[go: up one dir, main page]

JPS629532B2 - - Google Patents

Info

Publication number
JPS629532B2
JPS629532B2 JP58173983A JP17398383A JPS629532B2 JP S629532 B2 JPS629532 B2 JP S629532B2 JP 58173983 A JP58173983 A JP 58173983A JP 17398383 A JP17398383 A JP 17398383A JP S629532 B2 JPS629532 B2 JP S629532B2
Authority
JP
Japan
Prior art keywords
particles
titanium
water
spherical
sol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58173983A
Other languages
Japanese (ja)
Other versions
JPS6065725A (en
Inventor
Sadao Nishi
Seiji Kimura
Hiroshi Matsubayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Chitan Kogyo Kk
Original Assignee
Fuji Chitan Kogyo Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Chitan Kogyo Kk filed Critical Fuji Chitan Kogyo Kk
Priority to JP58173983A priority Critical patent/JPS6065725A/en
Publication of JPS6065725A publication Critical patent/JPS6065725A/en
Publication of JPS629532B2 publication Critical patent/JPS629532B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は直径が0.03〜5m/mで、吸着剤、触
媒、触媒担体に適した細孔径を有するチタニヤ球
状粒子の製造法に関する。チタニヤ質成形体は、
吸着剤、触媒、触媒担体、酵素固定用担体、セラ
ミツク熔射材料等、種々の用途に使用される。特
に直径が2m/m程度より小さい球状粒子は流動
状態または懸濁状態で用いるのに適しているが、
この場合は粒子相互の衝突および振動によつて崩
壊、および摩耗しないことが重要である。そのた
めには、粒子の強度が高く、真球状に近い形状を
有し、表面が平滑であることが望ましい。 微粉末原料を用いて、直径が2m/mより小さ
い球状粒子を造る方法として、噴霧造粒法および
流動造粒法が知られているが、いずれの方法にお
いても粒子の強度が低く、耐摩耗性の高いものが
得られにくい。金属水酸化物のヒドロゾルを水と
非混和性の媒体中に液滴状に分散させ、加熱脱水
して球状ヒドロゲルを形成させる方法によれば、
真球状で平滑な表面を有する球状粒子を造ること
ができる。 本発明者らはチタン()の硫酸塩、塩化物等
の水溶液にアルカリを加えてPHを0.6〜2.0に調整
し、得られるゾルを水と非混和性の加熱媒体中
で、球状ヒドロゲルを形成させる方法により真球
状で、強度および耐摩耗性の優れた球状粒子を造
ることに成功したが、これを吸着剤、触媒、触媒
担体に使用する場合、細孔径および細孔容積が小
さいため十分に性能を発揮できないことが分つ
た。 細孔径を増大させる方法として、水に不溶性の
有機物たとえば結晶性セルローズ、天然繊維の解
砕物、あるいは加熱によつて水に不溶なポリマー
を生成する物質等をゾルに分散させる方法が知ら
れているが、この場合、球状ヒドロゲルの強度が
低くなり、また焼成した粒子中に細孔径が1000Å
程度のマクロポアーが形成され、好ましくない。 本発明者らは前記ヒドロゾルに酸化チタンまた
はチタン酸粒子を微細に分散させて、水と非混和
性の加熱媒体中で球状ヒドロゲルを形成させた場
合、添加した酸化チタンまたはチタン酸の細孔の
程度とは無関係に、得られる球状ヒドロゲルの細
孔径が増大することを知見し、本発明を完成する
に到つた。 アルミナ系物質、アルミナ―シリカ系物質、シ
〓〓〓〓
リカ系物質等の粉末をゾルに分散させたときにも
同様の効果が認められるが、これらの物質は酸化
チタンまたはチタン酸の特異な吸着性能、あるい
は触媒または担体としての性能を阻害するか、ま
たは不純物として混在することになり好ましくな
い。 ヒドロゾルに分散させる酸化チタンまたはチタ
ン酸としては、チタンの硫酸塩、塩化物等の水溶
液を加熱または中和して得られるチタン酸、なら
びに、これを焼成したものを用いるが、粒径は10
μm以下であること、および比表面積(BET
法)が20m2/g以上であることが望ましい。 酸化チタンまたはチタン酸をヒドロゾルに添加
する割合はゾルに含まれるTiO2に対して、TiO2
換算で、通常10〜100重量%である。10%より少
ない場合は、実質的な細孔径の増大が認められ
ず、100%を超えると、マクロポアーが多くなり
用途によつては、好ましくない場合がある。酸化
チタンまたはチタン酸をヒドロゾル中に微細に分
散させることが望ましく、必要に応じて分散剤を
添加し、十分な撹拌を行う。 すなわち、本発明はチタン()塩水溶液のPH
を0.6〜2.0に調整して得られるヒドロゾルに酸化
チタンまたはチタン酸粒子を微細に分散させた
後、水と非混和性の加熱媒体中で球状ヒドロゲル
を形成させ、熟成、水洗、乾燥することを特徴と
する細孔径および細孔容積の増大したチタニヤ球
状粒子の製造法を提供するものである。 本発明に用いられるチタン()塩としては硫
酸塩、塩化物等があげられる。また、これらの塩
の水溶液を中和するために用いるアルカリとして
は、水酸化ナトリウム、水酸化カリウム等のアル
カリ金属水酸化物、炭酸ナトリウム、炭酸カリウ
ム、炭酸水素ナトリウム等の炭酸塩、および水酸
化アンモニウム等があげられる。 上記アルカリを用いて、チタン()塩の水溶
液のPHを0.6〜2.0に部分中和してヒドロゾルを調
整する。PHが0.6より低い場合は、生成する球状
ヒドロゲルの強度が低くなり、好ましくない。ま
たPHが2.0より高くなると沈澱物の量が多くな
り、加熱または1夜放置しても解膠が不充分で、
この場合も球状ヒドロゲルの強度が低くなる。 本発明においては、このようにして調整したヒ
ドロゾルに上記した酸化チタンまたはチタン酸粒
子を微細に分散させる。 つぎにヒドロゾルを水と非混和性の加熱媒体中
に液滴状に分散させ、球状ヒドロゲルを形成させ
る。具体的な方法として、たとえばゾルを加熱媒
体中に滴下し加熱媒体中を落下する間にゲル化さ
