JPS6295711A - Composite thin film magnetic head and its reproducing drive method - Google Patents
Composite thin film magnetic head and its reproducing drive methodInfo
- Publication number
- JPS6295711A JPS6295711A JP23576485A JP23576485A JPS6295711A JP S6295711 A JPS6295711 A JP S6295711A JP 23576485 A JP23576485 A JP 23576485A JP 23576485 A JP23576485 A JP 23576485A JP S6295711 A JPS6295711 A JP S6295711A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- magnetoresistive element
- terminal
- magnetic head
- film coil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/33—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
- G11B5/39—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
- G11B5/3903—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
- G11B5/3967—Composite structural arrangements of transducers, e.g. inductive write and magnetoresistive read
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/02—Recording, reproducing, or erasing methods; Read, write or erase circuits therefor
Landscapes
- Magnetic Heads (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Recording Or Reproducing By Magnetic Means (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は、低雑音で犬き々再生出力電圧が得られ、端
子数が少々い薄膜インダクティプヘッドと磁気抵抗効果
型ヘッドの複合薄膜磁気ヘッドに関するものである。[Detailed Description of the Invention] (Industrial Application Field) This invention is a composite thin-film magnetic head with a thin-film inductive head and a magnetoresistive head with a small number of terminals, which can obtain a high reproduction output voltage with low noise. It is related to the head.
(従来の技術)
磁気ファイル装置の高密度化、小形化のため、磁気抵抗
効果型ヘッド(以下MRヘッドと呼ぶ)が脚光を浴びて
いる。MRヘッドは電流の方向と磁化の方向のなす角度
により抵抗値が変化するMR素子を用い、信号磁界の変
化を抵抗変化として取り出すヘッドである。そのため、
センス′遁流と抵抗変化の積となる再生出力電圧が媒体
・ヘッドの相対速度に依存せず、また、バイアスレベル
を適切に設定すれば、センス電流に比例した大きな再生
出力電圧を得ることができる。(Prior Art) Magnetoresistive heads (hereinafter referred to as MR heads) have been in the spotlight in order to increase the density and reduce the size of magnetic file devices. An MR head uses an MR element whose resistance value changes depending on the angle formed between the direction of current and the direction of magnetization, and extracts changes in a signal magnetic field as changes in resistance. Therefore,
The reproduction output voltage, which is the product of the sense current and the resistance change, does not depend on the relative speed of the medium and head, and if the bias level is set appropriately, it is possible to obtain a large reproduction output voltage proportional to the sense current. can.
MRヘッドは再生専用ヘッドであるため、記録用として
インダクティブ型薄膜ヘッドを用い、記録・再生ヘッド
を一体化した複合薄膜磁気ヘッドの検討が行なわれてい
る。従来は、記録・再生の機能全イyダクティプ型ヘッ
ドとMRヘッドで分担させていた。すなわち、インダク
ティブ型ヘッドは記録のみに用いられ、再生時KFiM
Rヘッドからの出力のみをウリ出していた。Since the MR head is a read-only head, a composite thin-film magnetic head that uses an inductive thin-film head for recording and integrates a recording and reproducing head is being studied. Conventionally, all recording and reproducing functions were shared between the dual-type head and the MR head. In other words, the inductive head is used only for recording, and the KFiM head is used only for recording.
Only the output from the R head was being produced.
(発明が解決しようとする問題点)
MRヘッドでは、種々の雑音を低減するために、3端子
構成をとることが望ましい。なぜなら、MR累子の温度
変化に伴なう抵抗変化が、雑音として再生出力に重畳す
ることを防ぐためKは、2等分し′fcMR素子からそ
れぞれ逆相の再生出力が得られるようにバイアスレベル
全設定し、2つの再生出力全差動増幅する必要がある。(Problems to be Solved by the Invention) It is desirable for the MR head to have a three-terminal configuration in order to reduce various noises. This is because, in order to prevent resistance changes due to temperature changes in the MR element from being superimposed on the reproduced output as noise, K is divided into two equal parts and biased so that the reproduced outputs of opposite phases are obtained from each of the MR elements. It is necessary to set all levels and fully differentially amplify the two playback outputs.
また、MRヘッドでは、センス電流全供給する必要があ
り、MR素子の両端に直流電圧が発生する定め、2端子
では再生出力を平衝した信号線で取り出すことが難しく
、外来雑音の影響を取り除くためにも、3端子構成とし
て、平衝信号線で再生出力10り出す必要がある。In addition, in the MR head, it is necessary to supply the entire sense current, which generates a DC voltage across the MR element, and with two terminals, it is difficult to extract the reproduced output using balanced signal lines, which eliminates the influence of external noise. For this reason, it is necessary to use a three-terminal configuration and output 10 reproduction outputs using balanced signal lines.
