[go: up one dir, main page]

JPS6294901A - pressure sensitive resistor - Google Patents

pressure sensitive resistor

Info

Publication number
JPS6294901A
JPS6294901A JP23553685A JP23553685A JPS6294901A JP S6294901 A JPS6294901 A JP S6294901A JP 23553685 A JP23553685 A JP 23553685A JP 23553685 A JP23553685 A JP 23553685A JP S6294901 A JPS6294901 A JP S6294901A
Authority
JP
Japan
Prior art keywords
pressure
sensitive resistor
rubber
volume
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23553685A
Other languages
Japanese (ja)
Inventor
茂 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP23553685A priority Critical patent/JPS6294901A/en
Publication of JPS6294901A publication Critical patent/JPS6294901A/en
Pending legal-status Critical Current

Links

Landscapes

  • Adjustable Resistors (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は機械的強度が高く、比較的低温で成形可能な加
圧導電ゴムの感圧抵抗体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field to which the Invention Pertains] The present invention relates to a pressure-sensitive resistor made of pressurized conductive rubber that has high mechanical strength and can be molded at relatively low temperatures.

〔従来技術とその問題点〕[Prior art and its problems]

高分子弾性体に導電性金属粒子を混合成形し架橋した複
合ゴムは加圧することによって抵抗値が大巾に変化する
ことが知られており、このような加圧導電ゴムは感圧抵
抗体として現在コネクター。
It is known that the resistance value of a composite rubber made by mixing and molding conductive metal particles into an elastic polymer and crosslinking changes greatly when pressurized, and such pressurized conductive rubber can be used as a pressure-sensitive resistor. Connector now.

スイッ%、座標入力装置、可変抵抗体、圧力センサーな
どに広く用いられている。
Widely used in switching devices, coordinate input devices, variable resistors, pressure sensors, etc.

例えばこの感圧抵抗体をコネクターとして用いる場合、
次のような特性が要求される。
For example, when using this pressure sensitive resistor as a connector,
The following characteristics are required.

(1)  第6図は例えばコネクターを介在して接続し
たプリント基板の部分的な断面図を示したものであり、
2枚のプリント基板上のそれぞれ鋼箔1゜1aの間にコ
ネクターとして加圧導電ゴムシート2を挾み締めつけた
状態である。このとき加圧導電ゴムシート2は厚さ方向
のみ導通を示すような異方性をもっていなければならず
、またlの寸法は0.51!1以下で400V以上の耐
圧を必要とすること〇 (2)  できるだけ低い加圧力で低い抵抗値を示すこ
と。例えば第7図は加圧導電ゴムの加圧−抵抗線図であ
り、A、B2種の材料を示しであるが、いずれも実線が
加圧時2点線が減圧時である0第7図からAの方がBよ
りヒステリシスも小さく加圧抵抗特性が良好であること
がわかる。そして加圧力1 kg以下で100−α以下
の抵抗値を有することが好ましい。
(1) Figure 6 shows a partial cross-sectional view of a printed circuit board connected via a connector, for example.
In this state, a pressurized conductive rubber sheet 2 as a connector is sandwiched and tightened between steel foils 1.1a on two printed circuit boards. At this time, the pressurized conductive rubber sheet 2 must have anisotropy such that it shows conduction only in the thickness direction, and the dimension l must be 0.51!1 or less and a withstand voltage of 400V or more. (2) Show a low resistance value with the lowest possible pressing force. For example, Fig. 7 is a pressure-resistance diagram of pressurized conductive rubber, showing two types of materials, A and B, in which the solid line is pressurized and the two-dot line is depressurized. It can be seen that A has smaller hysteresis and better press resistance characteristics than B. Preferably, the resistance value is 100-α or less at a pressing force of 1 kg or less.

(3)長時間加圧を継続しても上記(1) 、 (2)
の特性が変化することのないように、感圧抵抗体は圧縮
による永久変形ひずみすなわち圧縮クリープ性が小さい
こと。
(3) Even if pressurization is continued for a long time, the above (1) and (2)
The pressure-sensitive resistor must have low permanent deformation strain due to compression, that is, compression creep, so that its characteristics do not change.

(4)  加圧による変形蓋が少ないと、接続する導体
との接触抵抗が尚くなるので、感圧抵抗体は低い加圧力
で十分な変形蓋を有すること。加圧力とひずみとの関係
はゴム硬度と宣伝な関係があり、日本工業規格に定めら
れたゴム硬度70以下とするのが好ましい。
(4) If the lid deforms due to pressure is small, the contact resistance with the connected conductor becomes worse, so the pressure-sensitive resistor must have a lid that deforms sufficiently even with a low pressing force. The relationship between pressing force and strain is closely related to rubber hardness, and it is preferable that the rubber hardness is 70 or less as defined by the Japanese Industrial Standards.

