JPS629551B2 - - Google Patents
Info
- Publication number
- JPS629551B2 JPS629551B2 JP57159178A JP15917882A JPS629551B2 JP S629551 B2 JPS629551 B2 JP S629551B2 JP 57159178 A JP57159178 A JP 57159178A JP 15917882 A JP15917882 A JP 15917882A JP S629551 B2 JPS629551 B2 JP S629551B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- cbn
- metals
- carbides
- cutting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000463 material Substances 0.000 claims description 35
- 238000005520 cutting process Methods 0.000 claims description 16
- 229910052751 metal Inorganic materials 0.000 claims description 16
- 239000002184 metal Substances 0.000 claims description 16
- 150000002739 metals Chemical class 0.000 claims description 9
- 150000001247 metal acetylides Chemical class 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 7
- 150000004767 nitrides Chemical class 0.000 claims description 7
- 229910052582 BN Inorganic materials 0.000 claims description 6
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 6
- 230000000737 periodic effect Effects 0.000 claims description 5
- 239000012535 impurity Substances 0.000 claims description 3
- 239000006104 solid solution Substances 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 239000000843 powder Substances 0.000 description 35
- 238000003466 welding Methods 0.000 description 11
- 239000002245 particle Substances 0.000 description 8
- 239000010936 titanium Substances 0.000 description 7
- 229910052719 titanium Inorganic materials 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 229910052721 tungsten Inorganic materials 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 229910052715 tantalum Inorganic materials 0.000 description 3
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 3
- 229910052726 zirconium Inorganic materials 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- -1 iron group metals Chemical class 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 2
- 238000005491 wire drawing Methods 0.000 description 2
- ITWBWJFEJCHKSN-UHFFFAOYSA-N 1,4,7-triazonane Chemical compound C1CNCCNCCN1 ITWBWJFEJCHKSN-UHFFFAOYSA-N 0.000 description 1
- 229910000760 Hardened steel Inorganic materials 0.000 description 1
- 229910000997 High-speed steel Inorganic materials 0.000 description 1
- 229910003178 Mo2C Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical group [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 239000011195 cermet Substances 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 239000010730 cutting oil Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910021404 metallic carbon Inorganic materials 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 229910000601 superalloy Inorganic materials 0.000 description 1
