JPS6296755A - Fuel injection controller for internal combustion engine - Google Patents
Fuel injection controller for internal combustion engineInfo
- Publication number
- JPS6296755A JPS6296755A JP23811385A JP23811385A JPS6296755A JP S6296755 A JPS6296755 A JP S6296755A JP 23811385 A JP23811385 A JP 23811385A JP 23811385 A JP23811385 A JP 23811385A JP S6296755 A JPS6296755 A JP S6296755A
- Authority
- JP
- Japan
- Prior art keywords
- sensor
- air
- fuel ratio
- fuel injection
- fuel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 96
- 238000002347 injection Methods 0.000 title claims abstract description 28
- 239000007924 injection Substances 0.000 title claims abstract description 28
- 238000002485 combustion reaction Methods 0.000 title claims description 15
- 230000002159 abnormal effect Effects 0.000 claims abstract description 13
- 230000005856 abnormality Effects 0.000 abstract description 2
- 238000000034 method Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 4
- 239000000498 cooling water Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000002826 coolant Substances 0.000 description 2
- 238000001514 detection method Methods 0.000 description 1
Landscapes
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は内燃機関の燃料噴射制御装置に関し、特にそ
の空燃比フィードバック燃料補正方法に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fuel injection control device for an internal combustion engine, and particularly to an air-fuel ratio feedback fuel correction method thereof.
従来この種の内燃機関燃料噴射制御装置としては例えば
特開昭60−69241号に示すものがあり、これは第
3図に示すごとく、エンジン1の吸気管2に備えられた
燃料噴射弁3の駆動ノクルスを、その時点のエンジン運
転状態に応じて制御するものである。即ち、エンジンの
吸入空気量センサ(図示せず)出力等によってエンジン
運転状態を検出し、該検出結果をコントロールユニット
4に入力して基本燃料噴射量を算出し、さらに排気管5
の内部の残留O3濃度を空燃比センサ6を用いて検出し
、空燃比フィードバック燃料補正量を演算して、該燃料
補正量を前記基本燃料噴射量に加算した結果に応じて燃
料噴射弁を駆動し、A/B−フィードバック制御をして
いた。Conventionally, this type of internal combustion engine fuel injection control device includes one shown in Japanese Patent Application Laid-Open No. 60-69241, which controls a fuel injection valve 3 provided in an intake pipe 2 of an engine 1, as shown in FIG. The drive noculus is controlled according to the engine operating state at that time. That is, the engine operating state is detected by the output of an engine intake air amount sensor (not shown), the detection result is input to the control unit 4 to calculate the basic fuel injection amount, and the exhaust pipe 5
detects the residual O3 concentration inside the air-fuel ratio sensor 6 using the air-fuel ratio sensor 6, calculates the air-fuel ratio feedback fuel correction amount, and drives the fuel injection valve according to the result of adding the fuel correction amount to the basic fuel injection amount. and was using A/B feedback control.
このように燃料供給量の算出をフントロールユニット4
で実行するが、その際空燃比センサ6の故障等による空
燃比フィードバック燃料補正量の異常な演算を防ぐため
以下の処理を実行する。先ずコントロールユニット4に
おいて、冷却水温センサ7によジエンジンが暖気状態で
あることを確認した後、図示していない回転数センサよ
シ求めたエンジン回転数が所定値以上になシかつ所定時
間が経過し、空燃比センサ6出力が排気ガス中へ濃度に
対応する信号を出力する時間経過した後で、たとえば・
ぐツー増量後(一般に〜争はリッチである)所定時間経
過している場合、空燃比センサ6出力が空燃比リーンを
示しているか否かを判断する。そしてここで空燃比がリ
ッチに制御されているにも拘らずリーンを示した時は、
空燃比センサが異常であると判断して空燃比フィードバ
ック燃料補正制御を禁止していた。In this way, the fuel supply amount is calculated by the hunt roll unit 4.
At this time, the following process is executed to prevent abnormal calculation of the air-fuel ratio feedback fuel correction amount due to a failure of the air-fuel ratio sensor 6 or the like. First, in the control unit 4, after confirming that the engine is warmed up using the cooling water temperature sensor 7, the engine rotation speed determined by the rotation speed sensor (not shown) is determined not to exceed a predetermined value and for a predetermined period of time. After the air-fuel ratio sensor 6 outputs a signal corresponding to the concentration in the exhaust gas, for example,
If a predetermined period of time has elapsed since the fuel was increased (generally speaking, the fuel content is rich), it is determined whether the output of the air-fuel ratio sensor 6 indicates a lean air-fuel ratio. And here, when the air-fuel ratio shows lean even though it is controlled to be rich,
It was determined that the air-fuel ratio sensor was abnormal, and air-fuel ratio feedback fuel correction control was prohibited.