一方加圧により抵抗値の変化するゴム状抵抗体は例えば
ポリエチレンt#Aやプラスチック部品などと一体成形
して用いることができ、このためには70〜120′C
8度の低温で3〜20分で成形することが可能であって
、しかも上記(1)〜(4)の特性を備えていることが
必要である。
On the other hand, a rubber resistor whose resistance value changes when pressurized can be used by integrally molding it with polyethylene T#A or plastic parts, for example.
It is necessary that it can be molded in 3 to 20 minutes at a low temperature of 8 degrees, and that it also has the properties (1) to (4) above.

これに対して従来感圧抵抗体に用いられる高分子弾性体
として天然ゴム、合成ゴム、熱可塑11.エラストマー
などが使用できるが、′f¥L気特性、耐熱性などの点
からエチレン−プロピレンゴム、シリコンゴム、ポリウ
ニタンゴム、ブチレンゴムなどのゴムを架橋して用いる
とよいことが知られている0導電性粒子としては体積分
率で5〜20%のカーボンブラックと25〜50チの導
電性金属粒子とを混合したものやその他導電性カーボン
と半導性酸化物および導電性金属粒子を併用した感圧抵
抗体が公知である。また感圧抵抗体の製造方法について
は主として液状ゴムとNiなどの磁性をもった導電性金
属粒子とからなる組成物を金型中で磁場配向させながら
室温硬化して感圧抵抗体を得る方法が特開昭53−14
772号公報などにより開示されている。
On the other hand, the polymer elastic materials conventionally used in pressure-sensitive resistors include natural rubber, synthetic rubber, thermoplastic 11. Although elastomers can be used, it is known that it is better to use crosslinked rubbers such as ethylene-propylene rubber, silicone rubber, polyunitane rubber, butylene rubber, etc. from the viewpoint of air characteristics and heat resistance. The particles include a mixture of carbon black with a volume fraction of 5 to 20% and conductive metal particles of 25 to 50 cm, and other pressure-sensitive particles containing a combination of conductive carbon, semiconductive oxide, and conductive metal particles. Resistors are known. In addition, the method for producing a pressure-sensitive resistor is mainly a method in which a composition consisting of liquid rubber and magnetic conductive metal particles such as Ni is cured at room temperature while being oriented in a magnetic field in a mold. is published in Japanese Unexamined Patent Application Publication No. 53-14
This is disclosed in Publication No. 772 and the like.

しかしながら、上記の感圧抵抗体とその製造方法には次
のような欠点がある。
However, the above pressure sensitive resistor and its manufacturing method have the following drawbacks.

1)シリコンゴム以外の高分子弾性体を用いた感圧抵抗
体は高温時の圧縮永久変形ひずみが大きいために、スイ
ッチや圧着形コネクターなどに使用することができない
1) Pressure-sensitive resistors using polymer elastic bodies other than silicone rubber cannot be used for switches, crimp-type connectors, etc. because they have large compression set strains at high temperatures.

2)パテ状シリコンゴムに過酸化物と金属粒子を配合し
た組成物はロールによる混錬を必要とし、硬化条件は1
50℃、20分以上プレス成形した後200℃以上で2
〜4時間加熱処理するので製作時間が長い。
2) The composition of putty-like silicone rubber mixed with peroxide and metal particles requires kneading with rolls, and the curing conditions are 1.
After press forming at 50℃ for 20 minutes or more, press molding at 200℃ or higher
The production time is long because the heat treatment is performed for ~4 hours.

3)付加反応タイプの液状シリコンゴムに、カーボンブ
ラック、グラファイトを導電性が付与される程度まで混
合すると付加反応が進みに<<、硬化が不十分となり、
良好な物性をもった成形品が得られない。
3) When carbon black and graphite are mixed into addition reaction type liquid silicone rubber to the extent that it becomes conductive, the addition reaction progresses and curing becomes insufficient.
Molded products with good physical properties cannot be obtained.

4)金属、半導体、カーボンなどの導電性粒子をそれぞ
れ単独に混合し分散させた組成物は加圧−抵抗特性のヒ
ステリシスが大きい。
4) A composition in which conductive particles such as metal, semiconductor, and carbon are individually mixed and dispersed has a large hysteresis in pressure-resistance characteristics.

5)液状シリコンゴムに磁性導電性金属粒子を分散させ
、磁場配向させながら金型中で硬化させる方法は一般に
室温硬化反応させるために硬化時間が2〜24時間かか
る。
5) A method in which magnetic conductive metal particles are dispersed in liquid silicone rubber and cured in a mold while being oriented in a magnetic field generally takes 2 to 24 hours to cause a room temperature curing reaction.

以上のように従来の感圧抵抗体は高温成形を必要とし、
他のプラスチック成形体との一体成形ができないこと、
十分な感圧特性を得られないこと、また長い製造工数を
有するものは高価になるなど種々の欠点をもっていた。
As mentioned above, conventional pressure-sensitive resistors require high-temperature molding.
Not being able to be integrally molded with other plastic molded objects;
They have various drawbacks, such as not being able to obtain sufficient pressure-sensitive characteristics and being expensive if they require a long manufacturing process.