- 229910003470 tongbaite Inorganic materials 0.000 description 1
Landscapes
- Ceramic Products (AREA)
Description
この発明は、高硬度と高靭性を兼ね備え、さら
にすぐれた耐摩耗性および耐溶着性を有し、特に
これらの特性が要求されるNi基あるいはCo基ス
ーパーアロイや高速度鋼などの切削に切削工具と
して、さらに軸受や線引きダイスなどの耐摩耗工
具として使用するのに適した立方晶窒化硼素基超
高圧焼結材料に関するものである。
近年、炭化タングステン基超硬合金に比して、
きわめてすぐれた耐摩耗性を有する立方晶窒化硼
素基超高圧焼結材料(以下、CBN基焼結材料と
略記する)を切削工具や耐摩耗工具として使用す
る試みがなされている。
この現存のCBN基焼結材料は、分散相を形成
するCBN粒子の結合相によつて2種類に大別す
ることができ、その1つが結合相を鉄族金属、あ
るいは鉄族金属とAlなどを主成分とする金属で
〓〓〓〓〓
構成したものであり、もう1つが窒化チタン、炭
化チタン、窒化アルミニウム、または酸化アルミ
ニウムなどを主成分とするセラミツクで構成した
ものである。
しかし、前者の結合相が金属で構成された
CBN基焼結材料においては、高靭性をもつもの
の高温で軟化しやすく、したがつて、これを例え
ば切削工具として使用する場合、多大な熱発性を
伴う苛酷な切削条件では耐摩耗性および耐溶着性
不足をきたすため使用できず、負荷の少ない(熱
発生の少ない)条件でしか使用することができな
い。また、後者のセラミツクを結合相とする
CBN基焼結材料は、すぐれた耐摩耗性および耐
溶着性をもつが、靭性に劣るという問題点があ
る。
そこで、本発明者等は、上述のような観点か
ら、高靭性を有し、かつ耐摩耗性および耐溶着性
にすぐれたCBN基焼結材料を得べく研究を行な
つたた結果、CBN基焼結材料を、重量%で、
周期律表の4aおよび5a族金属の炭化物、窒化
物、および炭窒化物、並びに同6a族金属の炭化
物、さらにこれらの2種以上の固溶体からなる群
のうちの1種または2種以上(以下、これらを総
称して金属の炭・窒化物という):10〜70%、
Alの炭化物(以下Al4C3で示す)および炭窒化
物(以下AlCNで示す)のうちの1種または2
種:1〜40%、
を含有し、さらに必要に応じて、
Ni,Co,およびFeのうちの1種または2種以
上(以下鉄族金属という):1〜10%、
を含有し、残りがCBN(ただし30〜90容量%含
有)と不可避不純物からなる組成で構成すると、
この結果のCBN基焼結材料においては、上記金
属の炭・窒化物およびCBNによつて高硬度、す
なわちすぐれた耐摩耗性と、すぐれた耐溶着性が
確保され、かつ上記Al4C3およびAlCNによつて
高靭性が確保されるようになるという知見を得た
のである。
この発明は、上記知見にもとづいてなされたも
のであつて、以下に成分組成範囲を上記の通りに
限定した理由を説明する。
(a) 金属の炭・窒化物
これらの成分には、分散相を形成して材料にす
ぐれた耐摩耗性と耐溶着性を付与する作用がある
が、その含有量が10%未満では前記作用に所望の
効果が得られず、一方70%を越えて含有させると
材料の靭性が低下するようになることから、その
含有量を10〜70%と定めた。
(b) Al4C3およびAlCN
これらの成分には、材料の耐摩耗性および耐溶
着性を損なうことなく、靭性を一段と向上させる
作用があるが、その含有量が1%未満では前記作
用に所望の効果が得られず、一方40%を越えて含
有させると、CBN粒子が成長し易くなつて、耐
摩耗性が劣化するようになるばかりでなく、靭性
にも低下傾向が現われるようになることから、そ
の含有量を1〜40%と定めた。
(c) 鉄族金属
これらの成分には、分散相を形成するCBN粒
子、金属の炭・窒化物粒子、およびAlN、AlCN
粒子の間に廻り込んで、材料製造時における焼結
性を一段と向上させ、かつ材料中においては結合
相を形成して材料の靭性をさらに一段と向上させ
る作用があるので、これらの特性が要求される場
合に必要に応じて含有されるが、その含有量が1
%未満では前記作用に所望の向上効果が見られ
ず、一方10%を越えて含有させると、材料の耐摩
耗性および耐溶着性が劣化するようになることか
ら、その含有量を1〜10%と定めた。
(d) CBN
この成分は著しく高い硬さ、並びにすぐれた耐
熱性をもつことから、この成分の含有によつて材
料はきわめてすぐれた耐摩耗性および耐溶着性を
有するようになるが、その含有量が30容量%未満
では、所望の前記特性を確保することができず、
一方90容量%を越えて含有させると、CBN粒子
同志の接触割合が多くなりすぎて、材料が脆化す
るようになるばかりでなく、焼結性も劣化し、材
料中に微細なポアーが残存し易くなつて耐摩耗性
の劣化を招くようになることから、その含有量を
30〜90容量%と定めた。なお、このCBNの含有
量を容量%で示したのは、例えばWCとCBNの比
重を比較した場合、WC:15.8g/cm3、CBN:
3.48g/cm3を示し、両者の差が著しく、したがつ
て、その含有量が重量的に少なくても実者的に特
性に影響を及ぼす容量割合ではかなりの量になる
からである。
また、この発明のCBN基焼結材料を、例えば
〓〓〓〓〓
切削工具として用いる場合には、単独で、あるい
は炭化タングステン基超硬合金や炭化チタン基サ
ーメツトなどの高剛性材料と複合した状態で、ス
