JPS6288386A - Semiconductor-laser exciting solid-state laser - Google Patents
Semiconductor-laser exciting solid-state laserInfo
- Publication number
- JPS6288386A JPS6288386A JP23025285A JP23025285A JPS6288386A JP S6288386 A JPS6288386 A JP S6288386A JP 23025285 A JP23025285 A JP 23025285A JP 23025285 A JP23025285 A JP 23025285A JP S6288386 A JPS6288386 A JP S6288386A
- Authority
- JP
- Japan
- Prior art keywords
- light
- laser
- solid
- semiconductor
- excitation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/0602—Crystal lasers or glass lasers
- H01S3/0606—Crystal lasers or glass lasers with polygonal cross-section, e.g. slab, prism
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/09—Processes or apparatus for excitation, e.g. pumping
- H01S3/091—Processes or apparatus for excitation, e.g. pumping using optical pumping
- H01S3/094—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
- H01S3/0941—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/0619—Coatings, e.g. AR, HR, passivation layer
- H01S3/0625—Coatings on surfaces other than the end-faces
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/09—Processes or apparatus for excitation, e.g. pumping
- H01S3/091—Processes or apparatus for excitation, e.g. pumping using optical pumping
- H01S3/094—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
- H01S3/094084—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light with pump light recycling, i.e. with reinjection of the unused pump light, e.g. by reflectors or circulators
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Lasers (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分針)
本発明は新規な構成含有する半導体レーザ励起固体レー
ザに関する。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Minute Hand) The present invention relates to a semiconductor laser-excited solid-state laser containing a novel configuration.
(従来の技術)
近年、光加工をけじめとする固体レーザの応用上の1要
性の増大と、0.81μm帯など短波長半導体レーザの
大出力化と低廉化にともなって、たとえばネオジム含有
イツトリウム・アルミニウム・カーネッ) (Nd :
YAG)を半導体レーザによって励起し、小型化・高
変換効率化を計ろうとする傾向が顕著になりつつある。(Prior art) In recent years, as the importance of solid-state lasers for optical processing applications has increased, and as short-wavelength semiconductor lasers such as those in the 0.81 μm band have become more powerful and less expensive, for example, neodymium-containing yttrium・Aluminum Carnet) (Nd:
There is a growing trend toward miniaturization and higher conversion efficiency by exciting YAG) with a semiconductor laser.
かかる半導体レーザ励起固体レーザの構成の一例として
は、第3図のように模式的に示される。An example of the configuration of such a semiconductor laser-excited solid-state laser is schematically shown in FIG.
すなわち、0.81μn1発振半導体レーザ11の発振
光12をレンズ13によってNd : YAG結晶14
に集光し、この結、1%14からの光に光共振器15全
通して1.06μIIIの波長域の発振光16を得よう
とするものである。That is, the oscillation light 12 of the 0.81μn1 oscillation semiconductor laser 11 is transmitted through the lens 13 to the Nd:YAG crystal 14.
As a result, the light from 1% 14 is passed through the optical resonator 15 to obtain oscillated light 16 in the wavelength range of 1.06 μIII.
(発明が解決しようとする問題点)
しかし、かかる配置の固体レーザにおいては、励起光の
相当部分は集光の際に失われ、さらに一旦ネオジム・イ
オンに吸収さill光もインコヒーレフト光の放射によ
ってかなり失われる。このような理由から、かかる固体
レーザのしきい値および変換効率には限界が生じていた
。(Problems to be Solved by the Invention) However, in a solid-state laser with such an arrangement, a considerable portion of the excitation light is lost during condensation, and furthermore, ill light once absorbed by the neodymium ions is also incoherently left light. Significant loss due to radiation. For these reasons, there have been limits to the threshold and conversion efficiency of such solid-state lasers.