〔発明の目的〕[Purpose of the invention]

本発明は以上の点に鑑みてなされたものであり、その目
的は比較的低温短時間で成形することができ、圧縮永久
変形ひずみが小さく、加圧−抵抗線図のヒステリシスが
小さく、引張強度が高いなど十分なゴム物性を備えた感
性抵抗体を提供することにある。
The present invention has been made in view of the above points, and its objectives are to be able to be molded at relatively low temperatures and in a short time, to have low compression set, low hysteresis in the pressure-resistance diagram, and to have high tensile strength. The object of the present invention is to provide a sensitive resistor having sufficient rubber physical properties such as high .

〔発明の要点〕[Key points of the invention]

本発明の感圧抵抗体は圧縮成形法またはトランスファー
成形法を用いて120℃以下で成形される下記材料組成
のJISA硬度40〜70を有するものである0 (1)室温硬化の付加反応世シリコンゴム;60〜80
体積分率チ (2)粒径40〜200μmの金属粒子:15〜25体
積分率チ (3)粒径10〜200μmの黒鉛粒子:2〜10体積
分率チ (4)粒径100〜300mμmの微粉シリカ:2〜5
体積分率チ 〔発明の実施例〕 以下本発明を実施例に基づき説明する。
The pressure-sensitive resistor of the present invention has a JISA hardness of 40 to 70 and has the following material composition, which is molded at 120°C or lower using a compression molding method or a transfer molding method. (1) Addition reaction silicon that cures at room temperature. Rubber; 60-80
Volume fraction CH (2) Metal particles with a particle size of 40 to 200 μm: 15 to 25 Volume fraction CH (3) Graphite particles with a particle size of 10 to 200 μm: 2 to 10 Volume fraction CH (4) Particle size 100 to 300 μm Fine powder silica: 2-5
Volume Fraction CH [Embodiments of the Invention] The present invention will be described below based on Examples.

はじめに本発明の感圧抵抗体の構成材料について別途予
備実験から得られた知見を述べる。
First, knowledge obtained from preliminary experiments regarding the constituent materials of the pressure-sensitive resistor of the present invention will be described.

本発明に用いられるゴムは付加反応型の液状シリコン樹
脂とする。この付加反応型のシリコン樹脂は室温硬化タ
イプであって通常100〜120’C,10〜20分の
条件で成形されるが、他のゴムを用いた場合は150℃
以上の成形温度を必要とし電線などを被覆する軟かいプ
ラスチックと一体成形することが困難となるからである
。勿論シリコンゴムを先に成形しておき、プラスチック
との一体成形を行なうことはできるが、この場合シリコ
ンゴムとプラスチックの接着性が悪くなるので好ましく
ない。
The rubber used in the present invention is an addition reaction type liquid silicone resin. This addition reaction type silicone resin is a room temperature curing type and is usually molded at 100-120'C for 10-20 minutes, but when other rubbers are used, it is molded at 150°C.
This is because it requires a molding temperature higher than that, making it difficult to mold integrally with the soft plastic that covers electric wires and the like. Of course, it is possible to mold the silicone rubber first and then perform integral molding with the plastic, but in this case it is not preferable because the adhesiveness between the silicone rubber and the plastic deteriorates.

導電性を付与するための王な導電粒子として粒径40〜
100μmのNi粉を用い、混合量は樹脂100重量部
に対して200〜350M11部、体積分率で15〜2
5%とする。導電性金属粒子を体積分率で15〜25%
としたのは25%を超えて混合すると感圧抵抗体にはな
るが引張強度が低下し、硬度、圧縮変形ひずみも悪化し
て、実用上適さないものとなり、一方15チ以下では添
加効果がなく加圧時の導電性が低く感圧抵抗体にならな
いからである0粒径については40fim以下のNi粒
子を用いた場合粒子配列が不連続となって導電路が十分
形成されず感圧特性が悪くなり、200μmを超えると
局部的にバインダの不足を生じて粒子結合が十分でな(
感圧抵抗体は引張強度が低下する。
Particle size 40~ as the main conductive particle for imparting conductivity
Using 100 μm Ni powder, the mixing amount is 11 parts of 200-350M per 100 parts by weight of resin, and the volume fraction is 15-2.
5%. Volume fraction of conductive metal particles is 15-25%
The reason is that when more than 25% is mixed, it becomes a pressure-sensitive resistor, but the tensile strength decreases, and the hardness and compressive deformation strain also deteriorate, making it unsuitable for practical use.On the other hand, if it is less than 15%, the addition effect is not This is because the conductivity during pressurization is low and it cannot be used as a pressure-sensitive resistor.For particle size 0, if Ni particles of 40 fim or less are used, the particle arrangement becomes discontinuous and a conductive path is not formed sufficiently, resulting in poor pressure-sensitive characteristics. If the particle size exceeds 200 μm, there will be a local shortage of binder and particle bonding will not be sufficient (
The tensile strength of the pressure sensitive resistor decreases.