ローアウエイチツプとして使用することができ、
さらにこれらのチツプを炭化タングステン基超硬
合金や焼入れ鋼などからなるホルダの先端部にろ
う付けにより取り付けた状態で使用することがで
きる。
つぎに、この発明のCBN基焼結材料を実施例
により具体的に説明する。
実施例
原料粉末として、平均粒径:2μmを有する
CBN粉末、いずれも1μmの平均粒径を有する
TiC粉末、ZrC粉末、HfC粉末、VC粉末、NbC粉
末、TaC粉末、Cr3C2粉末、Mo2C粉末、WC粉
末、TiN粉末、ZrN粉末、HfN粉末、VN粉末、
NbN粉末、TaN粉末、TiCN粉末、ZrCN粉末、
VCN粉末、TaCN粉末、(Ti,W)C粉末、(Zr,
Ta)C粉末、(Ti,Zr)C粉末、(Ti,Ta,W)
C粉末、(Ti,Zr)N粉末、(Nb,Ta)N粉末、
(Ti,W)CN粉末、(Ti,Zr)CN粉末、(Zr,
Mo,W)CN粉末、((Ti,Ta,W)CN粉末、
Al4C3粉末、AlCN粉末、いずれも同0.5μmのCo
粉末、Ni粉末、およびFe粉末を用意し、これら
原料粉末をそれぞれ第1表に示される配合組成に
配合し、通常の条件でボールミルにて混合した
後、2ton/cm2の圧力で直径:15mmφ×厚さ:2mm
の寸法をもつた円板状圧粉体に成形し、ついでこ
れらの圧粉体を、公知の超高圧高温発生装置の容
器内に挿入し、圧力:55kb、温度:1200℃、保
持時間:1時間の条件で超高圧焼結することによ
つて、実質的に配合組成と同一の成分組成をもつ
た本発明CBN基焼結材料1〜34および比較CBN
基焼結材料1〜8をそれぞれ製造した。なお、比
較CBN基焼結材料1〜8は、いずれも構成成分
のうちのいずれかの成分含有量(第1表に※印を
付したもの)がこの発明の範囲から外れた組成を
もつものである。
ついで、この結果得られた本発明CBN基焼結
材料1〜34および比較CBN基焼結材料1〜8に
ついて、ビツカース硬さを測定すると共に、靭性
を評価する目的で、ビツカース硬さ測定後の圧痕
の先端から発生した亀裂長さにもとづいて破壊靭
性値Kcを求め、さらに耐摩耗性および耐溶着性
This invention has both high hardness and high toughness, as well as excellent wear resistance and welding resistance, and is particularly suitable for cutting Ni-based or Co-based super alloys and high-speed steel, which require these characteristics. The present invention relates to a cubic boron nitride-based ultra-high pressure sintered material that is suitable for use as tools and wear-resistant tools such as bearings and wire drawing dies. In recent years, compared to tungsten carbide-based cemented carbide,
Attempts have been made to use cubic boron nitride-based ultra-high pressure sintered materials (hereinafter abbreviated as CBN-based sintered materials), which have extremely excellent wear resistance, as cutting tools and wear-resistant tools. These existing CBN-based sintered materials can be roughly divided into two types depending on the binder phase of the CBN particles that form the dispersed phase. A metal whose main component is 〓〓〓〓〓
The other type is made of ceramic whose main component is titanium nitride, titanium carbide, aluminum nitride, or aluminum oxide. However, if the binder phase of the former is composed of metal
Although CBN-based sintered materials have high toughness, they tend to soften at high temperatures. Therefore, when used as cutting tools, for example, they have high wear resistance and anti-welding properties under harsh cutting conditions that generate a large amount of heat. It cannot be used because it causes a lack of performance, and it can only be used under conditions of low load (low heat generation). In addition, the latter ceramic is used as the bonding phase.