従来の内−燃機関燃料噴射制御装置は以上のように構成
されているので、誤って一度空燃比センサ6が異常と判
断されると空燃比フィードバック燃料補正が禁止された
ままの状態となシ、空燃比センサ6を新品と交換しない
限シ、排気ガス中有害ガス成分が多く排出される空燃比
設定のままエンジンが運転されるという問題点がめった
。Since the conventional internal combustion engine fuel injection control device is configured as described above, once the air-fuel ratio sensor 6 is mistakenly determined to be abnormal, the air-fuel ratio feedback fuel correction remains prohibited. However, unless the air-fuel ratio sensor 6 is replaced with a new one, a problem arises in that the engine is often operated at an air-fuel ratio setting that produces a large amount of harmful gas components in the exhaust gas.
この発明は、上記のような問題点を解消するためになさ
れたもので、不必要な空燃比センサの交換を防止するこ
とができるとともに、排気ガス中有害ガス成分が多量に
排出される空燃比設定のまま運転されることを防ぐこと
ができる内燃機関燃料噴射制御装置を得ることを目的と
する。This invention was made in order to solve the above-mentioned problems, and it is possible to prevent unnecessary replacement of the air-fuel ratio sensor, and also to reduce the air-fuel ratio at which a large amount of harmful gas components are emitted from the exhaust gas. An object of the present invention is to obtain an internal combustion engine fuel injection control device that can prevent the fuel injection control device from operating with the settings unchanged.
この発明に係る内燃機関燃料噴射制御装置は、排気ガス
中の残留0.濃度をリニアO,センサで検出して空燃比
フィードバックを行い、かつ演算手段によシリニアO,
センサが異常と判定された場合、所定の時間毎に機関の
負荷状態に基づいて算出された設定空燃比変化率とIJ
ニア0.センサ出力よシ求めた空燃比変化率とを比較
して、両者の差の値が所定範囲内にあればリニアO,セ
ンチが正常となったと判断して空燃比フィードバック燃
料補正制御を再実行するようにしたものである。The internal combustion engine fuel injection control device according to the present invention has zero residual amount in exhaust gas. The concentration is detected by a linear O sensor and air-fuel ratio feedback is performed, and the linear O,
If the sensor is determined to be abnormal, the set air-fuel ratio change rate and IJ calculated based on the engine load condition at predetermined intervals
Near 0. The sensor output is compared with the calculated air-fuel ratio change rate, and if the difference between the two is within a predetermined range, it is determined that the linear O and centimeters are normal, and the air-fuel ratio feedback fuel correction control is re-executed. This is how it was done.
この発明においては、リニアO,センサが異常であると
判定され、リニアO!センサに応じた燃料補正が禁止さ
れても、所定時間毎にリニア0.センサ出力信号の変化
率が正常であるかを判定するため、これが正常と判定さ
れればリニアO,センサによる空燃比フィードバック燃
料補正を再実行することが可能となる。In this invention, it is determined that the linear O sensor is abnormal, and the linear O! Even if fuel correction according to the sensor is prohibited, linear 0. Since it is determined whether the rate of change of the sensor output signal is normal, if it is determined that the rate of change of the sensor output signal is normal, it becomes possible to re-execute the air-fuel ratio feedback fuel correction using the linear O sensor.
第1図はこの発明の一実施例による内燃機関燃料噴射制
御装置の構成を示す図である。図において、10は吸気
管内圧力を検出する負圧センサ、11はエンジン回転数
を検出する回転数センサ、6aは排気ガス中の残留0.