しかるに、MRへラドが3端子構成になると、記録用イ
ンダクティプヘッドと合わせ友端子数は、1端子全集通
化しても4端子てなる。このように端子数が増加すると
、磁気ヘッドと電気回路を接続するケーブル数、接点数
が増加し、信頼性低下の原因と々す、特に、マルチトラ
ック薄膜磁気ヘッドの場合には、ケーブル数の増加は実
装上非常に太き々問題となる。However, when the MR head has a three-terminal configuration, the number of terminals including the recording inductive tip head becomes four terminals even if one terminal is fully integrated. As the number of terminals increases in this way, the number of cables and contacts that connect the magnetic head and the electrical circuit increases, which may cause a decrease in reliability.Especially in the case of a multi-track thin-film magnetic head, the number of cables increases. This increase is a serious problem in implementation.
本発明の目的は、端子数を3個に低減しfc複合型薄膜
磁気ヘッドの構成と、その駆動方法を提供することにあ
る。An object of the present invention is to reduce the number of terminals to three and provide a structure of an FC composite thin film magnetic head and a method for driving the same.
(問題点を解決する友めの手段)
この発明の要旨とするところは、それぞれ2端子を有す
るスパイラル状の薄膜コイルとMR素子が上・下の軟磁
性層で挾みこまれ、MR素子を挾む部分の上・下の軟磁
性層の間隔がギャップとなるような構造の複合型薄膜磁
気ヘッドで、薄膜コイルとMR素子のそれぞれ片方の端
子が共通であリ、薄膜コイルとMR素子の抵抗をほぼ等
しくした複合型薄膜磁気ヘッドである。(Friendly Means for Solving Problems) The gist of the present invention is that a spiral thin film coil each having two terminals and an MR element are sandwiched between upper and lower soft magnetic layers, and the MR element is sandwiched between upper and lower soft magnetic layers. This is a composite thin-film magnetic head with a structure in which a gap is formed between the upper and lower soft magnetic layers of the thin-film coil and the MR element. This is a composite thin-film magnetic head that has approximately the same values.
この複合型薄膜磁気ヘッドを再生時に駆動する方法とし
て、薄膜コイルとMR素子の共通の端子を接地し、それ
ぞれの他方の端子から等しく定電流を供給するともに、
定電流を与えた2つの端子間に発生する電圧を差動増幅
する方法、薄膜コイルとM’R素子の共通の端子を接地
し、それぞれ他方の端子に等しい抵抗器を介して定電圧
を供給するとともに抵抗器を接続した端子間に発生する
電圧を差動増幅する方法、および、薄膜コイルとMR素
子の共通の端子を接地し、薄膜コイルとMR素子がそれ
ぞれエミッタ負荷となるようか2つのベース接地トラン
ジスタ増幅器のコレクタ間に発生する電圧を差動増幅す
る方法がある。As a method of driving this composite thin-film magnetic head during reproduction, the common terminal of the thin-film coil and the MR element is grounded, and an equal constant current is supplied from the other terminal of each.
A method of differentially amplifying the voltage generated between two terminals to which a constant current is applied.The common terminal of the thin film coil and the M'R element is grounded, and a constant voltage is supplied through a resistor equal to the other terminal. At the same time, there is a method for differentially amplifying the voltage generated between the terminals connected to the resistor, and a method for grounding the common terminal of the thin film coil and the MR element so that the thin film coil and the MR element each serve as an emitter load. There is a method of differentially amplifying the voltage generated between the collectors of a common-base transistor amplifier.
(作用)
薄膜コイルのりアクタンス分は非常に小さいのテ、薄膜
コイルとMR素子の共通の端子からそれぞれ他方の端子
を見こんだインピーダンスは、はぼ抵抗器のみと力る。(Function) Since the actance of the thin film coil is very small, the impedance when looking from the common terminal of the thin film coil and the MR element to the other terminal is only a resistor.
薄膜コイルとMR素子の抵抗が等しいので、再生出力自
体す出す2つの端子の接地端子に対するインピーダンス
も等しくカリ・、平衝系の信号線を用いることができる
。従って、外来雑音の影響を低減できる。Since the resistances of the thin film coil and the MR element are equal, the impedances of the two terminals for outputting the reproduced output with respect to the ground terminal are also equal, and it is possible to use a signal line of the balance type. Therefore, the influence of external noise can be reduced.
また、複合型薄膜ヘッドにおいては、微細パターン作製
技術により、薄膜コイルとMR素子は非常に近接して配
置される。従って、両者はほぼ同一温度に保たれるため
、抵抗の温度係数の差だけは雑音となるものの、2端子
のMR素子を単独で使用する場合に比較して、大幅に温
見jF変化による雑音を低減することができる。Furthermore, in a composite thin film head, the thin film coil and the MR element are arranged very close to each other using fine pattern fabrication technology. Therefore, since both are kept at almost the same temperature, only the difference in temperature coefficient of resistance becomes noise, but the noise due to changes in temperature jF is significantly lower than when using a two-terminal MR element alone. can be reduced.
このように、端子数が少なくとも、実質的に3端子のM
R素子と同等の機能が得られるだけで々く、さらに、M
R素子と薄膜インダクティプヘッドの再生出力を加算し
て、より太き彦出力金得ることもできる。In this way, the number of terminals is at least three, and M
Not only can you obtain the same function as the R element, but also the M element.
It is also possible to obtain a thicker output by adding the reproduction outputs of the R element and the thin film inductive head.