導電性粒子はNiのほかに黒鉛も用いるが、黒鉛粉末の
添加は感圧抵抗体の耐電圧を低下させることなくヒステ
リシスを小さく保つ役割を果すものであり、粒径10〜
200μmのものを5〜25重量部9体績分率で2〜1
0%混合する0したがって導電性粒子としては17〜3
5体積分率チを混合することになる。黒鉛の混合量が2
ts以下でなり耐電圧も低下する。粒径に関しては10
μm以下の黒鉛粒子を用いると無加圧時の抵抗が106
0α以下になりやすい。
In addition to Ni, graphite is also used as the conductive particles, and the addition of graphite powder plays the role of keeping the hysteresis small without reducing the withstand voltage of the pressure-sensitive resistor.
5 to 25 parts by weight of 200 μm, 9 parts by weight, 2 to 1
0% mixed 0 Therefore, as conductive particles 17-3
5 volume fractions will be mixed. The amount of graphite mixed is 2
ts or less, and the withstand voltage also decreases. 10 for particle size
When using graphite particles of μm or less, the resistance when no pressure is applied is 106
It tends to be less than 0α.

第1図は黒鉛粉の混合量と感圧抵抗体の無加圧時の体積
抵抗との関係を表わした線図であり、黒鉛粉の体積分率
が10チを超えると抵抗が急激に低下するようになるこ
とを示している。
Figure 1 is a diagram showing the relationship between the amount of graphite powder mixed and the volume resistance of the pressure-sensitive resistor when no pressure is applied.When the volume fraction of graphite powder exceeds 10 cm, the resistance decreases rapidly. It shows that it becomes possible to do.

さらに本発明では付加反応型シリコンゴムの補強材も重
要であって、粉床シリカの劣えば間品名エアロシールR
200など圧縮成形法に適した半均粒径100〜300
mμmのものを用い、混合量は10〜200〜20重量
部9体績〜5%とするのがよい。混合量が2体積分率−
以下では感圧抵抗体の引張強度が低下し20重量部(5
体積分率チ)以上にするとゴム硬度が高く、圧縮永久変
形ひずみが大きくなりゴム物性として好ましくないもの
となる。
Furthermore, in the present invention, the reinforcing material of addition reaction type silicone rubber is also important.
Semi-average particle size 100-300 suitable for compression molding method such as 200
mμm, and the mixing amount is preferably 10 to 200 to 20 parts by weight, 9 to 5%. Mixed amount is 2 volume fraction -
Below 20 parts by weight (5 parts by weight) the tensile strength of the pressure sensitive resistor decreases.
If the volume fraction exceeds 1), the rubber hardness will be high and the compression permanent deformation strain will be large, resulting in unfavorable rubber physical properties.

第2図は微粉シリカの混合量と感圧抵抗体の引張り強さ
および硬度との関係を示した線図であり、実線が引張り
強さ、点線が強度を表わしている。
FIG. 2 is a diagram showing the relationship between the amount of finely divided silica mixed and the tensile strength and hardness of the pressure-sensitive resistor, with the solid line representing the tensile strength and the dotted line representing the strength.

第2図からも引張り強さを適正値としゴム硬度として良
好な40〜70の範囲に保つためには微粉シリカの混合
量を体積分率で5%に止めるのが好ましいことがわかる
It can also be seen from FIG. 2 that in order to keep the tensile strength at an appropriate value and the rubber hardness in a good range of 40 to 70, it is preferable to limit the amount of finely divided silica mixed to 5% by volume.

以上本発明に用いる付加反応型液状シリコンゴムに添加
する構成材料について述べたが、以上のことから付加反
応型液状シリコンゴムの配合量は60〜80体積分率チ
とするのがよいことがわかる。なお付加反応型液状シリ
コンゴムを用いるときは硬化を促進させるために白金化
合物の触媒を5重量部程度含んだものを用いている。
The constituent materials added to the addition reaction type liquid silicone rubber used in the present invention have been described above, and from the above it can be seen that the amount of addition reaction type liquid silicone rubber blended is preferably 60 to 80 volume fraction. . When addition reaction type liquid silicone rubber is used, it contains about 5 parts by weight of a platinum compound catalyst to accelerate curing.