周知のように、レーザ発振のしきい値は光学ゲインと損
失によって定まり、微分量子効率は供給エネルギーの利
用効率によって決定される。従来採用されていたエンド
・ポンプ型の配置においては、半導体レーザからの励起
光を有効に利用するため、活性材料の長さ方向に励起が
なされているが、このため入力可能なエネルギーに限界
があり、着た入力光の相当部分が反射などによって失わ
れる。また側面は通常加工されていないため、入力のか
なりの部分はインコヒーレントな発光となって失われる
。これに対して側面励起の場合は多数の半導体レーザを
使用できる利点はあるが、入射方向に対する距離が短い
ために不利であった。従来においても反射性の表面を設
けてかかる不利を解消する試みはなさノしていた。例え
ば、雑誌「アプライドΦフィジックス・レター(App
lied P−bysica Letters ) J
、 28巻、5号(1973年9月) 、 235頁
のlL、B、チェスラー、I)、A、 ドラゲールに
よる論文1.雑誌「ソビエト・ジャーナル・オブ・クワ
ンタム・エレクトロニクス(Sowlet Journ
al of Quantum Electronics
)J 。As is well known, the threshold value of laser oscillation is determined by optical gain and loss, and the differential quantum efficiency is determined by the utilization efficiency of supplied energy. In the conventional end-pump arrangement, the active material is excited in the length direction in order to effectively utilize the excitation light from the semiconductor laser, but this places a limit on the energy that can be input. Yes, a considerable portion of the input light is lost due to reflection etc. Also, because the sides are typically unprocessed, a significant portion of the input is lost to incoherent light emission. On the other hand, side pumping has the advantage of being able to use a large number of semiconductor lasers, but is disadvantageous because the distance to the direction of incidence is short. In the past, no attempt has been made to overcome this disadvantage by providing a reflective surface. For example, the magazine “Applied Φ Physics Letter (App
lied P-bysica Letters) J
, Vol. 28, No. 5 (September 1973), p. 235 Paper by L. B. Czesler, I), A. Draguerre 1. Magazine "Soviet Journal of Quantum Electronics"
al of Quantum Electronics
)J.
11巻11号(1981年11月) 、 1471頁の
V、1.ビラク他による論文2#照。Vol. 11, No. 11 (November 1981), page 1471, V, 1. Paper 2 by Virak et al.
一般に使用さfIている光源がインコヒーレント光を使
用した例が多く、シかも光閉じ込め効果の重要性が認識
されていなかったため、充分な効果をあげることができ
なかった。In many cases, commonly used light sources use incoherent light, and because the importance of the light confinement effect has not been recognized, sufficient effects have not been achieved.
本発明の目的は、かかる状況にかんがみ低いしきいと高
い波長変換効率をもつ半導体レーザ励起固体レーザを提
供することにある。In view of such circumstances, an object of the present invention is to provide a semiconductor laser pumped solid-state laser having a low threshold and high wavelength conversion efficiency.
(問題点を解決するための手段)
本発明の構成は、希土類3価・イオンあるいはレーザ作
用をもつ格子欠陥を含有する柱状透明固体材料を活性物
質とL7、複数の半導体レーザを励起源とする半導体レ
ーザ励起固体レーザにおいて、前記固体材料の側面の前
記半導体レーザの励起光全入射せしめる空隙J″Jり1
の側面部分が反射防止膜で覆われ、前記固体材料のレー
ザ発振光を出力する両端面にそれぞれ反射鏡を設け、前
記固体材料が前記励起光全二次元的に有効に閉じ込める
断面を有することを特徴とする。(Means for Solving the Problems) The configuration of the present invention uses a columnar transparent solid material containing trivalent rare earth ions or lattice defects with laser action as an active substance and L7, and a plurality of semiconductor lasers as an excitation source. In a semiconductor laser-excited solid-state laser, a gap J″J1 on a side surface of the solid material allows all of the excitation light of the semiconductor laser to enter.
side portions of the solid material are covered with an antireflection film, reflective mirrors are provided on both end faces of the solid material that output the laser oscillation light, and the solid material has a cross section that effectively confines the excitation light in all two dimensions. Features.