CBN-based sintered materials have excellent wear resistance and welding resistance, but have the problem of poor toughness. Therefore, from the above-mentioned viewpoint, the present inventors conducted research to obtain a CBN-based sintered material with high toughness and excellent wear resistance and welding resistance. The sintered material is composed of carbides, nitrides, and carbonitrides of metals from Groups 4a and 5a of the periodic table, carbides of metals from group 6a of the periodic table, and solid solutions of two or more of these metals, by weight%. One or more types of (hereinafter collectively referred to as metal carbon/nitride): 10 to 70%, Al carbide (hereinafter referred to as Al 4 C 3 ) and carbonitride (hereinafter referred to as AlCN) ) one or two of the following
Species: 1 to 40%, and if necessary, one or more of Ni, Co, and Fe (hereinafter referred to as iron group metals): 1 to 10%, and the remainder When composed of CBN (containing 30 to 90% by volume) and unavoidable impurities,
In the resulting CBN-based sintered material, high hardness, that is, excellent wear resistance and excellent welding resistance are ensured by the carbon/nitride of the above metal and CBN, and the above Al 4 C 3 and CBN They found that AlCN ensures high toughness. This invention was made based on the above knowledge, and the reason why the component composition range was limited as described above will be explained below. (a) Metallic carbon/nitride These components have the effect of forming a dispersed phase and imparting excellent wear resistance and welding resistance to the material, but if their content is less than 10%, the above effects will be reduced. However, if the content exceeds 70%, the toughness of the material decreases, so the content was set at 10 to 70%. (b) Al 4 C 3 and AlCN These components have the effect of further improving the toughness of the material without impairing the wear resistance and welding resistance, but if their content is less than 1%, this effect will not be achieved. On the other hand, if the desired effect is not obtained, and if the content exceeds 40%, CBN particles tend to grow, and not only the wear resistance deteriorates, but also the toughness tends to decrease. Therefore, the content was set at 1 to 40%. (c) Iron group metals These components include CBN particles forming the dispersed phase, metal carbon/nitride particles, and AlN, AlCN.
These properties are required because it works by penetrating between particles and further improving sinterability during material manufacturing, and forming a binder phase in the material to further improve the toughness of the material. It is included as necessary when the content is 1
If the content is less than 10%, the desired effect of improving the above action will not be seen, while if the content exceeds 10%, the wear resistance and welding resistance of the material will deteriorate. %. (d) CBN Since this component has extremely high hardness and excellent heat resistance, the inclusion of this component gives the material extremely excellent wear and welding resistance. If the amount is less than 30% by volume, the desired characteristics cannot be secured,
On the other hand, if the content exceeds 90% by volume, the contact ratio between CBN particles becomes too high, which not only causes the material to become brittle, but also deteriorates sinterability, leaving fine pores in the material. The content of
It was set at 30-90% by capacity. The CBN content expressed in volume % is, for example, when comparing the specific gravity of WC and CBN, WC: 15.8 g/cm 3 and CBN:
3.48 g/cm 3 , and the difference between the two is significant. Therefore, even if the content is small in terms of weight, the volume ratio that actually affects the properties is quite large. Furthermore, the CBN-based sintered material of the present invention can be used, for example, as follows.
When used as a cutting tool, it can be used as a throw-away tip either alone or in combination with a high-rigidity material such as tungsten carbide-based cemented carbide or titanium carbide-based cermet.
Furthermore, these chips can be used while being attached by brazing to the tip of a holder made of tungsten carbide-based cemented carbide, hardened steel, or the like. Next, the CBN-based sintered material of the present invention will be specifically explained using Examples. Example: As raw material powder, average particle size: 2 μm
CBN powder, all with an average particle size of 1 μm
TiC powder, ZrC powder, HfC powder, VC powder, NbC powder, TaC powder, Cr3C2 powder, Mo2C powder, WC powder, TiN powder, ZrN powder, HfN powder, VN powder,
NbN powder, TaN powder, TiCN powder, ZrCN powder,
VCN powder, TaCN powder, (Ti, W)C powder, (Zr,
Ta) C powder, (Ti, Zr) C powder, (Ti, Ta, W)
C powder, (Ti, Zr) N powder, (Nb, Ta) N powder,
(Ti, W) CN powder, (Ti, Zr) CN powder, (Zr,
Mo, W) CN powder, ((Ti, Ta, W) CN powder,
Al 4 C 3 powder, AlCN powder, both 0.5 μm Co
Powder, Ni powder, and Fe powder were prepared, and these raw material powders were blended into the composition shown in Table 1, mixed in a ball mill under normal conditions, and then milled with a pressure of 2 tons/cm 2 in diameter: 15 mmφ. ×Thickness: 2mm
These compacts were then inserted into a container of a known ultra-high pressure and high temperature generator at a pressure of 55 kb, a temperature of 1200°C, and a holding time of 1. Invention CBN-based sintered materials 1 to 34 and comparative CBN having substantially the same composition as the blended composition by ultra-high pressure sintering under conditions of
Base sintered materials 1 to 8 were each manufactured. Comparative CBN-based sintered materials 1 to 8 all have compositions in which the content of one of the constituent components (marked with * in Table 1) is outside the scope of this invention. It is. Next, for the resulting CBN-based sintered materials 1 to 34 of the present invention and comparative CBN-based sintered materials 1 to 8, the Vickers hardness was measured. Determine the fracture toughness value Kc based on the length of the crack that occurred from the tip of the indentation, and then calculate the wear resistance and welding resistance.