濃度を検出するリニア0、セン?−t’6ル。また、9
はコントロールユニット4内の演算手段で、この演算手
段9は図示省略したアナログ・デジタル変換器、マイク
ロコンピュータ等で構成されてお夛、リニアO,センサ
6aの出力信号以外に、負圧センサ10.回転数センサ
11.冷却水温センナ7等の信号が入力され、それぞれ
の信号に基づいてその時点のエンジン運転状態に適した
基本燃料供給量を算出すると共に、リニアO,センサが
故障等の異常かまたは異常状態から正常になったかを判
定演算しつつ空燃比フィードバック燃料補正量を算出し
、該空燃比フィードバック燃料補正量と前記基本燃料供
給量を加算した結果に対応した駆動/ぐルスで燃料噴射
弁3の制御を行うものである。FIG. 1 is a diagram showing the configuration of an internal combustion engine fuel injection control device according to an embodiment of the present invention. In the figure, 10 is a negative pressure sensor that detects the pressure inside the intake pipe, 11 is a rotational speed sensor that detects the engine rotational speed, and 6a is a residual 0.0% residual in the exhaust gas.
Linear 0 to detect concentration, sen? -t'6 le. Also, 9
is a calculation means in the control unit 4, and this calculation means 9 is composed of an analog/digital converter, a microcomputer, etc. (not shown), and in addition to the output signals of the linear sensor 6a, the negative pressure sensor 10. Rotation speed sensor 11. Signals from the cooling water temperature sensor 7, etc. are input, and based on each signal, the basic fuel supply amount suitable for the engine operating state at that time is calculated, and the linear O sensor is determined to be abnormal due to failure, etc., or to be normal from an abnormal state. The air-fuel ratio feedback fuel correction amount is calculated while determining and calculating whether the air-fuel ratio feedback fuel correction amount and the basic fuel supply amount are added, and the fuel injection valve 3 is controlled with a drive/force corresponding to the result of adding the air-fuel ratio feedback fuel correction amount and the basic fuel supply amount. It is something to do.
第2図は演算手段9でのIJ ニア02センサ6a故障
判定後の演算順序を示すフローチャートであシ、以下こ
の第2図を用いてその演算手順を詳細に説明する。リニ
アO,センサ6aが異常だと判定した場合所定時間毎に
メインプログラム処理に対してステップ100において
割込み処理を行う。先ずステップ101において冷却水
温センサ7の出力より、冷却水温が所定値以上であジエ
ンジンが暖気状態であるかを判断する。エンジンが暖気
状態であると判断されるとステップ102に進む。ステ
ップ102において、エンジン回転数が一定であり、か
つエンジン回転数が一定となった後所定時間T sec
経過したかを判定し、条件が満されればステップ103
に進む。ステップ103において、演算手段9内での設
定空燃比の変化率Xを算出する。そしてステップ104
において異常と判定されている+7 ニア02センサ6
&の出力信号から排気ガス中のate度変比変化率ち空
燃比変化率yを算出する。次にステップ105で、上記
空燃比変化率Xとyとの差をと9、その値x−yの絶対
値が所定値以下であれば、ステップ106において、I
J ニア02セン?6aが正常状態に復帰したと判定し
、リニアO,センサ出カフィードバック空燃比燃料制御
再実行を決めて、メイングロダラム処理ニもどる。また
ステップ101,102,105で条件が満足されなけ
れば、リニア0.センサフィードバックを禁止したまま
割込み処理を終了する。FIG. 2 is a flowchart showing the calculation sequence after the IJ near 02 sensor 6a is determined to be faulty in the calculation means 9.The calculation procedure will be explained in detail below using FIG. If it is determined that the linear O sensor 6a is abnormal, interrupt processing is performed at step 100 for the main program processing at predetermined time intervals. First, in step 101, it is determined from the output of the coolant temperature sensor 7 whether the coolant temperature is above a predetermined value and the engine is warmed up. If it is determined that the engine is warmed up, the process proceeds to step 102. In step 102, the engine speed is constant, and a predetermined time T sec after the engine speed becomes constant.
Determine whether the elapsed time has elapsed, and if the condition is met, step 103
Proceed to. In step 103, the rate of change X of the set air-fuel ratio within the calculation means 9 is calculated. and step 104
+7 near 02 sensor 6 determined to be abnormal in
The rate of change in the ate ratio in the exhaust gas, that is, the rate of change in the air-fuel ratio y, is calculated from the output signal of &. Next, in step 105, the difference between the air-fuel ratio change rates X and y is calculated by 9, and if the absolute value of the value
J Near 02sen? It is determined that 6a has returned to the normal state, and it is decided to re-execute the linear O and sensor output feedback air-fuel ratio fuel control, and the process returns to the main grodrum processing. Furthermore, if the conditions are not satisfied in steps 101, 102, and 105, the linear 0. Ends interrupt processing with sensor feedback disabled.