(作用)
本発明の構成により、レーザ光を励起に使用した場合に
は、入射光の光路が小さい関係から、励起光に対17て
ほぼ完全な閉じ込め効果を実現できると同時に、放射さ
れるインコヒーレント光に対して閉じ込め効果を及ばず
ことにより、その放射光が希土類イオンあるbは格子欠
陥によって有効に再吸収されることによって励起状態寿
命が長くなり、発振しきい値を引き下げる効果を生ずる
。(Function) According to the configuration of the present invention, when a laser beam is used for excitation, it is possible to achieve an almost complete confinement effect for the excitation light because the optical path of the incident light is small, and at the same time, it is possible to achieve an almost complete confinement effect for the excitation light. By not exerting a confinement effect on coherent light, the emitted light is effectively reabsorbed by rare earth ions (b) by lattice defects, thereby lengthening the excited state lifetime and producing the effect of lowering the oscillation threshold.
雑誌[アプライド・フィジックス・レター(Ap−pl
jed Physics T+etters ) J
、 23巻4号 (1973年8月)、173頁の三田
による論文3参照。Magazine [Applied Physics Letters (Ap-pl
jed Physics T+etters) J
, Vol. 23, No. 4 (August 1973), p. 173, article 3 by Mita.
(実施例)
本発明の主要な特徴ならびに利点を一層明らかにするた
め、以下図面により詳細に説明を行う。(Example) In order to further clarify the main features and advantages of the present invention, a detailed explanation will be given below with reference to the drawings.
第1図は本発明の一実施例を模式的に示した斜=5−
親図、第2図はその断面図である。長い柱状のNd:Y
AG結晶1の側面のうち、側面に付着した複数の半導体
レーザ2の励起光(図示建ず)の入射するための空I!
1i3のみを残【2て残余の部分を反射性の被膜4で被
覆する。このNd : YA(l結晶1の両端面は、周
知の如くレーザ発振を可能々らしめる如く反射鏡5を形
成する。この場合、レーザの励起光を有効に利用するよ
うに、その両端面からの光の損失を避けるため、励起光
を発振光に垂直な面内に閉じ込めを行うことが有利であ
る。さらに、第2図に示した如く、−・日Nd:YAG
結晶1などの活性材料内に入射【7た光7が空隙3など
から失われず、しかも発振光路8と有効に交わる如くす
ることが望まれる。この図面に示l−九例は、その−例
で、はぼ正方形をなす活性劇料の断面の一隅をわずかに
斜めに加工して半導体レーザ2を取り付けた時の光路8
を示す。FIG. 1 is a diagonal 5-level diagram schematically showing an embodiment of the present invention, and FIG. 2 is a sectional view thereof. Long columnar Nd:Y
Among the side surfaces of the AG crystal 1, there is an open space I! for the excitation light (not shown) of the plurality of semiconductor lasers 2 attached to the side surfaces to be incident thereon.
Only 1i3 is left and the remaining part is covered with a reflective coating 4. Both end faces of this Nd:YA(l crystal 1 form reflecting mirrors 5 to enable laser oscillation as is well known. In this case, in order to effectively utilize the laser excitation light, In order to avoid light loss, it is advantageous to confine the excitation light in a plane perpendicular to the oscillation light.Furthermore, as shown in FIG.
It is desired that the light 7 incident on the active material such as the crystal 1 is not lost through the gap 3 or the like, and moreover, it can effectively intersect with the oscillation optical path 8. The example 1-9 shown in this drawing is an example of the optical path 8 when the semiconductor laser 2 is attached by processing one corner of the cross-section of the active material having a substantially square shape to be slightly oblique.
shows.