第2図(a) 、 (b)はそれぞれ媒体上て記録され
た磁化パターンに対する薄膜インダクテイプヘッドおよ
びMRヘッドの再生出力波形と、これに対応する記録媒
体を示しており、1は媒体、2は記録磁化、3はMRヘ
ッドが検出する磁束、4け薄膜インダクティブヘッドが
検出する磁束、5は薄膜インダクティブヘッドが検出す
る磁束4の微分波形である。第2図においてMRヘッド
はシールド付MRヘッドとして動作し、媒体1の記録磁
化2の遷移領域上で、媒体1から垂直方向の磁束3を検
出する。MRヘッドは磁束検出型ヘッドであり、再生出
力波形は、検出しt垂直方向の磁束3と同位相になる。FIGS. 2(a) and 2(b) respectively show the reproduction output waveforms of the thin film inductance head and the MR head for the magnetization pattern recorded on the medium, and the corresponding recording medium. 3 is the recording magnetization, 3 is the magnetic flux detected by the MR head, 4 is the magnetic flux detected by the thin film inductive head, and 5 is the differential waveform of the magnetic flux 4 detected by the thin film inductive head. In FIG. 2, the MR head operates as a shielded MR head, and detects perpendicular magnetic flux 3 from the medium 1 on the transition region of the recorded magnetization 2 of the medium 1. The MR head is a magnetic flux detection type head, and the reproduced output waveform has the same phase as the detected magnetic flux 3 in the perpendicular direction.
いっぽう、薄膜インダクテイプヘッドは、媒体1の記録
磁化2の中央で最大遷移領域上でOになる面内方向の磁
束4を検出する。薄膜インダクティプヘッドは磁束微分
型ヘッドであり、再生出力波形は、検出した面内方向の
磁束4の微分波形5に力る。従って、第2図において、
MRヘッドの再生出力波形は垂直方向の磁束3と相似形
になり、薄膜インダクテイブヘッドの再生出力波形は面
内方向の磁束4の微分波形5と相似形に々るので、MR
ヘッドと薄膜インダクテイブヘッドの再生出力波形のピ
ークは一致し、それぞれを単独で使用し几場合に比較し
て、より大き彦再生出力を得ることができる。On the other hand, the thin film inductor tape head detects an in-plane magnetic flux 4 which becomes O at the maximum transition region at the center of the recorded magnetization 2 of the medium 1. The thin film inductive head is a magnetic flux differential type head, and the reproduced output waveform is a differential waveform 5 of the detected magnetic flux 4 in the in-plane direction. Therefore, in Figure 2,
The reproduction output waveform of the MR head is similar to the vertical magnetic flux 3, and the reproduction output waveform of the thin film inductive head is similar to the differential waveform 5 of the in-plane magnetic flux 4.
The peaks of the reproduction output waveforms of the head and the thin-film inductive head coincide, and it is possible to obtain a larger reproduction output than when each is used alone.
ここで、薄膜インダクティプとMRヘッドの再生出力電
圧の絶対値まで一致させる必要はない。Here, it is not necessary to make the absolute value of the reproduction output voltage of the thin film inductor and the MR head coincide.
々ぜ々ら、薄膜インダクティブヘッドとMRヘッドの再
生出力を合成することにより、温度変化による雑音や外
来雑音を抑制することが目的であって、それぞれの再生
出力自体は加算するだけであるからである。第2図の場
合、MRヘフドの再生出力波形の極性と、薄膜インダク
ティプヘッドの再生出力波形の極性が逆に々るようにM
Rヘッドにバイアスを与え、差動増幅を行なうことによ
り、雑音のみが抑制され、信号対雑音比が良好々再生出
力を得ることができる。By combining the reproduction outputs of the thin-film inductive head and the MR head, the purpose is to suppress noise caused by temperature changes and external noise, and the reproduction outputs of each are simply added together. be. In the case of Fig. 2, the polarity of the reproduced output waveform of the MR head and the polarity of the reproduced output waveform of the thin film inductive head are opposite to each other.
By biasing the R head and performing differential amplification, only noise is suppressed, and a reproduced output with a good signal-to-noise ratio can be obtained.
(実施例)
第1図(a) 、 ’(b)は、本発明による複合薄膜
磁気ヘッドの平面図および断面図であり、6!′i上部
軟磁性層、7は下部軟磁性層、8は薄膜コイル、9はM
R素子、lOはMl(素子の端子、11は薄膜コイルの
端子、12は共通端子、13はギャップである。(Example) FIGS. 1(a) and 1(b) are a plan view and a cross-sectional view of a composite thin-film magnetic head according to the present invention, and 6! 'i upper soft magnetic layer, 7 lower soft magnetic layer, 8 thin film coil, 9 M
R element, IO is Ml (terminal of the element, 11 is a terminal of the thin film coil, 12 is a common terminal, 13 is a gap.
第1図に示した複合薄膜磁気ヘッドの作製手順を示す。The manufacturing procedure of the composite thin film magnetic head shown in FIG. 1 will be described.