次に以上の材料構成にしたがって実際に成形した感圧抵
抗体について述べる。まず品用式混線機を用いて15分
間混練した後、この混練物の所定・ 量を2枚の鉄板の
間にはさみ100℃に加熱された熱板により10分間圧
縮成形し厚さ0.5關と2.4龍の2種類のシートを作
製した。これら2種類のシートを用いて感圧抵抗体の特
性を求めたが、厚さ2.4絹のものはJISK6301
の方法に準じて引張強度、圧縮永久変形ひずみなどを測
定し、厚さ0.5鴎のものは感圧抵抗体に加えた圧力の
上昇時に抵抗が1030−α以下になる加圧力P1と圧
力下降時に感圧抵抗体の抵抗が10”Ω−α以上になる
加圧力P2すなわち加減圧によるヒステリシスとさらに
耐電圧を求めた。
Next, a pressure-sensitive resistor actually molded according to the above material structure will be described. First, after kneading for 15 minutes using a mixing machine, a predetermined amount of this kneaded material was sandwiched between two iron plates and compression molded for 10 minutes using a hot plate heated to 100°C to form a product with a thickness of 0.5 Two types of sheets were made: ``Kan'' and ``2.4 Dragon.'' The characteristics of the pressure sensitive resistor were determined using these two types of sheets.
The tensile strength, compression permanent deformation strain, etc. were measured according to the method of 2013, and for the 0.5 mm thick one, the pressure P1 and the pressure at which the resistance becomes 1030-α or less when the pressure applied to the pressure-sensitive resistor increases are determined. The pressure P2 at which the resistance of the pressure-sensitive resistor becomes 10''Ω-α or higher when lowering, that is, the hysteresis due to pressurization and depressurization, and the withstand voltage were determined.

第3図に本発明による感圧抵抗体の組成とその特性値を
2例について示したが第3図には比較のため本発明とは
異なる組成の感圧抵抗体についても併記し、本発明の組
成が効果的なことを説明する0 第3図には使用したNi粉と黒鉛粉はいずれも粒径が比
較的小なる領域の場合を示しである。第3図において実
施例1は感圧抵抗体が良好な特性を示す組成範囲を示し
ているが、実施例2では実施例1のものよりNi粉の添
加を増し、黒鉛粉を減らしてあり、そのために引張り強
さと耐電圧が低く、圧縮永久変形ひずみが大きいが、感
圧抵抗体として十分実用できるものである。比較例1は
高分子弾性体としてパテ状シリコン樹脂を用いた場合で
あり、触媒に過酸化物を加えであるが、成形温度、後加
熱温度とも付加反応型液状シリコン樹脂に比べて高くし
なければならず処理時間も長くなり、成形品のヒステリ
シスが非常に太き(なる。比較例2ではNi粉の配合を
増し黒鉛粉を添加してないものである。この場合感圧抵
抗体の物性値はほとんどの項目について悪化する。比較
例3はNi粉の粒径40μm以下のものを用いた場合で
あり、加減圧のヒステリシス特性が極端に悪い。比較例
4は粒径10μm以下の黒鉛粉を使用したものであり、
無加圧時の体積抵抗および耐電圧がかなり低下する。な
おゴム硬度はゴムの種類。
FIG. 3 shows two examples of the composition and characteristic values of the pressure-sensitive resistor according to the present invention. For comparison, FIG. 3 also shows a pressure-sensitive resistor having a composition different from that of the present invention. Figure 3 shows the case where the Ni powder and graphite powder used both have a relatively small particle size. In FIG. 3, Example 1 shows a composition range in which the pressure-sensitive resistor exhibits good characteristics, but Example 2 has more Ni powder added and less graphite powder than Example 1. Therefore, the tensile strength and withstand voltage are low, and the compression permanent deformation strain is large, but it is fully usable as a pressure-sensitive resistor. Comparative Example 1 is a case where a putty-like silicone resin is used as the polymeric elastomer, and peroxide is added to the catalyst, but both the molding temperature and the post-heating temperature have to be higher than those for addition reaction type liquid silicone resin. In addition, the processing time becomes longer and the hysteresis of the molded product becomes very thick. In Comparative Example 2, the Ni powder was added and no graphite powder was added. In this case, the physical properties of the pressure-sensitive resistor were The values are worse for most items. Comparative Example 3 uses Ni powder with a particle size of 40 μm or less, and the hysteresis characteristics of pressure reduction are extremely poor. Comparative Example 4 uses graphite powder with a particle size of 10 μm or less. It uses
Volume resistance and withstand voltage when no pressure is applied are significantly reduced. Rubber hardness refers to the type of rubber.

硬化条件、充填材の種類や添加量などによって異なるも
のであるが前述のように硬度40〜70がよく、70以
上になると接続導体上十分密着せず接触面積が小さくな
り接触抵抗が増し、ゴム硬度′40以下では機械的強匣
が不足して感圧抵抗体の取扱い中に破損を招くおそれが
ある。
Although the hardness varies depending on the curing conditions, the type and amount of filler added, etc., as mentioned above, a hardness of 40 to 70 is good; if the hardness is over 70, the contact area will be small, the contact resistance will increase, and the rubber If the hardness is less than '40, mechanical strength may be insufficient and the pressure sensitive resistor may be damaged during handling.