せる方法、加熱媒体を撹拌しながらゾルを加える
方法等があげられる。前者の方法は直径が0.5〜
2m/m程度の粒子の製造に適しており、後者の
方法は0.03〜2m/mの微細粒子を造るのに適し
ている。いずれの方法においても、ゲル化に要す
る時間が短いこと、強度の高いゲルを形成させる
ことが、粒度が均一で真球に近い粒子を造るうえ
において重要である。 本発明においては、上記のヒドロゾルに温度の
上昇により、アンモニアに分解可能なアンモニア
前駆物、たとえば尿素、ヘキサメチレンテトラミ
ン等を含有させることができる。これら、アンモ
ニア前駆物は加熱媒体中でのゲル化に要する時間
を短縮し、かつ、強度の高い球状ヒドロゲルを形
成するのに対し、効果的である。また、本発明に
おいては球状ヒドロゲルの相互付着および変形を
防止するために少量の界面活性剤を加熱媒体中に
溶解させておくこともできる。 上記の操作によつて形成された球状ヒドロゲル
を熟成、水洗、乾燥する。熟成は球状ヒドロゲル
を熟成液の中で数時間以上放置することによりお
こなわれる。熟成液としては、硝酸アンモニウ
ム、硫酸アンモニウム、塩化アンモニウム等の水
溶液で、その濃度は約20%程度である。 つぎに熟成した球状ヒドロゲルを十分に水洗
し、ヒドロゲル中に共存している硫酸イオン、塩
素イオン、アンモニウムイオン、ナトリウムイオ
ン等を流出させる。水洗した球状ヒドロゲルは自
然乾燥のみでも十分な強度と耐摩耗性を有するが
用途に応じて強制乾燥または焼成する。 吸着剤として使用する場合には、300℃以下の
温度で乾燥することが望ましいが、触媒または触
媒担体として用いる場合は通常500℃以上で焼成
する。粒子の強度および細孔径は高温度で処理す
るほど大きくなる。 以下に実施例をあげ、本発明を具体的に説明す
る。 実施例 1 TiO2濃度が200g/である硫酸チタニール水
〓〓〓〓
溶液1に13.2Nのアンモニア水を徐々に加えて
PH1.7にまで部分中和し、一夜放置して半透明の
チタニヤゾルを得た。このゾルにヘキサメチレン
テトラミン40gを溶解し、ゾルのTiO2濃度を80
g/に調整した。つぎに平均粒径0.16μm、比
表面37m2/gの酸化チタン粉末60gr.を添加し、
撹拌して微細に分散させた。このゾルをトリクロ
ールベンゼンとケロシンの混合媒体(SG1.25/
20℃)を充した高さ80cmの造粒塔の底部よりノズ
ルを通して圧入する。媒体はヒーターにより120
℃に保たれている。ゾルは媒体中を上昇する間に
直経2〜3m/m程度の球状ヒドロゲルになる。
ヒドロゲルを媒体と分離し、20重量%の硝酸アン
モニウム水溶液中で4時間放置した。その後、充
分に水洗して共存している可溶性のイオンを流出
させ、50℃で乾燥した。得られた球状粒子は真球
に近い形状を有し、表面は平滑であつた。 実施例 2 四塩化チタンと水と反応させて得られたチタン
塩化物の水溶液(TiO2200g/)1に12.8N
のアンモニウム水を徐々に加えてPH0.8にまで部
分中和し、一夜放置して半透明のチタニヤゾルを
得た。このゾルにヘキサメチレンテトラミン40g
を溶解し、ゾルのTiO2濃度を80g/に調整し
た。つぎに硫酸チタニール水溶液を熱加水分解し
て得られたTiO2含有量86%、平均粒径0.18μ
m、比表面積186m2/gのチタン酸粉末70gを添
加し、撹拌して微細に分散させた。ソルビタンモ
ノオレエートを1%溶解したトリクロールベンゼ
ン4を120℃程度に加熱し、強力に撹拌しなが
ら上記ゾル1を滴下して微細な液滴状に分散さ
せた。120℃で2分間保持して微細な球状ヒドロ
ゲルに変化させた後、実施例1と同様の方法によ
り熟成、水洗、乾燥した。得られた球状粒子は真
球に近い形状を有し、表面は平滑であつた。 比較例 1 実施例1においてゾルに酸化チタン粉末を添加
しない以外は実施例1と全く同様の方法でヒドロ
ゲルを形成させた。得られた球状粒子は真球に近
い形状を有し、表面は平滑であつた。 比較例 2 実施例2においてゾルにチタン酸粉末を添加し
ない以外は実施例2と全く同様の方法でヒドロゲ
ルを形成させた。得られた球状粒子は真球に近い
形状を有し、表面は平滑であつた。 実施例 3 実施例1〜2、および比較例1〜2で得られた
球状粒子を600℃で2時間焼成したものの物性を
第1表に示す。
The present invention relates to a method for producing titania spherical particles having a diameter of 0.03 to 5 m/m and a pore size suitable for adsorbents, catalysts, and catalyst supports. The titanium molded body is
It is used for a variety of purposes, including adsorbents, catalysts, catalyst carriers, enzyme immobilization carriers, and ceramic spray materials. In particular, spherical particles with a diameter smaller than about 2 m/m are suitable for use in a fluidized or suspended state.
In this case, it is important that particles do not collapse or wear out due to mutual collisions and vibrations. For this purpose, it is desirable that the particles have high strength, have a shape close to a true sphere, and have a smooth surface. Spray granulation and flow granulation are known methods for producing spherical particles with a diameter of less than 2 m/m using fine powder raw materials, but in both methods, the strength of the particles is low and wear resistance is poor. It is difficult to obtain something with high quality. According to a method in which a metal hydroxide hydrosol is dispersed in droplets in a water-immiscible medium and heated and dehydrated to form a spherical hydrogel,