【表】
〓〓〓〓〓
[Table] 〓〓〓〓〓
【表】
〓〓〓〓〓
[Table] 〓〓〓〓〓
【表】
を評価する目的で、被削材:ダイス鋼SKD11
(硬さ:ロツクウエル硬さCスケール62)、切込
み:0.2mm、送り:0.1mm/rev.,切削速度:100
m/min、切削油なしの条件で切削試験を行な
い、切刃の逃げ面摩耗が0.2mmに到るまでの切削
時間を測定した。これらの結果を第1表に合せて
示した。
第1表に示される結果から、本発明CBN基焼
結材料1〜34は、いずれも高硬度を有し、かつ靭
性にすぐれ、したがつてダイス鋼などの難削材に
おいてもすぐれた切削性能を示すのに対して、比
較CBN基焼結材料1〜8に見られるように、構
成成分のうちのいずれかの成分含有量でもこの発
明の範囲から外れると、靭性の劣つたものにな
り、切削工具として使用した場合には良好な切削
性能が得られないことが明らかである。
上述のように、この発明のCBN基超高圧焼結
材料は、すぐれた靭性、耐摩耗性、および耐溶着
性をすべて兼ね備えているので、これらの特性が
必要とされる難削材の切削に切削工具として用い
た場合には勿論のこと、軸受や線引ダイスなどの
耐摩耗工具として使用した場合にも長期に亘つて
すぐれた性能を発揮するのである。
〓〓〓〓〓
[Table] For the purpose of evaluating, work material: die steel SKD11
(Hardness: Rockwell hardness C scale 62), Depth of cut: 0.2mm, Feed: 0.1mm/rev., Cutting speed: 100
A cutting test was conducted at m/min without cutting oil, and the cutting time until the flank wear of the cutting edge reached 0.2 mm was measured. These results are also shown in Table 1. From the results shown in Table 1, the CBN-based sintered materials 1 to 34 of the present invention all have high hardness and excellent toughness, and therefore have excellent cutting performance even in difficult-to-cut materials such as die steel. On the other hand, as seen in Comparative CBN-based sintered materials 1 to 8, if the content of any of the constituent components falls outside the range of this invention, the toughness becomes inferior, It is clear that good cutting performance cannot be obtained when used as a cutting tool. As mentioned above, the CBN-based ultra-high pressure sintered material of this invention has excellent toughness, wear resistance, and welding resistance, so it is suitable for cutting difficult-to-cut materials that require these properties. Not only when used as a cutting tool, but also when used as a wear-resistant tool such as a bearing or wire drawing die, it exhibits excellent performance over a long period of time. 〓〓〓〓〓
Claims (1)
化物、窒化物、および炭窒化物、並びに同6a族金
属の炭化物、さらにこれらの2種以上の固溶体か
らなる群のうちの1種または2種以上:10〜70
%、 Alの炭化物および炭窒化物のうちの1種また
は2種:1〜40%、 を含有し、残りが立方晶窒化硼素(ただし30〜90
容量%含有)と不可避不純物からなる組成を有す
ることを特徴とする切削工具および耐摩耗工具用
立方晶窒化硼素基超高圧焼結材料。 2 重量%で、周期律表の4aおよび5a族金属の炭
化物、窒化物、および炭窒化物、並びに同6a族金
属の炭化物、さらにこれらの2種以上の固溶体か
らなる群のうちの1種または2種以上:10〜70
%、 Alの炭化物および炭窒化物のうちの1種また
は2種:1〜40%、 Ni,Co,およびFeのうちの1種または2種以
上:1〜10%、 を含有し、残りが立方晶窒化硼素(ただし30〜90
容量%含有)と不可避不純物からなる組成を有す
ることを特徴とする切削工具および耐摩耗工具用
立方晶窒化硼素基超高圧焼結材料。[Claims] 1% by weight of a group consisting of carbides, nitrides, and carbonitrides of metals from groups 4a and 5a of the periodic table, carbides of metals from group 6a of the periodic table, and solid solutions of two or more of these metals. One or more of the following: 10-70
%, one or two of Al carbides and carbonitrides: 1 to 40%, and the remainder is cubic boron nitride (however, 30 to 90%).