まず、セラハック基板上にAl2O,下地層を10μm
スパッタし、精密研磨した。次に下部磁性層7と力るパ
ーマロイ膜を3μmスパッタし、フォトリソグラフィー
技術を用いて、第1図に示すようにパターン化しfco
下部軟磁性層7による段差を平坦化するtめに、感光性
有機膜をパターニング後、アニールし、次にパーマロイ
からなるMR膜400 X1Tiからなるシャント膜2
00大、パーマロイから力るソフトフィルムzsoit
−順次蒸着により成膜し、フォトリングラフイー技術を
用いてMR素子9を作製した。ま7t、Cuよりなる薄
膜コイル8t−フレームめっき法を用いて2tlnL成
膜し、同時に、MR素子9のリード線も作製した。薄膜
コイル8による段差の平坦化を感光性有機膜を用いて行
々った後、パーマロイからなる上部軟磁性層6をスパッ
タにより3μm成膜し、フォトリソグラフィー技術を用
いてパターン化し几。First, a 10 μm thick Al2O underlayer was placed on the Cerahac substrate.
Sputtered and precision polished. Next, a permalloy film that is similar to the lower magnetic layer 7 is sputtered to a thickness of 3 μm, and patterned using photolithography as shown in FIG.
In order to flatten the step caused by the lower soft magnetic layer 7, the photosensitive organic film is patterned and annealed, and then an MR film 400 made of permalloy and a shunt film 2 made of X1Ti are formed.
00 large, soft film zsoit made from permalloy
- Films were formed by sequential vapor deposition, and an MR element 9 was manufactured using photophosphorography technology. A 2tlnL film was formed using a thin film coil 8t made of Cu using a frame plating method, and at the same time, lead wires for the MR element 9 were also fabricated. After flattening the step caused by the thin film coil 8 using a photosensitive organic film, a 3 μm thick upper soft magnetic layer 6 made of permalloy was formed by sputtering and patterned using photolithography technology.
ギャップ13を規定するために、MR素子9を作製する
前後にAlt Os膜i 0.2μmスパッタした。In order to define the gap 13, a 0.2 μm AltOs film was sputtered before and after producing the MR element 9.
最後に、MR素子9、薄膜コイル8のそれぞれの端子1
0.11と共通端子12に電気めっき法によりCu f
25μmめっきし、保護層としてAl、O。Finally, each terminal 1 of the MR element 9 and thin film coil 8
0.11 and the common terminal 12 by electroplating.
25 μm plating with Al and O as protective layers.
を20μmスパッタして、トランスジー−サラ完成させ
た。作製したトランスジー−サは、切断、研磨し、浮上
ヘッドに形成した。was sputtered to a thickness of 20 μm to complete a trans-G-Sara. The manufactured transducer was cut, polished, and formed into a floating head.
このヘッド作製手順において、上部、下部の軟磁性層6
および7の材料は、パーマロイのほか、センダス) 、
CoZrNbアモルファス膜など飽和磁化と透磁率が
大きな軟磁性材料であればいずれも使用することができ
、製法としては、スパッタのほか、めっき、蒸着々ど全
周いることができろ。また、MR素子9として、本実施
例では、MR膜上にシャント膜、ソフトフィルムを積層
し、ソフトフィルムが磁化されることにより発生するバ
イアス磁界によりMR素子9にバイアスを与えているが
、MR膜上にシャント膜のみを積層したシャントバイア
スや、MR膜に斜めにAuストライプを配置したバーバ
ーポールバイアスを用いることもできる。In this head manufacturing procedure, the upper and lower soft magnetic layers 6
In addition to permalloy, the materials of 7 are permalloy, Sendas),
Any soft magnetic material with high saturation magnetization and magnetic permeability, such as a CoZrNb amorphous film, can be used, and manufacturing methods include sputtering, plating, and vapor deposition. Further, in this embodiment, as the MR element 9, a shunt film and a soft film are laminated on the MR film, and a bias magnetic field generated by magnetizing the soft film gives a bias to the MR element 9. It is also possible to use a shunt bias in which only a shunt film is laminated on the film, or a barber pole bias in which Au stripes are diagonally arranged on the MR film.
第1図に示した構造の複合型薄膜磁気ヘッドにおいて、
トラック幅15μm、薄膜コイル80巻数を8ターンと
し九時、MR素子9、薄膜コイル8の抵抗値はほぼ15
Ωと等しく々つた。トラック幅が異なりMR素子9の抵
抗値が変化した場合には、薄膜コイル8の膜厚を調節す
ることにより、両者の抵抗値を等しくすることができ迄
。In the composite thin film magnetic head having the structure shown in FIG.
When the track width is 15 μm and the number of turns of the thin film coil is 8 turns, the resistance value of the MR element 9 and the thin film coil 8 is approximately 15.
It was equal to Ω. If the track width differs and the resistance value of the MR element 9 changes, the resistance values of both can be made equal by adjusting the thickness of the thin film coil 8.