また第3図における耐電圧の測定方法は次のごとく行な
ったものである0すなわち第4図はその測定法を説明す
るための試料周辺の概念図を示したものであり、厚さ0
.5關の感圧抵抗体3の上面に電極4a、4bを、下面
に電極4c、4dをそれぞれ感圧抵抗体3をはさんで対
称配置し、電極4aと4b間、電極4cと4d間にはそ
れぞれ0.5mmの絶縁スペーサ5aと5bを入れ、4
aと4c。
The method of measuring the withstand voltage in Figure 3 is as follows. In other words, Figure 4 shows a conceptual diagram of the surroundings of the sample to explain the measurement method.
.. Electrodes 4a and 4b are arranged symmetrically across the pressure-sensitive resistor 3, and electrodes 4a and 4b are arranged on the upper surface of the pressure-sensitive resistor 3 and electrodes 4c and 4d are arranged on the lower surface, respectively, between the electrodes 4a and 4b and between the electrodes 4c and 4d. insert insulating spacers 5a and 5b of 0.5 mm each, and
a and 4c.

4bと4dを感圧抵抗体3の厚さの95チまで加圧し4
aと4c間、4bと4d間を導通状態とし、4aと4b
間の耐電圧を測定したものである。
4b and 4d are pressurized to 95 cm, which is the thickness of the pressure sensitive resistor 3.
Conductive state between a and 4c and between 4b and 4d, and 4a and 4b
This is a measurement of the withstand voltage between.

さらに本発明の感圧抵抗体を用いて塩化ビニール電線に
゛よる無接点スイッチを作製した。第5図はその構成概
念である。第5図に示したようにこの無接点スイッチは
感圧抵抗体6の一つの対称的な両側面からそれぞれ塩化
ビニール電線7,7aの先端が互に所定の間隔で平行に
一体成形されており、電線7,7&の先端はいずれも塩
化ビニール被覆8,8aが除去され銅線9,9aが露出
している。かくして感圧抵抗体6を両室線7,7aと垂
直方向から加圧すると銅線9,9a間を導通させること
ができる。このように本発明の感圧抵抗体は前述のごと
く成形温度、後加熱温度ともに比較的低温であるから、
塩化ビニールやポリエチレンなどの軟かいプラスチック
との一体成形が可能であるのに対して例えば比較例1に
示したパテ状シリコン樹脂を用いた感圧抵抗体を使用し
た場合は塩化ビニール被覆は溶融劣化し、変色が認めら
れ健全な一体成形品が得られなかった。このことは本発
明の感圧抵抗体により市販の安価な感圧導電体が容易に
成形できることを意味し、付加反応型シリコン樹脂を用
いた効果によるものである。
Furthermore, a non-contact switch using a vinyl chloride electric wire was fabricated using the pressure sensitive resistor of the present invention. FIG. 5 shows its structural concept. As shown in FIG. 5, in this non-contact switch, the ends of vinyl chloride electric wires 7, 7a are integrally molded from one symmetrical side surface of a pressure-sensitive resistor 6 so as to be parallel to each other at a predetermined distance. , the vinyl chloride coatings 8, 8a are removed from the ends of the electric wires 7, 7&, and the copper wires 9, 9a are exposed. In this way, when the pressure sensitive resistor 6 is pressurized in a direction perpendicular to both chamber wires 7, 7a, conduction can be established between the copper wires 9, 9a. In this way, since the pressure sensitive resistor of the present invention has relatively low molding temperature and post-heating temperature as described above,
While it is possible to integrally mold with soft plastics such as vinyl chloride and polyethylene, for example, when using a pressure sensitive resistor using putty-like silicone resin shown in Comparative Example 1, the vinyl chloride coating will melt and deteriorate. However, discoloration was observed and a sound integrally molded product could not be obtained. This means that a commercially available, inexpensive pressure-sensitive conductor can be easily molded using the pressure-sensitive resistor of the present invention, and this is due to the effect of using an addition reaction type silicone resin.

以上述べてきたごとく第3図に示した実施例と比較例を
比べると明らかなように本発明では成形の容易な付加反
応型の液状シリコン樹脂を用いてこれに種々の添加物を
混合することによってゴム物性を感圧抵抗体として優れ
た機能をもって付与させるために、とくに添加物の適切
な配合量を設定したことが大きな効果をもたらしている
As mentioned above, when comparing the example shown in FIG. 3 with the comparative example, it is clear that in the present invention, an addition reaction type liquid silicone resin that is easy to mold is used and various additives are mixed therein. In order to impart rubber physical properties with excellent functions as a pressure-sensitive resistor, setting an appropriate blending amount of additives has a great effect.