Spherical particles having a true spherical shape and a smooth surface can be produced. The present inventors added an alkali to an aqueous solution of titanium () sulfate, chloride, etc. to adjust the pH to 0.6 to 2.0, and formed a spherical hydrogel with the resulting sol in a heating medium that is immiscible with water. We succeeded in producing spherical particles with excellent strength and wear resistance using a method of It was found that the performance could not be achieved. A known method for increasing the pore size is to disperse in a sol water-insoluble organic substances such as crystalline cellulose, crushed natural fibers, or substances that generate water-insoluble polymers when heated. However, in this case, the strength of the spherical hydrogel is low, and the pore size is 1000 Å in the calcined particles.
Some macropores are formed, which is not preferable. The present inventors found that when titanium oxide or titanic acid particles were finely dispersed in the hydrosol to form a spherical hydrogel in a water-immiscible heating medium, the pores of the added titanium oxide or titanic acid It was discovered that the pore diameter of the resulting spherical hydrogel increases regardless of the degree of increase, and the present invention was completed. Alumina-based materials, alumina-silica-based materials,
A similar effect is also observed when powders such as lyca-based substances are dispersed in a sol, but these substances may inhibit the unique adsorption performance of titanium oxide or titanic acid, or their performance as a catalyst or carrier. Otherwise, it is undesirable because it is mixed as an impurity. As the titanium oxide or titanic acid to be dispersed in the hydrosol, titanic acid obtained by heating or neutralizing an aqueous solution of titanium sulfate, chloride, etc., and a calcined version of this are used, but the particle size is 10
μm or less, and the specific surface area (BET
It is desirable that the surface area is 20 m 2 /g or more. The ratio of titanium oxide or titanic acid added to the hydrosol is the TiO 2 contained in the sol .
In terms of conversion, it is usually 10 to 100% by weight. When it is less than 10%, no substantial increase in pore diameter is observed, and when it exceeds 100%, the number of macropores increases, which may be undesirable depending on the application. It is desirable to finely disperse titanium oxide or titanic acid in the hydrosol, and if necessary, a dispersant is added and sufficient stirring is performed. That is, the present invention aims to improve the pH of titanium () salt aqueous solution.