本実施例にあげたN(1: YAG結晶1のほかの活性
材料として、Nd含有ガラス、その他の希土類を含有し
几透明材料、あるいはカラー−センター−6〜
を含有したアルカリ・ハライド結晶なども、励起波長に
相当した半導体レーザが入手可能であれば、適用するこ
とができる。In addition to the N(1: YAG crystal 1) mentioned in this example, active materials such as Nd-containing glass, other rare earth-containing transparent materials, or alkali halide crystals containing color centers 6 to 6 can also be used. , if a semiconductor laser corresponding to the excitation wavelength is available, it can be applied.
本発明の固体レーザにおいては、従来の固体レーザより
細い活性材料を利用することができ、励起密度を高める
ことができ、しきい値を低下せしめ得る。さらに従来採
用されていたより低い濃度の希土類金もつ材料全使用し
て濃度クエンチング効果による非放射の割合を低下せし
めることも可能となる。Solid state lasers of the present invention can utilize thinner active materials than conventional solid state lasers, allowing for higher excitation densities and lower thresholds. Furthermore, it becomes possible to use all materials having rare earth gold concentrations lower than those conventionally employed, thereby reducing the proportion of non-radiation due to the concentration quenching effect.
また、本実施例に示[7た場合のほか、活性材料を反射
率の高し空洞内に置くことによっても類似の効果を発揮
させることは可能であるが、この時励起密度は轟然低下
し効果が減殺される。かかる効果は本実施例における如
く、光発振器において見られるのみならず、また光増幅
器においても実現可能であることは当然である。In addition to the case shown in this example [7], it is also possible to achieve a similar effect by placing the active material in a cavity with high reflectance, but in this case the excitation density will drop dramatically. The effect is diminished. It goes without saying that such an effect can be realized not only in an optical oscillator as in this embodiment, but also in an optical amplifier.
有効な光閉じ込め効果を実現するためには1表面の反射
率を高くシ、空隙の割合を低くすることが必要である。In order to realize an effective light confinement effect, it is necessary to have a high reflectance on one surface and a low void ratio.
光閉じ込めの効果は空間損失ファクターげ)によっ′〔
次式により与えられる。The effect of light confinement depends on the spatial loss factor
It is given by the following equation.
f−ΣAi *’f’i / (4*V ) ・・・
・・・(1)ここに% A I + i’ Iはイれぞ
れ表面各部分の面積と透過率であり、■は体積である(
論文3参照)。f-ΣAi *'f'i / (4*V)...
...(1) Here, % A I + i' I is the area and transmittance of each part of the surface, and ■ is the volume (
(See paper 3).
通常の発光ダイオード励起の場合h’k1cm’以下に
することけ容易でないが、レーザ励起の場合は空隙の割
合を小とすることにより、f(0,1(m’とし、しか
も体積を小とすることが可能となる。かかる効jILを
充分に発揮するためには、f(0,3cIn’ とす
ることが望まれる。In the case of normal light-emitting diode excitation, it is not easy to make h'k1cm' or less, but in the case of laser excitation, by reducing the void ratio, f(0,1(m') and the volume can be reduced. In order to fully exhibit this effect jIL, it is desirable to set f(0,3cIn').
(発明の効果) 本発明の半導体レーザ励起固体レーザによilげ。(Effect of the invention) Illumination by the semiconductor laser-excited solid-state laser of the present invention.
従来得られなかった大出力、低しきい値、小型。High output, low threshold value, and compact size that were previously unobtainable.
高変換効率の固体レーザを実現することができる。A solid-state laser with high conversion efficiency can be realized.
かかる改善にいたる理由の第1は励起エネルギーの有効
利用であり、第2は励起状態寿命の延長であり、第3は
小型化による励起密度の増加、第4は低濃度材料の採用
による非放射遷移の減少によるものである。The first reason for this improvement is the effective use of excitation energy, the second is the extension of the excited state lifetime, the third is the increase in excitation density due to miniaturization, and the fourth is the non-radiation due to the use of low concentration materials. This is due to a decrease in transitions.