第3図は本発明の複合型薄膜磁気ヘッドを再生時に駆動
する方法の一例を示したブロック図である。MR素子9
と薄膜コイル8の共通端子を接地し、他方の端子にそれ
ぞれ電流源14および15を接続した。電流源14から
MR素子9に電流を供給するとMR素子9には、第1図
(b)において右向きのバイアス磁界が加わる。従って
、媒体からMR素子9に流入する方向の磁束に対して、
MR素子9の抵抗値は減少した。いっぽう、媒体の進行
方向に対して下部軟磁性層7 t−17−ディング側、
上部軟磁性層6をトレーリング側とすると、MR素子9
に媒体からの磁束が流入する前後で上部および下部軟磁
性層6,7を通過する磁束の向きは、第1図(b)にお
いて左まわりから右まわりに々る。FIG. 3 is a block diagram showing an example of a method for driving the composite thin film magnetic head of the present invention during reproduction. MR element 9
A common terminal of the thin film coil 8 and the thin film coil 8 was grounded, and current sources 14 and 15 were connected to the other terminal, respectively. When a current is supplied from the current source 14 to the MR element 9, a rightward bias magnetic field is applied to the MR element 9 in FIG. 1(b). Therefore, for the magnetic flux flowing in the direction from the medium to the MR element 9,
The resistance value of MR element 9 decreased. On the other hand, the lower soft magnetic layer 7 t-17-ding side with respect to the traveling direction of the medium,
If the upper soft magnetic layer 6 is on the trailing side, the MR element 9
The direction of the magnetic flux passing through the upper and lower soft magnetic layers 6 and 7 before and after the magnetic flux from the medium flows in is from counterclockwise to clockwise in FIG. 1(b).
従つて、端子11−12間には交流的に正の電圧が誘起
された。MR素子9には定電流が供給されているので、
抵抗の減少により、端子10−12間には交流的に負の
電圧が誘起されており、端子10−11間の電圧を差動
増幅すると、MRヘッドと薄膜インダクティブヘッドの
出力を加算することができた。このとき、MR素子9と
薄膜コイル8の抵抗値がほぼ等しいので、端子10−1
2間の直流電圧と端子11−12間の直流電圧はほぼ等
しくなり、直接増幅器16を接続しても、増幅器16の
出力が飽和することがなかった。また、MR素子9や薄
膜コイル8の温度変化に起因する雑音や外来雑音は同相
で加わる友め、大幅に抑制することができた。Therefore, an AC positive voltage was induced between the terminals 11 and 12. Since a constant current is supplied to the MR element 9,
Due to the decrease in resistance, a negative AC voltage is induced between terminals 10 and 12, and when the voltage between terminals 10 and 11 is differentially amplified, the outputs of the MR head and the thin film inductive head can be added. did it. At this time, since the resistance values of the MR element 9 and the thin film coil 8 are almost equal, the terminal 10-1
The DC voltage between the terminals 2 and 11 and the DC voltage between the terminals 11 and 12 were approximately equal, and even if the amplifier 16 was directly connected, the output of the amplifier 16 did not become saturated. In addition, noise caused by temperature changes in the MR element 9 and the thin film coil 8 and external noise are added in the same phase, and can be significantly suppressed.
第4図は、本発明の複合型薄膜磁気ヘッド全再生時に駆
動する他の例を示したブロック図である。FIG. 4 is a block diagram showing another example of driving the composite thin film magnetic head of the present invention during full reproduction.
MR素子9と薄膜コイル8の共通端子を接地し、他方の
端子にそれぞれ抵抗17および18i介して正の定電圧
を供給した。MR素子9を流れる電流により、第3図に
示した実施例と同一の方向にMR素子9のバイアスを与
え念。媒体から、MR素子9に流入する方向の磁束に対
し、MR素子9の抵抗値は減少し、抵抗17を流れる電
流が増加したので、第1図(b)における端子10−1
2間には交流的に負の電圧が誘起された。いっぽう、端
子11−12間には、第3図に示し友実流側と同様に交
流的に正の電圧が誘起され、増幅器16で差動増幅全行
かうことにより、信号対雑音比の良い再生出力金得るこ
とができた。A common terminal of the MR element 9 and the thin film coil 8 was grounded, and a constant positive voltage was supplied to the other terminal through resistors 17 and 18i, respectively. The current flowing through the MR element 9 biases the MR element 9 in the same direction as in the embodiment shown in FIG. With respect to the magnetic flux flowing into the MR element 9 from the medium, the resistance value of the MR element 9 decreases and the current flowing through the resistor 17 increases, so that the terminal 10-1 in FIG. 1(b)
A negative AC voltage was induced between the two. On the other hand, a positive AC voltage is induced between terminals 11 and 12, similar to the Tomomi flow side shown in FIG. I was able to get the play output money.
第5図は、本発明の複合型薄膜磁気ヘッドを再生時に駆
動する他の例を示したブロック図である。FIG. 5 is a block diagram showing another example of driving the composite thin film magnetic head of the present invention during reproduction.