After finely dispersing titanium oxide or titanic acid particles in the hydrosol obtained by adjusting the ratio of The present invention provides a method for producing titanium spherical particles with characteristically increased pore diameter and pore volume. Examples of titanium salts used in the present invention include sulfates and chlorides. In addition, alkalis used to neutralize aqueous solutions of these salts include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, carbonates such as sodium carbonate, potassium carbonate, and sodium hydrogen carbonate, and hydroxides. Examples include ammonium. A hydrosol is prepared by partially neutralizing the pH of an aqueous solution of titanium salt to 0.6 to 2.0 using the above alkali. If the pH is lower than 0.6, the strength of the resulting spherical hydrogel will be low, which is not preferable. In addition, when the pH is higher than 2.0, the amount of precipitate increases, and peptization is insufficient even if heated or left overnight.
In this case as well, the strength of the spherical hydrogel decreases. In the present invention, the titanium oxide or titanic acid particles described above are finely dispersed in the hydrosol prepared in this manner. The hydrosol is then dispersed into droplets in a water-immiscible heating medium to form a spherical hydrogel. Specific methods include, for example, a method in which the sol is dropped into a heating medium and gelled while falling through the heating medium, a method in which the sol is added while stirring the heating medium, and the like. The former method has a diameter of 0.5~
It is suitable for producing particles of about 2 m/m, and the latter method is suitable for producing fine particles of 0.03 to 2 m/m. In either method, it is important to shorten the time required for gelation and to form a gel with high strength in order to produce particles with uniform particle size and close to true spheres. In the present invention, the above hydrosol can contain an ammonia precursor that can be decomposed into ammonia by increasing the temperature, such as urea and hexamethylenetetramine. These ammonia precursors are effective in shortening the time required for gelation in a heating medium and forming a strong spherical hydrogel. Further, in the present invention, a small amount of surfactant may be dissolved in the heating medium in order to prevent mutual adhesion and deformation of the spherical hydrogels. The spherical hydrogel formed by the above operations is aged, washed with water, and dried. Aging is performed by leaving the spherical hydrogel in a maturing solution for several hours or more. The ripening solution is an aqueous solution of ammonium nitrate, ammonium sulfate, ammonium chloride, etc., and its concentration is about 20%. Next, the aged spherical hydrogel is sufficiently washed with water to flush out sulfate ions, chloride ions, ammonium ions, sodium ions, etc. coexisting in the hydrogel. The spherical hydrogel washed with water has sufficient strength and abrasion resistance even when air-dried, but it may be forced-dried or fired depending on the application. When used as an adsorbent, it is desirable to dry at a temperature of 300°C or lower, but when used as a catalyst or catalyst carrier, it is usually calcined at a temperature of 500°C or higher. The strength and pore size of the particles increase as they are processed at higher temperatures. EXAMPLES The present invention will be specifically explained below with reference to Examples. Example 1 Titanyl sulfate water with a TiO 2 concentration of 200 g/