〔発明の効果〕〔Effect of the invention〕

加圧導電ゴムの感圧抵抗体として付加反応型液状シリコ
ン樹脂を触媒を含めて60〜80体積分率%9粒径40
〜200 /l mのNi粉粉末1御〜2〜10体積分
率チ,微粉末シリカ2〜5体積分率チの配合組成とし1
20℃以下で成形するようにしたため、得られる感圧抵
抗体は下記の利点を有する。
Addition reaction type liquid silicone resin as a pressure sensitive resistor of pressurized conductive rubber with a volume fraction of 60 to 80% including catalyst, 9 particle size 40
~200/l m Ni powder 1~2~10 volume fraction 1, fine powder silica 2~5 volume fraction 1
Since the molding was carried out at a temperature of 20° C. or lower, the resulting pressure-sensitive resistor has the following advantages.

(1)  製造に際してロールなど専用の混錬機を用い
ることなく、短時間に容易に原材料を混錬することがで
きる。
(1) Raw materials can be easily kneaded in a short time without using a special kneading machine such as a roll during production.

(2)  比較的低温で20分以下という短時間で成形
することができる。
(2) It can be molded at a relatively low temperature in a short time of 20 minutes or less.

(3)低温成形が可能なために塩化ビニール被覆電線な
ど他の軟かいプラスチック成形品との一体成形が容易で
あり、利用範囲が拡大する0(4)  強度が高く,圧
縮永久変形ひずみが小さいなど良好な機械的性質と高弾
性特性を兼備している0(5)  導電性粒子としてN
i粉と黒鉛粉を適量組み合わせ含有することにより加圧
−抵抗特性におけるヒステリシスが非常に小さい0
(3) Because low-temperature molding is possible, it is easy to integrally mold with other soft plastic molded products such as vinyl chloride-coated electric wires, expanding the range of applications.0 (4) High strength and low compression set. 0(5) which has both good mechanical properties and high elastic properties such as N as a conductive particle.
Hysteresis in pressure-resistance characteristics is extremely small due to the combination of I powder and graphite powder.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の感圧抵抗体の黒鉛粉の混合量と体積抵
抗との関係線図、第2図は同じ(微分シリカの混合量と
引張り強さ,(iil!度との関係線図、第3図は本発
明の感圧抵抗体の組成およびこれと異なる組成の感圧抵
抗体の特性比較図、第4図は感圧抵抗体の耐電圧測定法
の概念図、第5図は塩化ビニール電線と感圧抵抗を一体
成形したスイッチの概略構成図、第6図は感圧抵抗体を
コネクターとして用いたときの概略構成図、第7図は従
来の感圧抵抗体の加圧力と体積抵抗との関係線図の一例
を示したものである。 2)3.6−感圧抵抗体、4a,4b,4c。 4 d ・=電極、5a,5b−絶縁スペーサ、7,7
a塩化ビニール電線、8,8a・・・塩化ビニール被疑
、9,9a・・銅線。 シエkt (vo9坏) 才1 (2) T2(2) 21シヒヒ゛エール1【ご判            
    73 勾hイヒピーーIム1r保オ5図 才4 ロ A      B カOた力(リイ浦9 オフ閃
Figure 1 is a relationship diagram between the amount of graphite powder mixed and the volume resistivity of the pressure sensitive resistor of the present invention, and Figure 2 is the same (the relationship between the amount of mixed silica and the tensile strength, (iil! degrees). Figure 3 is a characteristic comparison diagram of the composition of the pressure-sensitive resistor of the present invention and pressure-sensitive resistors with different compositions, Figure 4 is a conceptual diagram of a method for measuring withstand voltage of a pressure-sensitive resistor, and Figure 5 Figure 6 is a schematic diagram of a switch in which a PVC electric wire and a pressure-sensitive resistor are integrally molded, Figure 6 is a diagram of a switch in which a pressure-sensitive resistor is used as a connector, and Figure 7 is the pressure force of a conventional pressure-sensitive resistor. 2) 3.6-Pressure sensitive resistor, 4a, 4b, 4c.4 d = electrode, 5a, 5b-insulating spacer, 7,7
a Vinyl chloride electric wire, 8, 8a... Suspected vinyl chloride, 9, 9a... Copper wire. sie kt (vo9 坏) Sai 1 (2) T2 (2) 21 Si Hi Hi Ale 1 [Gohan
73 Koh Ihipi Im 1r Hoo 5 Figure Sai 4 Ro A B Kao Ta Power (Lii Ura 9 Off Flash

Claims (1)