MR素子9と薄膜コイル8はそれぞれベース接地トラン
ジスタ増幅器のエミッタ負荷として接続し、MR累子9
と薄膜コイル8の共通端子に負の電圧’に与t、)ラン
ジスタのコレクタには抵抗20゜21を介して正の電圧
を与え友。ま几トランジスタのベースは接地した。トラ
ンジスタのエミッタ電流により、第3図に示し友実流側
と同一の方向KMR素子9のバイアスを与えfc。媒体
からMR素子9!/c流入する方向の磁束に対し、MR
素子9の抵抗値は減少し、トランジスタのエミッタ電流
が増加して、抵抗20の電圧降下が増加した。いっぽう
、薄膜コイルの端子間には交流的に負の電圧が誘起され
、トランジスタのエミッタ電流が減少して、抵抗21の
電圧降下が減少した。従って、増幅器16で差動増幅全
行なうことにより、信号分が加算され、雑音分が抑圧さ
れた再生出力ををり出すことができ友。The MR element 9 and thin film coil 8 are each connected as an emitter load of a common base transistor amplifier, and the MR element 9 and the thin film coil 8 are connected as emitter loads of a common base transistor amplifier.
A negative voltage is applied to the common terminal of the thin-film coil 8 and a positive voltage is applied to the collector of the transistor through a resistor 20 and 21. The base of the transistor was grounded. The emitter current of the transistor biases the KMR element 9 in the same direction as the Tomomi flow side shown in FIG. 3, fc. MR element 9 from the medium! /c For the magnetic flux in the direction of inflow, MR
The resistance value of element 9 decreased, the emitter current of the transistor increased, and the voltage drop across resistor 20 increased. On the other hand, a negative AC voltage was induced between the terminals of the thin film coil, the emitter current of the transistor decreased, and the voltage drop across the resistor 21 decreased. Therefore, by performing differential amplification in the amplifier 16, the signal components are added and a reproduced output with suppressed noise components can be produced.
尚、記録時には、薄膜コイル8に記録電流を流すことに
より、ギャップ13から発する磁界で、通常の磁気ヘッ
ドと同様に記録動作が行なえることは言うまでもない。It goes without saying that during recording, by passing a recording current through the thin film coil 8, the magnetic field generated from the gap 13 can perform the recording operation in the same way as a normal magnetic head.
(発明の効果)
このように、本発明の複合型薄膜磁気ヘッドおよびその
駆動方法を用いることにより、端子数が少々い複合型薄
膜磁気ヘッドが得られるだけでなく、信号を加算し、雑
音が抑圧された再生出力ををり出すことができるので、
浮動型ヘッドだけで々く、フロッピーディスク用ヘッド
、あるいけテープ装置用ヘッドとして活用することによ
り、信頼性の高い高密度磁気2碌装置を得ることができ
る。(Effects of the Invention) As described above, by using the composite thin film magnetic head of the present invention and its driving method, it is possible to not only obtain a composite thin film magnetic head with a small number of terminals, but also to add signals and reduce noise. Since it is possible to bring out the suppressed playback output,
A highly reliable high-density magnetic dual device can be obtained by utilizing the floating head alone as a floppy disk head or a floating tape device head.
第1図(a) 、 (blは本発明による複合型薄膜磁
気ヘッドの一例を示す平面図および断面図、第2図(a
)。
(b)は媒体上に記録された磁化パターンに対する薄膜
インダクティブヘッドおよびMRヘッドの再生出力波形
図と磁気媒体を示す図、第3図、第4図。
第5図は本発明による複合型薄膜磁気ヘッドの駆動方法
を示すブロック図であり、1・・・媒体、2・・・記録
磁化、3・・・MRヘッドが検出する磁束、4・・・薄
膜インダクティブヘッドが検出する磁束、5・・・4の
微分波形、6・・・上部軟磁性層、7・・・下部軟礎性
層、8・・・薄膜コイル、9・・・MR素子、10・・
・MR素子の端子、11・・・薄膜コイルの端子、12
・・・共通端子、13・・・ギャップ、14.15・・
・電流源、16・・・増幅器、17,18,20.21
・・・抵抗、19・・・電圧源である。
代理人弁理士 1勺 原 晋
71−1 図
オ 2 図
1.媒体
2、記録磁化
3、MRベッドが検出する磁束
4、薄膜インダクテイブヘッドが検出する磁束5、磁束
4の微分波形
第3図
71−4 図FIGS. 1(a) and 1(b) are a plan view and a sectional view showing an example of a composite thin film magnetic head according to the present invention, and FIG.
). (b) is a diagram showing reproduction output waveforms of a thin film inductive head and an MR head and a magnetic medium with respect to a magnetization pattern recorded on the medium, FIGS. 3 and 4; FIG. FIG. 5 is a block diagram showing a method for driving a composite thin film magnetic head according to the present invention, in which 1...medium, 2...recording magnetization, 3...magnetic flux detected by the MR head, 4... Magnetic flux detected by the thin film inductive head, 5... 4 differential waveform, 6... Upper soft magnetic layer, 7... Lower soft magnetic layer, 8... Thin film coil, 9... MR element, 10...
・Terminal of MR element, 11...Terminal of thin film coil, 12
...Common terminal, 13...Gap, 14.15...