Gradually add 13.2N ammonia water to solution 1.
It was partially neutralized to pH 1.7 and left overnight to obtain a translucent titanium sol. Dissolve 40g of hexamethylenetetramine in this sol and bring the TiO2 concentration of the sol to 80.
g/. Next, 60 gr. of titanium oxide powder with an average particle size of 0.16 μm and a specific surface of 37 m 2 /g was added.
Stir to finely disperse. This sol was mixed with a mixed medium of trichlorobenzene and kerosene (SG1.25/
It is press-fitted through a nozzle from the bottom of an 80cm-high granulation tower filled with 20°C. The medium is heated to 120
It is kept at ℃. While rising in the medium, the sol becomes a spherical hydrogel with a diameter of about 2 to 3 m/m.
The hydrogel was separated from the medium and left in a 20% by weight aqueous ammonium nitrate solution for 4 hours. Thereafter, it was thoroughly washed with water to remove coexisting soluble ions, and dried at 50°C. The obtained spherical particles had a shape close to a true sphere and had a smooth surface. Example 2 Aqueous solution of titanium chloride obtained by reacting titanium tetrachloride with water (TiO 2 200g/) 1 to 12.8N
of ammonium water was gradually added to partially neutralize the pH to 0.8, and the mixture was left overnight to obtain a translucent titanium sol. 40g of hexamethylenetetramine in this sol
was dissolved and the TiO 2 concentration of the sol was adjusted to 80 g/. Next, a TiO 2 content of 86% and an average particle size of 0.18μ were obtained by thermally hydrolyzing a titanyl sulfate aqueous solution.
70 g of titanic acid powder having a specific surface area of 186 m 2 /g was added and stirred to be finely dispersed. Trichlorobenzene 4 in which 1% sorbitan monooleate was dissolved was heated to about 120°C, and the above-mentioned Sol 1 was added dropwise to the mixture while stirring vigorously to disperse it into fine droplets. After being held at 120°C for 2 minutes to transform it into a fine spherical hydrogel, it was aged, washed with water, and dried in the same manner as in Example 1. The obtained spherical particles had a shape close to a true sphere and had a smooth surface. Comparative Example 1 A hydrogel was formed in exactly the same manner as in Example 1 except that titanium oxide powder was not added to the sol. The obtained spherical particles had a shape close to a true sphere and had a smooth surface. Comparative Example 2 A hydrogel was formed in the same manner as in Example 2 except that titanic acid powder was not added to the sol. The obtained spherical particles had a shape close to a true sphere and had a smooth surface. Example 3 Table 1 shows the physical properties of the spherical particles obtained in Examples 1 and 2 and Comparative Examples 1 and 2, which were calcined at 600°C for 2 hours.