さらにステップ105において空燃比変化率の差X−7
を算出する際、リニア0.センサ6aによって空燃比が
検出されるに要する時間Δtがある場合、これを考慮し
て時刻tにおける処理をx(t−ΔL)−y(t)とし
て演算を行う。Furthermore, in step 105, the difference in air-fuel ratio change rate X-7
When calculating linear 0. If there is a time Δt required for the air-fuel ratio to be detected by the sensor 6a, the process at time t is calculated as x(t-ΔL)-y(t) in consideration of this.
なお、上記実施例では、ステップ102においてエンジ
ン回転数が一定であることを条件としたが、エンジン回
転数の代υにブースト圧力を条件パラメータとしても上
記実施例と同様の効果を奏する。また上記実施例では負
圧センサ10の出力に基づいて基本燃料供給量を算出し
たが、これは吸気管内の吸入空気量を検出する吸入空気
量センサの出力であっても良い。In the above embodiment, the condition is that the engine speed is constant in step 102, but the same effect as in the above embodiment can be obtained even if the boost pressure is used as a condition parameter in place of the engine speed υ. Further, in the above embodiment, the basic fuel supply amount is calculated based on the output of the negative pressure sensor 10, but this may be the output of an intake air amount sensor that detects the amount of intake air in the intake pipe.
以上のようにこの発明によれば、リニアO,センサが異
常と判定された後もリニア0.センサが正常状態に復帰
しているかどうかを、設定空燃比変化率とlJニアO,
センサ出力よシ求め九空燃比変化率とを比較して処理を
実行するよう構成したので、リニア02センサ異常判定
後も空燃比フィードバックを再実行することができ、リ
ニアO2センサの異常判定九対してフレキシブルな対応
が行える制御装置の実現が可能となシ、空燃比フィード
バック制御が禁止されたままで有害ガス排出量の多い空
燃比の状態で運転されてしまうこともなく、空燃比制御
性能が向上し、しかも運転フィーリングが良好であると
いう効果がある。As described above, according to the present invention, even after the linear O sensor is determined to be abnormal, the linear O. Check whether the sensor has returned to normal condition by checking the set air-fuel ratio change rate and lJ near O,
Since the configuration is configured to execute the process by comparing the sensor output with the calculated air-fuel ratio change rate, the air-fuel ratio feedback can be re-executed even after the linear O2 sensor abnormality determination. This makes it possible to create a control device that can respond flexibly to the situation, and the air-fuel ratio control performance is improved because the air-fuel ratio feedback control is not prohibited and the vehicle is not operated at an air-fuel ratio that produces a large amount of harmful gas emissions. Moreover, it has the effect of providing a good driving feeling.
第1図はこの発明の一実施例による内燃機関燃料噴射制
御装置の構成を示すブロック図、第2図は同内燃機関燃
料噴射制御装置の動作を示すフローチャート、第3図は
従来の内燃機関燃料噴射制御装置の構成を示す図である
。
3−ffi8ff射弁、4・・・コントロールユニット
、6&・・・リニアO,センサ、7・・・冷却水温セン
サ、9・・・演算手段、10・・・負圧センサ、11・
・・回転数センサ。
なお、図中同一符号は同一または相当部分を示す。FIG. 1 is a block diagram showing the configuration of an internal combustion engine fuel injection control device according to an embodiment of the present invention, FIG. 2 is a flow chart showing the operation of the internal combustion engine fuel injection control device, and FIG. 3 is a conventional internal combustion engine fuel injection control device. It is a diagram showing the configuration of an injection control device. 3-ffi8ff injection valve, 4... Control unit, 6&... Linear O, sensor, 7... Cooling water temperature sensor, 9... Calculating means, 10... Negative pressure sensor, 11...
...Rotation speed sensor. Note that the same reference numerals in the figures indicate the same or corresponding parts.