・Current source, 16...Amplifier, 17, 18, 20.21
...Resistance, 19... Voltage source. Representative Patent Attorney 1 Susumu Hara 71-1 Figure 2 Figure 1. Medium 2, recording magnetization 3, magnetic flux 4 detected by the MR bed, magnetic flux 5 detected by the thin film inductive head, differential waveform of magnetic flux 4 Fig. 3 71-4
Claims (4)
ルと磁気抵抗効果素子が上・下の軟磁性層で挾み込まれ
、前記磁気抵抗効果素子を挾む前記上・下の軟磁性層の
間隔が記録媒体に対してギャップとなる構造を有する複
合型薄膜磁気ヘッドにおいて、前記薄膜コイルの片方の
端子と前記磁気抵抗効果素子の片方の端子が共通であり
、前記薄膜コイルの抵抗と前記磁気抵抗効果素子の抵抗
がほぼ等しいことを特徴とする複合型薄膜磁気ヘッド。(1) A spiral thin-film coil and a magnetoresistive element each having two terminals are sandwiched between upper and lower soft magnetic layers, and an interval between the upper and lower soft magnetic layers sandwiching the magnetoresistive element. In a composite thin film magnetic head having a structure in which a gap is formed with respect to a recording medium, one terminal of the thin film coil and one terminal of the magnetoresistive element are common, and the resistance of the thin film coil and the magnetoresistive element are in common. A composite thin-film magnetic head characterized in that the resistance of the effect elements is almost equal.
ルと磁気抵抗効果素子が上・下の軟磁性層で挾み込まれ
、前記磁気抵抗効果素子を挾む前記上・下の軟磁性層の
間隔が記録媒体に対してギャップとなる構造を有する複
合型薄膜磁気ヘッドにおいて、前記薄膜コイルの片方の
端子と前記磁気抵抗効果素子の片方の端子が共通であり
、前記薄膜コイルの抵抗と前記磁気抵抗効果素子の抵抗
がほぼ等しいこと複合型薄膜磁気ヘッドの再生駆動方法
であって、再生時に前記共通端子を接地し、前記薄膜コ
イルと前記磁気抵抗効果素子のそれぞれの他方の端子か
ら等しい量の定電流を供給するとともに、定電流を与え
た2つの端子間に発生する電圧を差動増幅することを特
徴とする複合型薄膜磁気ヘッドの再生駆動方法。(2) A spiral thin film coil and a magnetoresistive element each having two terminals are sandwiched between upper and lower soft magnetic layers, and an interval between the upper and lower soft magnetic layers sandwiching the magnetoresistive element. In a composite thin film magnetic head having a structure in which a gap is formed with respect to a recording medium, one terminal of the thin film coil and one terminal of the magnetoresistive element are common, and the resistance of the thin film coil and the magnetoresistive element are in common. The resistances of the effect elements are approximately equal. A reproduction driving method for a composite thin film magnetic head, wherein the common terminal is grounded during reproduction, and an equal amount of constant is applied from the other terminal of each of the thin film coil and the magnetoresistive element. A reproduction driving method for a composite thin-film magnetic head, characterized in that a current is supplied and a voltage generated between two terminals to which a constant current is applied is differentially amplified.
ルと磁気抵抗効果素子が上・下の軟磁性層で挾み込まれ
、前記磁気抵抗効果素子を挾む前記上・下の軟磁性層の
間隔が記録媒体に対してギャップとなる構造を有する複
合型薄膜磁気ヘッドにおいて、前記薄膜コイルの片方の
端子と前記磁気抵抗効果素子の片方の端子が共通であり
、前記薄膜コイルの抵抗と前記磁気抵抗効果素子の抵抗
がほぼ等しいことを特徴とする複合型薄膜磁気ヘッドの
再生駆動方法であって、再生時に前記共通の端子を接地
し、前記薄膜コイルと前記磁気抵抗効果素子のそれぞれ
の他方の端子には、等しい大きさの抵抗器を介して定電
圧を供給するとともに、抵抗器を接続した端子間に発生
する電圧を差動増幅することを特徴とする複合薄膜磁気
ヘッド再生駆動方法。(3) A spiral thin film coil and a magnetoresistive element each having two terminals are sandwiched between upper and lower soft magnetic layers, and an interval between the upper and lower soft magnetic layers sandwiching the magnetoresistive element. In a composite thin film magnetic head having a structure in which a gap is formed with respect to a recording medium, one terminal of the thin film coil and one terminal of the magnetoresistive element are common, and the resistance of the thin film coil and the magnetoresistive element are in common. A reproduction driving method for a composite thin film magnetic head characterized in that the resistances of the effect elements are approximately equal, wherein the common terminal is grounded during reproduction, and the other terminal of each of the thin film coil and the magnetoresistive element is grounded. A composite thin film magnetic head reproducing method characterized in that a constant voltage is supplied through resistors of equal size and a voltage generated between terminals connected to the resistors is differentially amplified.