第1図は本発明の一実施例の半導体レーザ励起固体レー
ザの模式的斜視図、第2図は第1図の活性材料内の断面
図、第3図は従来の半導体レーザの模式的ブロック図で
ある。
1.14・・・・・・Nd : YA()結晶、2.1
1・・・・・・半導体レーザ、3・・・・・・空隙、4
・・・・・・反射防止膜、5・・・・・・反射鏡、7・
・・・・入射光、8・・・・・・発振光の光路、12・
・・・・・発振光、13・・・・・・レンズ、15・旧
・・光共振器、16・・・・・・発振光。
一9=
半環4不し一す“′FIG. 1 is a schematic perspective view of a semiconductor laser pumped solid-state laser according to an embodiment of the present invention, FIG. 2 is a cross-sectional view of the active material in FIG. 1, and FIG. 3 is a schematic block diagram of a conventional semiconductor laser. It is. 1.14...Nd: YA () crystal, 2.1
1...Semiconductor laser, 3...Void, 4
...Anti-reflection film, 5...Reflector, 7.
...Incoming light, 8... Optical path of oscillation light, 12.
...Oscillation light, 13...Lens, 15. Old optical resonator, 16..Oscillation light. 19 = half ring 4 not one “′
Claims (1)
含有する柱状透明固体材料を活性物質とし、複数の半導
体レーザを励起源とする半導体レーザ励起固体レーザに
おいて、前記固体材料の側面の前記半導体レーザの励起
光を入射せしめる空隙以外の側面部分が反射防止膜で覆
われ、前記固体材料のレーザ発振光を出力する両端面に
それぞれ反射鏡を設け、前記固体材料が前記励起光を二
次元的に有効に閉じ込める断面を有することを特徴とす
る半導体レーザ励起固体レーザ。In a semiconductor laser-excited solid-state laser in which a columnar transparent solid material containing rare earth trivalent ions or lattice defects having a laser action is used as an active substance and a plurality of semiconductor lasers are used as an excitation source, excitation of the semiconductor laser on a side surface of the solid material is performed. Side portions other than the void that allows light to enter are covered with an antireflection film, and reflecting mirrors are provided on both end faces of the solid material that output the laser oscillation light, so that the solid material effectively uses the excitation light in two dimensions. A semiconductor laser-excited solid-state laser characterized by having a confining cross section.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23025285A JPS6288386A (en) | 1985-10-15 | 1985-10-15 | Semiconductor-laser exciting solid-state laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23025285A JPS6288386A (en) | 1985-10-15 | 1985-10-15 | Semiconductor-laser exciting solid-state laser |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6288386A true JPS6288386A (en) | 1987-04-22 |
Family
ID=16904895
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23025285A Pending JPS6288386A (en) | 1985-10-15 | 1985-10-15 | Semiconductor-laser exciting solid-state laser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6288386A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03272187A (en) * | 1990-03-22 | 1991-12-03 | Matsushita Electron Corp | Semiconductor laser excitation solid-state laser device |
JPH0415970A (en) * | 1990-05-09 | 1992-01-21 | Matsushita Electron Corp | Semiconductor laser exciting solid laser device |
JPH04174577A (en) * | 1990-01-19 | 1992-06-22 | Mitsubishi Electric Corp | Semiconductor-excited solid-state laser |
JPH04186888A (en) * | 1990-11-21 | 1992-07-03 | Nec Corp | Semiconductor laser excitation solid laser |
US5369661A (en) * | 1991-02-07 | 1994-11-29 | Nippon Steel Corporation | Semiconductor laser-pumped solid state laser system and optical coupling system coupling semiconductor laser with optical fiber |
JP2002541670A (en) * | 1999-03-30 | 2002-12-03 | コミツサリア タ レネルジー アトミーク | Laser Optical Pumping Module Including a Cylindrical Reflector with Polygonal Bottom |
JP2006066818A (en) * | 2004-08-30 | 2006-03-09 | Sony Corp | One-dimensional illumination device and image forming device |
