auxiliary pump when the auxiliary pump is stopped, the stagnant water drainage mechanism. indicates that when the operating point of the main pump fluctuates on the discharge flow rate-discharge pressure performance curve in the direction of the sub-pump starting point, a predetermined drainage start point, which is slightly before the sub-pump starting point, has been reached. The structure includes a detector for detection and a flushing means that sends high-pressure water into the sub-pump to drain the accumulated water that has previously accumulated in the sub-pump when the detector detects the detection, so that the water inside the sub-pump can be drained. This makes it possible to extremely shorten the time between the drainage of accumulated water and the start of the sub-pump, and the ability to reliably clean the accumulated water in the sub-pump. You can save water.
第1図は本発明の一実施例を示す配管図、第2図はポン
プの吐出し流量−吐出し圧性能曲線図、第3図は本発明
の実施例と従来例との比較説明図、第4図は副ポンプ内
の滞留水の色と時間との関係を示す説明図である。
1・・・可変速用の主ポンプ、2・・・副ポンプ、4・
・・制御装置、6・・・滞留水排水機構の検出器(流量
計)、7〜11・・・滞留水排水機構のフラッシング手
段、X・・・排水開始点、Y・・・副ポンプ始動点。
代理人 弁理士 秋 本 正 実
第1図
第2図
Di出し瘉f Q
第 31
第4図Fig. 1 is a piping diagram showing an embodiment of the present invention, Fig. 2 is a pump discharge flow rate-discharge pressure performance curve diagram, and Fig. 3 is a comparative explanatory diagram of the embodiment of the present invention and a conventional example. FIG. 4 is an explanatory diagram showing the relationship between the color of the water remaining in the sub-pump and time. 1... Main pump for variable speed, 2... Sub pump, 4...
...Control device, 6...Detector (flow meter) of accumulated water drainage mechanism, 7-11...Flushing means of accumulated water drainage mechanism, X...Drainage start point, Y...Sub pump start point. Agent Patent Attorney Tadashi Akimoto Figure 1 Figure 2 Diagram Q 31 Figure 4
Claims (1)
の主ポンプと平行に接続される副ポンプと、主ポンプを
吐出し流量−吐出し圧性能曲線上の制御線との交点を運
転点として運転制御させ、かつ該主ポンプの運転点が吐
出し流量−吐出し圧性能曲線上における制御線との交点
からずれて副ポンプ始動点に変動したとき、前記副ポン
プを始動させて副ポンプと主ポンプの双方を双方の吐出
し流量−吐出し圧性能曲線上の制御線との交点を運転点
として運転制御させる制御手段と、副ポンプの停止時、
副ポンプ内の滞留水を排水させる滞留水排水機構とを備
え、該滞留水排水機構は、主ポンプの運転点が吐出し流
量−吐出し圧性能曲線上を副ポンプ始動点方向に変動し
たとき、該副ポンプ始動点より若干前の予め定められた
排水開始点に達したことを検出する検出器と、該検出器
の検出時、高圧水を副ポンプ内に送り込んで副ポンプ内
に予め滞留している滞留水を排水させるフラッシング手
段とを有していることを特徴とする給水装置。 2、特許請求の範囲第1項において、前記検出器は、主
ポンプの吐出し圧と吐出し流量との何れか一方を検出す
ることを特徴とする給水装置。 3、特許請求の範囲第1項において、前記フラッシング
手段は、検出器の検出時、主ポンプからの吐出し流量の
一部を副ポンプ内に送り込んで副ポンプ内に予め滞留し
ている滞留水を排水させることを特徴とする給水装置。[Claims] 1. A main pump for variable speed, a sub pump connected in parallel to the main pump on the discharge side of the main pump, and a discharge flow rate-discharge pressure performance curve of the main pump. The operation is controlled using the intersection with the control line as the operating point, and when the operating point of the main pump deviates from the intersection with the control line on the discharge flow rate-discharge pressure performance curve and changes to the sub pump starting point, a control means for starting the sub-pump and controlling the operation of both the sub-pump and the main pump using an intersection point with a control line on both discharge flow rate-discharge pressure performance curves as an operating point; and when the sub-pump is stopped;
A stagnant water drainage mechanism that drains stagnant water in the sub pump is provided, and the stagnant water drainage mechanism is configured to operate when the operating point of the main pump fluctuates in the direction of the sub pump starting point on the discharge flow rate-discharge pressure performance curve. , a detector that detects when a predetermined drainage start point has been reached, which is slightly before the sub-pump starting point; and when the detector detects, high-pressure water is sent into the sub-pump and stored in the sub-pump in advance. A water supply device characterized by having a flushing means for draining accumulated water. 2. The water supply device according to claim 1, wherein the detector detects either the discharge pressure or the discharge flow rate of the main pump. 3. In claim 1, the flushing means sends a part of the flow rate discharged from the main pump into the sub-pump at the time of detection by the detector, and removes the stagnant water previously accumulated in the sub-pump. A water supply device characterized by draining water.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24315286A JPS63100297A (en) | 1986-10-15 | 1986-10-15 | Water supply facility |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24315286A JPS63100297A (en) | 1986-10-15 | 1986-10-15 | Water supply facility |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63100297A true JPS63100297A (en) | 1988-05-02 |
Family
ID=17099572
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24315286A Pending JPS63100297A (en) | 1986-10-15 | 1986-10-15 | Water supply facility |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63100297A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0421605U (en) * | 1990-06-15 | 1992-02-24 | ||
JP2005152199A (en) * | 2003-11-25 | 2005-06-16 | Matsushita Electric Ind Co Ltd | Sauna equipment |
-
1986
- 1986-10-15 JP JP24315286A patent/JPS63100297A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0421605U (en) * | 1990-06-15 | 1992-02-24 | ||
JP2005152199A (en) * | 2003-11-25 | 2005-06-16 | Matsushita Electric Ind Co Ltd | Sauna equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0652406B1 (en) | Method and apparatus for deaerating a liquid in a substantially closed liquid circulation system | |
JPS63100297A (en) | Water supply facility | |
JP2797822B2 (en) | pump | |
JPH10231781A (en) | Pump operation control method in vacuum type sewer system | |
JPH0623756Y2 (en) | Vertical pump | |
JPS6145522Y2 (en) | ||
KR100488810B1 (en) | Auto drain system for draining polluted water and waste water in water purifier | |
JP2512778Y2 (en) | Full-speed standby operation pump | |
JPH0278791A (en) | pump station | |
JP2836659B2 (en) | Siphon type pump | |
JP2000199259A (en) | Vacuum type liquid collection system | |
JP2006250004A (en) | Collective pump device | |
JPH06147409A (en) | Water pump recirculation valve controller | |
SU1156017A1 (en) | Device for level control | |
JP3025922U (en) | Intermittent pressure type sewage discharge device | |
JP2000027786A (en) | Vertical pump | |
JP3690539B2 (en) | Transportation equipment for low fluidity liquid | |
JP2558812Y2 (en) | Vertical shaft pump | |
JPH0625680Y2 (en) | Device for preventing blockage of flow path in pump | |
JP3030726U (en) | Variable rotation speed pump unit for ships | |
JP2673741B2 (en) | Operation method of horizontal axis pump | |
JPS5834612B2 (en) | Water change method for rivers, dams, etc. | |
JP2662666B2 (en) | Operating method of vertical pump | |
JPS60145487A (en) | Min. flow-rate control for pump | |
JP2004162644A (en) | Precedence standby type vertical shaft pump |