ルと磁気抵抗効果素子が上・下の軟磁性層で挾み込まれ
、前記磁気抵抗効果素子を挾む前記上・下の軟磁性層の
間隔が記録媒体に対してギャップとなる構造を有する複
合型薄膜磁気ヘッドにおいて、前記薄膜コイルの片方の
端子と前記磁気抵抗効果素子の片方の端子が共通であり
、前記薄膜コイルの抵抗と前記磁気抵抗効果素子の抵抗
がほぼ等しいことを特徴とする複合型薄膜磁気ヘッドの
再生駆動方法であって、再生時に前記共通の端子を接地
し、前記薄膜コイルと前記磁気抵抗効果素子がベース接
地トランジスタ増幅器のエミッタ負荷となる様、それぞ
れの2つの前記増幅器に接続するとともに、前記増幅器
のコレクタ間に発生する電圧を差動増幅することを特徴
とする複合薄膜磁気ヘッド再生駆動方法。(4) A spiral thin-film coil and a magnetoresistive element each having two terminals are sandwiched between upper and lower soft magnetic layers, and an interval between the upper and lower soft magnetic layers sandwiching the magnetoresistive element. In a composite thin film magnetic head having a structure in which a gap is formed with respect to a recording medium, one terminal of the thin film coil and one terminal of the magnetoresistive element are common, and the resistance of the thin film coil and the magnetoresistive element are in common. A reproduction driving method for a composite thin film magnetic head characterized in that the resistances of the effect elements are approximately equal, wherein the common terminal is grounded during reproduction, and the thin film coil and the magnetoresistive element are connected to a common base transistor amplifier. A composite thin film magnetic head reproducing method characterized in that the composite thin film magnetic head is connected to each of the two amplifiers so as to serve as an emitter load, and the voltage generated between the collectors of the amplifiers is differentially amplified.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23576485A JPS6295711A (en) | 1985-10-21 | 1985-10-21 | Composite thin film magnetic head and its reproducing drive method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23576485A JPS6295711A (en) | 1985-10-21 | 1985-10-21 | Composite thin film magnetic head and its reproducing drive method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6295711A true JPS6295711A (en) | 1987-05-02 |
Family
ID=16990886
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23576485A Pending JPS6295711A (en) | 1985-10-21 | 1985-10-21 | Composite thin film magnetic head and its reproducing drive method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6295711A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2645314A1 (en) * | 1989-03-29 | 1990-10-05 | Commissariat Energie Atomique | MAGNETIC HEAD WITH MAGNETORESISTANCE FOR LONGITUDINAL RECORDING AND METHOD OF MAKING SUCH A HEAD |
US5923502A (en) * | 1995-12-21 | 1999-07-13 | International Business Machines Corporation | Magneto-resistive head including a selectively placed low-reluctance path between shields |
-
1985
- 1985-10-21 JP JP23576485A patent/JPS6295711A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2645314A1 (en) * | 1989-03-29 | 1990-10-05 | Commissariat Energie Atomique | MAGNETIC HEAD WITH MAGNETORESISTANCE FOR LONGITUDINAL RECORDING AND METHOD OF MAKING SUCH A HEAD |
US5208716A (en) * | 1989-03-29 | 1993-05-04 | Commissariat A L'energie Atomique | Magnetoresistant magnetic head for longitudinal recording and process for producing such a head |
US5923502A (en) * | 1995-12-21 | 1999-07-13 | International Business Machines Corporation | Magneto-resistive head including a selectively placed low-reluctance path between shields |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5218497A (en) | Magnetic recording-reproducing apparatus and magnetoresistive head having two or more magnetoresistive films for use therewith | |
US6985338B2 (en) | Insulative in-stack hard bias for GMR sensor stabilization | |
JP3266552B2 (en) | MR read head, composite head including the same, and magnetic disk drive including the same | |
JP3177199B2 (en) | Magnetic tunnel junction device and magnetoresistive read head | |
JP4051271B2 (en) | Magnetic recording head and magnetic recording / reproducing apparatus | |
JP2741837B2 (en) | Thin film magnetoresistive head | |
US6259586B1 (en) | Magnetic tunnel junction sensor with AP-coupled free layer | |
US5406433A (en) | Dual magnetoresistive head for reproducing very narrow track width short wavelength data | |
CN1087194A (en) | Dual element magnetoresistive sensing head | |
JP3790218B2 (en) | Spin valve sensor and manufacturing method thereof | |
JPH09293211A (en) | Magnetoresistive head and magnetic recording device | |
US5309304A (en) | Magnetoresistive transducer conductor configuration | |
JP2000315305A (en) | Magnetic reproducing head, magnetic head assembly, magnetic disk driving device and manufacture of magnetic head assembly | |
KR100267411B1 (en) | Magnetoresistive head | |
JPS6295711A (en) | Composite thin film magnetic head and its reproducing drive method | |
EP0372420B1 (en) | Magnetic recording-reproducing apparatus and magnetoresistive head for use therewith | |
JP3383293B1 (en) | Thin-film magnetic head, method of manufacturing the same, head gimbal assembly, and hard disk drive | |
JPH1196513A (en) | Magnetic head and magnetic storage device having the same | |
JPH11175925A (en) | Magnetic reluctance effect type element and magnetic recording and reproducing device | |
JPH06251339A (en) | Magnetoresistive effect type thin film magnetic head and bias characteristics measuring method | |
Maruyama et al. | A yoke magnetoresistive head for high track density recording | |
JPS63138515A (en) | Thin film magnetic head and its reproduction system | |
JPH0836715A (en) | Magnetoresistance effect-type magnetic head | |
JPH10222817A (en) | Magneto-resistive sensor | |
JPH02257412A (en) | Magnetic recording and reproducing device, and magnetic head used for the same |