【特許請求の範囲】 1)成形材料が付加反応型液状シリコン樹脂60〜80
体積分率%、導電性粒子17〜35体積分率%、微粉シ
リカ2〜5体積分率%からなり、120℃以下の成形が
可能であつて、成形後のJISA硬度40〜70を有す
ることを特徴とする感圧抵抗体。 2)特許請求の範囲第1項記載の感圧抵抗体において導
電性粒子として粒径40〜200μmのニッケル粉15
〜25体積分率%と粒径10〜200μmの黒鉛粉2〜
10体積分率%とを含むことを特徴とする感圧抵抗体。 3)特許請求の範囲第1項または第2項記載の感圧抵抗
体において、粒径100〜300mμmの微粉シリカを
用いることを特徴とする感圧抵抗体。 4)特許請求の範囲第1項ないし第3項のいずれかに記
載の感圧抵抗体において圧縮成形法もしくはトランスフ
ァー成形法を用いることを特徴とする感圧抵抗体。
[Claims] 1) The molding material is an addition reaction liquid silicone resin 60 to 80
% by volume, 17-35% by volume of conductive particles, and 2-5% by volume of fine powder silica, capable of being molded at 120°C or less, and having a JISA hardness of 40-70 after molding. A pressure-sensitive resistor featuring: 2) Nickel powder 15 with a particle size of 40 to 200 μm as conductive particles in the pressure sensitive resistor according to claim 1
Graphite powder with a volume fraction of ~25% and a particle size of 10-200 μm2~
10% by volume. 3) A pressure-sensitive resistor according to claim 1 or 2, characterized in that fine powder silica having a particle size of 100 to 300 mμm is used. 4) A pressure-sensitive resistor according to any one of claims 1 to 3, characterized in that a compression molding method or a transfer molding method is used.
JP23553685A 1985-10-22 1985-10-22 pressure sensitive resistor Pending JPS6294901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23553685A JPS6294901A (en) 1985-10-22 1985-10-22 pressure sensitive resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23553685A JPS6294901A (en) 1985-10-22 1985-10-22 pressure sensitive resistor

Publications (1)

Publication Number Publication Date
JPS6294901A true JPS6294901A (en) 1987-05-01

Family

ID=16987430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23553685A Pending JPS6294901A (en) 1985-10-22 1985-10-22 pressure sensitive resistor

Country Status (1)

Country Link
JP (1) JPS6294901A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04149906A (en) * 1990-10-11 1992-05-22 Fuji Kobunshi Kogyo Kk Conductive rubber composition and rubber connector
JP2005262458A (en) * 2004-03-16 2005-09-29 Seiko Epson Corp Liquid cartridge
WO2015198906A1 (en) * 2014-06-24 2015-12-30 Nok株式会社 Pressure-responsive laminate, coating layer and pressure responsiveness-imparting material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04149906A (en) * 1990-10-11 1992-05-22 Fuji Kobunshi Kogyo Kk Conductive rubber composition and rubber connector
JP2005262458A (en) * 2004-03-16 2005-09-29 Seiko Epson Corp Liquid cartridge
JP4581440B2 (en) * 2004-03-16 2010-11-17 セイコーエプソン株式会社 Liquid cartridge
WO2015198906A1 (en) * 2014-06-24 2015-12-30 Nok株式会社 Pressure-responsive laminate, coating layer and pressure responsiveness-imparting material
JPWO2015198906A1 (en) * 2014-06-24 2017-04-20 Nok株式会社 Pressure-sensitive laminate, coating layer, and pressure-sensitive responsive material
CN106660310A (en) * 2014-06-24 2017-05-10 Nok株式会社 Pressure-responsive laminate, coating layer and pressure responsiveness-imparting material

Similar Documents

Publication Publication Date Title
KR100456045B1 (en) Pressure Sensitive Ink, Pressure Sensitive Ink Device, and Methods of Use
CN100567383C (en) Polymer conductive composite material for temperature and stress sensor and preparation method
US3998513A (en) Multi-contact interconnectors
Flandin et al. Effect of strain on the properties of an ethylene–octene elastomer with conductive carbon fillers
US4199637A (en) Anisotropically pressure-sensitive electroconductive composite sheets and method for the preparation thereof
US4252391A (en) Anisotropically pressure-sensitive electroconductive composite sheets and method for the preparation thereof
US4145317A (en) Pressure-sensitive resistance elements
US5084211A (en) Anisotropically electroconductive adhesive
EP0647251A1 (en) Surface mount conductive adhesives
JPH0580510B2 (en)
JPS6294901A (en) pressure sensitive resistor
US3808678A (en) Method of making pressure-sensitive resistor element
JPS63215745A (en) Pressure-sensitive conductive elastomer composition
JPS6033138B2 (en) pressure sensitive conductive rubber
CN105602254A (en) Conductive rubber material
JP2000021470A (en) Conductive member and low compression/low resistance connector using the same
JP3208170B2 (en) Organic positive temperature coefficient thermistor
JPS6254742A (en) Pressure-sensitive rubber molding
SU1746405A1 (en) Current conducting rubber mixture
KR101872974B1 (en) Composition of polymer dielectric and capacitive force sensor by using the same
TW460531B (en) Positive temperature coefficient polymer composites composition
KR20230077132A (en) PTC devices comprising the different kind of polymers-layered structure and methods manufacturing the same
JPS62249304A (en) Pressure sensitive conducting rubber material
JPS6037104A (en) Method of producing electric resistor or conductor
JPH0621213B2 (en) Conductive polymer composition