EP2901530A1 (en) * | 2012-09-28 | 2015-08-05 | Thales Holdings UK Plc | Laser diode side pumping of an elongated solid-state laser without focusing!optics |
-
1985
- 1985-10-15 JP JP23025285A patent/JPS6288386A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04174577A (en) * | 1990-01-19 | 1992-06-22 | Mitsubishi Electric Corp | Semiconductor-excited solid-state laser |
JPH03272187A (en) * | 1990-03-22 | 1991-12-03 | Matsushita Electron Corp | Semiconductor laser excitation solid-state laser device |
JPH0415970A (en) * | 1990-05-09 | 1992-01-21 | Matsushita Electron Corp | Semiconductor laser exciting solid laser device |
JPH04186888A (en) * | 1990-11-21 | 1992-07-03 | Nec Corp | Semiconductor laser excitation solid laser |
US5369661A (en) * | 1991-02-07 | 1994-11-29 | Nippon Steel Corporation | Semiconductor laser-pumped solid state laser system and optical coupling system coupling semiconductor laser with optical fiber |
JP2002541670A (en) * | 1999-03-30 | 2002-12-03 | コミツサリア タ レネルジー アトミーク | Laser Optical Pumping Module Including a Cylindrical Reflector with Polygonal Bottom |
JP2006066818A (en) * | 2004-08-30 | 2006-03-09 | Sony Corp | One-dimensional illumination device and image forming device |
JP4618487B2 (en) * | 2004-08-30 | 2011-01-26 | ソニー株式会社 | One-dimensional illumination device and image generation device |
EP2901530A1 (en) * | 2012-09-28 | 2015-08-05 | Thales Holdings UK Plc | Laser diode side pumping of an elongated solid-state laser without focusing!optics |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5123026A (en) | Frequency-doubled, diode-pumped ytterbium laser | |
US6239901B1 (en) | Light source utilizing a light emitting device constructed on the surface of a substrate and light conversion device that includes a portion of the substrate | |
US3626318A (en) | Tandem oscillator disc amplifier with trivalent neodymium input disc and trivalent neodymium plus ytterbium output discs | |
JPH1027930A (en) | Monolithic pumping cavity assembly and method of fabricating the same | |
US3582820A (en) | Erbium laser device | |
JP2009518842A (en) | Optically pumped waveguide laser with tapered waveguide sections. | |
US5274650A (en) | Solid state laser | |
JPS6288386A (en) | Semiconductor-laser exciting solid-state laser | |
US5369524A (en) | Optical fiber monofrequency power source | |
JP3053273B2 (en) | Semiconductor pumped solid-state laser | |
JP3330487B2 (en) | Laser equipment | |
EP0457523B1 (en) | Apparatus for pumping of a weakly absorbing lasant material | |
JPH0786668A (en) | Semiconductor laser pumped solid state laser device | |
US5384801A (en) | Power lasers with semiconductor filter | |
JPH05183220A (en) | Semiconductor laser-excited solid-laser device | |
JPS62237784A (en) | Semiconductor laser exciting solid-state laser | |
JP3270641B2 (en) | Solid state laser | |
JP2757608B2 (en) | Semiconductor laser pumped solid state laser | |
JP3094436B2 (en) | Semiconductor laser pumped solid-state laser device | |
KR102744055B1 (en) | Gain medium with muptiple pumping system and operation method tehreof | |
JP3091342B2 (en) | Glass light emitting device | |
JP2834757B2 (en) | Light emitting device and method of manufacturing the same | |
JPH1065237A (en) | Solid-state laser device | |
GB1039213A (en) | Improvements in or relating to lasers | |
JP2981671B2 (en) | Laser diode pumped solid state laser |