【表】 〓〓〓〓
[Table] 〓〓〓〓

Claims (1)

【特許請求の範囲】[Claims] 1 チタン()塩水溶液のPHを0.6〜2.0に調整
して得られるヒドロゾルに必要に応じ、温度の上
昇によつてアンモニアに分解可能なアンモニア前
駆物を溶解し、酸化チタンまたはチタン酸粒子を
微細に分散させた後、水と非混和性の加熱媒体中
で球状ヒドロゲルを形成させ、熟成、水洗、乾燥
し、必要に応じて焼成することを特徴とするチタ
ニヤ球状粒子の製造法。
1. If necessary, an ammonia precursor that can be decomposed into ammonia by increasing the temperature is dissolved in the hydrosol obtained by adjusting the pH of the titanium () salt aqueous solution to 0.6 to 2.0, and fine titanium oxide or titanic acid particles are dissolved. A method for producing titanium spherical particles, which comprises dispersing the titanium particles into a water-immiscible heating medium, forming a spherical hydrogel in a water-immiscible heating medium, aging, washing with water, drying, and optionally firing.
JP58173983A 1983-09-20 1983-09-20 Preparation of spherical particles of titania Granted JPS6065725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58173983A JPS6065725A (en) 1983-09-20 1983-09-20 Preparation of spherical particles of titania

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58173983A JPS6065725A (en) 1983-09-20 1983-09-20 Preparation of spherical particles of titania

Publications (2)

Publication Number Publication Date
JPS6065725A JPS6065725A (en) 1985-04-15
JPS629532B2 true JPS629532B2 (en) 1987-02-28

Family

ID=15970615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58173983A Granted JPS6065725A (en) 1983-09-20 1983-09-20 Preparation of spherical particles of titania

Country Status (1)

Country Link
JP (1) JPS6065725A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6210008A (en) * 1985-07-05 1987-01-19 Pola Chem Ind Inc Cosmetic
JPS6236309A (en) * 1985-08-08 1987-02-17 Pola Chem Ind Inc Solid cosmetic
FR2623793B1 (en) * 1987-11-30 1991-06-07 Rhone Poulenc Chimie PROCESS FOR THE PREPARATION OF GRANULES BASED ON TITANIUM OXIDE, ZIRCONIUM, OR CERIUM AND PRODUCTS THUS OBTAINED
CN1076319C (en) * 1997-03-06 2001-12-19 西北大学 Method for preparing nanometre-grade titanium dioxide
CN103153867B (en) * 2010-09-22 2017-07-28 萨克特本化学有限责任公司 Porous, spherical titanium dioxide
CN110605096B (en) * 2019-09-23 2022-04-26 浙江省家具与五金研究所 Preparation method and application of carbon-doped rutile particles

Also Published As

Publication number Publication date
JPS6065725A (en) 1985-04-15

Similar Documents

Publication Publication Date Title
US4166100A (en) Method of preparing granulated activated alumina
EP0949000B1 (en) Process for the preparation of fluid bed vinyl acetate catalyst support
US3776987A (en) Production of metal-containing materials from sols
US3520654A (en) Process for the preparation of low density alumina gel
JPH0116771B2 (en)
JPH0324410B2 (en)
CN107162047B (en) A kind of preparation method of titanium dioxide hollow ball
PL228196B1 (en) Method for producing supported oxide catalysts
US6495488B2 (en) Production of spherical catalyst carrier
US3411878A (en) Alumina agglomerates and method for producing same
US2898306A (en) Preparation of alumina gels
US4039474A (en) Silica-alumina catalysts
CN112811411B (en) Bowl-shaped mesoporous carbon microsphere and preparation method and application thereof
US3027234A (en) Manufacture of spheroidal alumina particles from aluminum sulfate
JPS629532B2 (en)
US2964481A (en) Preparation of attrition-resistant siliceous gels
US4980334A (en) Macroporous alumina/diatomaceous earth bio-supports
JP2000070730A (en) Production of spherical carrier for carrying catalyst
US4216122A (en) Manufacture of high surface area spheroidal alumina particles having a high average bulk density
US2897159A (en) Catalyst manufacture
CN1088397C (en) Preparation of alumina suitable for being used as catalyst carrier for hydrgenating heavy oil
US3919117A (en) Method of preparing alumina spheres
JPH111318A (en) Production of zeolite granule with controlled pore size
JPH0114807B2 (en)
JP4107476B2 (en) Highly durable spherical inorganic porous material and method for producing the same