A cubic boron nitride-based ultra-high pressure sintered material for cutting tools and wear-resistant tools, characterized by having a composition consisting of (% by volume) and unavoidable impurities. 2% by weight of carbides, nitrides, and carbonitrides of metals from groups 4a and 5a of the periodic table, carbides of metals from group 6a, and solid solutions of two or more of these metals; or 2 or more types: 10-70
%, one or two of Al carbides and carbonitrides: 1 to 40%, one or more of Ni, Co, and Fe: 1 to 10%, and the rest is Cubic boron nitride (30 to 90
A cubic boron nitride-based ultra-high pressure sintered material for cutting tools and wear-resistant tools, characterized by having a composition consisting of (% by volume) and unavoidable impurities.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57159178A JPS5950076A (en) | 1982-09-13 | 1982-09-13 | Cubic boron nitride base super high pressure sintered body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57159178A JPS5950076A (en) | 1982-09-13 | 1982-09-13 | Cubic boron nitride base super high pressure sintered body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5950076A JPS5950076A (en) | 1984-03-22 |
JPS629551B2 true JPS629551B2 (en) | 1987-02-28 |
Family
ID=15687998
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57159178A Granted JPS5950076A (en) | 1982-09-13 | 1982-09-13 | Cubic boron nitride base super high pressure sintered body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5950076A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60204686A (en) * | 1984-03-27 | 1985-10-16 | 三菱マテリアル株式会社 | Surface-coated cubic boron nitride-based ceramic parts for cutting tools |
GB202001369D0 (en) * | 2020-01-31 | 2020-03-18 | Element Six Ltd | Polycrystalline cubic boron nitride material |
-
1982
- 1982-09-13 JP JP57159178A patent/JPS5950076A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5950076A (en) | 1984-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2014208889A (en) | Sintered body and method of producing the same | |
JP4607954B2 (en) | TiCN-based cermet, cutting tool, and method of manufacturing workpiece using the same | |
JPS5941445A (en) | Cubic boron nitride base high pressure sintered material for cutting tool | |
JPS629551B2 (en) | ||
JPH10193206A (en) | Cutting tool whose cutting edge piece has excellent brazing joining strength | |
JPS58164750A (en) | Ultra-high pressure sintered material for cutting tools | |
JPS6056783B2 (en) | Cubic boron nitride-based ultra-high pressure sintered material for cutting tools | |
JPS6125762B2 (en) | ||
JPS6020456B2 (en) | High-toughness boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools | |
JPS602378B2 (en) | Cubic boron nitride-based ultra-high pressure sintered material for cutting tools | |
JP3358477B2 (en) | Cutting tool with excellent brazing joint strength with cutting edge piece | |
JP2668977B2 (en) | Cutting tool made of tungsten carbide based cemented carbide with excellent fracture resistance | |
JPS6056782B2 (en) | Cermets for cutting tools and hot working tools | |
JPH10193210A (en) | Cemented carbide-made cutting tool having excellent brazing connection strength in cutting edge piece | |
JPS58113349A (en) | Cubic boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools | |
JP2000052085A (en) | High performance super high pressure cutting tool of brazing type composed of diamond group super high pressure sintered compact and substrate hard metal | |
JPS5852552B2 (en) | Tough cermet for cutting tools | |
JP3458533B2 (en) | Manufacturing method of WC-based cemented carbide cutting tool | |
JPS5953341B2 (en) | Sintered hard alloy with excellent heat and wear resistance | |
JPS6146542B2 (en) | ||
JPS6146429B2 (en) | ||
JP2014077178A (en) | Cermet and coated cermet | |
JPS6334216B2 (en) | ||
JPH11320215A (en) | Cutting tool with cutter tip having excellent brazing strength | |
JPH10193207A (en) | Cutting tool having excellent brazing connection strength in cutting edge piece |