Claims (3)
し燃料噴射弁を制御する内燃機関燃料噴射制御装置であ
つて、排気ガス中のO_2濃度に比例した信号を出力す
るリニアO_2センサと、このリニアO_2センサが異
常と判定された場合該リニアO_2センサ出力に基づい
た空燃比フィードバック燃料補正制御を停止し、かつ前
記リニアO_2センサが故障と判定された後所定時間毎
に負荷状態に基づいて演算された空燃比変化率と該リニ
アO_2センサの出力より求めた空燃比変化率を比較し
、両者の値の差が所定範囲内にあればリニアO_2セン
サが正常であると判断して空燃比フィードバック燃料補
正による前記燃料噴射弁の制御を再実行させる演算手段
とを備えたことを特徴とする内燃機関燃料噴射制御装置
。(1) An internal combustion engine fuel injection control device that calculates the fuel injection amount based on the load condition of the internal combustion engine and controls the fuel injection valve, and includes a linear O_2 sensor that outputs a signal proportional to the O_2 concentration in exhaust gas. If this linear O_2 sensor is determined to be abnormal, the air-fuel ratio feedback fuel correction control based on the linear O_2 sensor output is stopped, and after the linear O_2 sensor is determined to be malfunctioning, the air-fuel ratio feedback fuel correction control is stopped based on the load condition at predetermined intervals. The air-fuel ratio change rate calculated by An internal combustion engine fuel injection control device comprising: arithmetic means for re-executing control of the fuel injection valve by fuel ratio feedback fuel correction.
を制御することを特徴とする特許請求の範囲第1項記載
の内燃機関燃料噴射制御装置。(2) The internal combustion engine fuel injection control device according to claim 1, wherein the fuel injection amount is controlled based on the output of the intake pipe negative pressure sensor.
制御することを特徴とする特許請求の範囲第1項記載の
内燃機関燃料噴射制御装置。(3) The internal combustion engine fuel injection control device according to claim 1, wherein the fuel injection amount is controlled based on the output of the intake air amount sensor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23811385A JPS6296755A (en) | 1985-10-22 | 1985-10-22 | Fuel injection controller for internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23811385A JPS6296755A (en) | 1985-10-22 | 1985-10-22 | Fuel injection controller for internal combustion engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6296755A true JPS6296755A (en) | 1987-05-06 |
Family
ID=17025366
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23811385A Pending JPS6296755A (en) | 1985-10-22 | 1985-10-22 | Fuel injection controller for internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6296755A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1992017696A1 (en) * | 1991-03-28 | 1992-10-15 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | Controller of internal combustion engine |
-
1985
- 1985-10-22 JP JP23811385A patent/JPS6296755A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1992017696A1 (en) * | 1991-03-28 | 1992-10-15 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | Controller of internal combustion engine |
US5329914A (en) * | 1991-03-28 | 1994-07-19 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | Control device for internal combustion engine |
EP0531544B1 (en) * | 1991-03-28 | 1995-03-15 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | Controller of internal combustion engine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR960023652A (en) | Exhaust controller of internal combustion engine | |
JPH0734934A (en) | Air-fuel ratio controller of internal combustion engine | |
JP3855877B2 (en) | Deterioration detection device for air-fuel ratio detection device | |
JPH04116241A (en) | Performance monitor of hc sensor in internal combustion engine | |
JPH08284721A (en) | Method and equipment for controlling output from internal combustion engine | |
JP5112382B2 (en) | Oxygen sensor diagnostic device for internal combustion engine | |
JPS6296755A (en) | Fuel injection controller for internal combustion engine | |
JPS62240446A (en) | Air-fuel ratio control device for lean burn engine | |
JPH05163992A (en) | Fail safe device for mixed fuel supply device | |
JPS63143362A (en) | Anomaly detecting device for introduction of secondary air | |
JPH04318250A (en) | Self-diagnostic device in fuel supplier for internal combustion engine | |
JP3264234B2 (en) | Catalyst deterioration detection device for internal combustion engine | |
JPH07103831B2 (en) | Exhaust gas recirculation control device | |
JPS61200348A (en) | Air-fuel ratio control system | |
JPH051624A (en) | Fault diagnosis device for exhaust gas circulation control device | |
JPS62170761A (en) | Exhaust gas recirculating device for engine | |
JPH0777090A (en) | Air-fuel ratio control device with larning function for internal combustion engine | |
JPH06241093A (en) | Self-diagnosing device of engine | |
JPH06288265A (en) | Air-fuel ratio control method and device for gas engine | |
JPH10159640A (en) | Diagnostic device for abnormality of air-fuel ratio sensor | |
JPH0228700B2 (en) | ||
JP2681566B2 (en) | Self-diagnosis device in fuel supply control device for internal combustion engine | |
JPH0460136A (en) | Study control device of engine | |
JPH0868362A (en) | Trouble diagnostic device for exhaust gas reflux device for internal combustion engine | |
JPH04269363A (en) | Failure detecting device for exhaust gas recirculation control device |