[go: up one dir, main page]

JPS6286666A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPS6286666A
JPS6286666A JP60223568A JP22356885A JPS6286666A JP S6286666 A JPS6286666 A JP S6286666A JP 60223568 A JP60223568 A JP 60223568A JP 22356885 A JP22356885 A JP 22356885A JP S6286666 A JPS6286666 A JP S6286666A
Authority
JP
Japan
Prior art keywords
electrode
electrolyte
fuel cell
gas
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60223568A
Other languages
Japanese (ja)
Inventor
Hidekazu Fujimura
秀和 藤村
Shoji Ito
昌治 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60223568A priority Critical patent/JPS6286666A/en
Publication of JPS6286666A publication Critical patent/JPS6286666A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8621Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Fuel Cell (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は燃料電池構造に係り、特に、電池性能の向上に
好適な、ガス通路及び電極構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a fuel cell structure, and particularly to a gas passage and electrode structure suitable for improving cell performance.

〔発明の背景〕[Background of the invention]

従来の溶融炭酸塩型燃料電池構造の電池半セルの内部の
断面図を第9図に示す。酸化剤ガスと燃料ガスの流路を
区別するためのセパレータ4は凹凸のリブ構造を備え、
凹部5はガス通路になっており1本図面に対して垂直方
向に流れている。また、凸部6は集電板3と接触してお
り、集電板を流れる電流はこの接触部10を通してセパ
レータに流れる。なお、集電板3は電気化学反応が行な
われる電極2と接しており、電極2はさらに電解質板1
と接触している。
A cross-sectional view of the interior of a battery half cell having a conventional molten carbonate fuel cell structure is shown in FIG. The separator 4 for distinguishing the flow paths of the oxidizing gas and the fuel gas has an uneven rib structure,
The recess 5 serves as a gas passage, and the gas flows perpendicularly to the drawing. Further, the convex portion 6 is in contact with the current collector plate 3, and the current flowing through the current collector plate flows through this contact portion 10 to the separator. Note that the current collector plate 3 is in contact with the electrode 2 where an electrochemical reaction is performed, and the electrode 2 is further in contact with the electrolyte plate 1.
is in contact with.

燃料電池ではガスのリークを防ぐため、電解質板1によ
るウェットシールが行なわれている。また、電解質板1
、電極2.集電板3、セパレタ4との接触を良好にして
接触抵抗を出来るだけ小さくする必要がある。そこで、
ガスシールと接触抵抗の低減のため電池に荷重100を
かけている。
In a fuel cell, wet sealing is performed using an electrolyte plate 1 to prevent gas leakage. In addition, electrolyte plate 1
, electrode 2. It is necessary to make good contact with the current collector plate 3 and separator 4 and to reduce contact resistance as much as possible. Therefore,
A load of 100 was applied to the battery to seal the gas and reduce contact resistance.

この荷重が大きい程、一般には、シール特性や接触抵抗
は良好となる。ところが、この荷重をかけることにより
以下の問題が発生する。
Generally, the larger this load is, the better the sealing characteristics and contact resistance will be. However, applying this load causes the following problems.

本セパレータの構造では集電板と接している面lOにの
み荷重が集中してかかり、セパレータ凹部の集電板面1
1には大きな荷重はかからない。
In the structure of this separator, the load is concentrated only on the surface lO in contact with the current collector plate, and the current collector surface 1 in the separator recess is
No large load is applied to 1.

この結果、荷重のかかつている部分の多孔質体の金属電
極は圧縮され、その結果、第10図に示すように、電極
内の空孔部が減少することにより、電極反応の有効面積
が減少することになる。リブの幅Aとガス流路幅Bとは
B/A=1.0〜1.5程度であり圧縮を受ける電極面
積は全体の40〜50%を占めており、電池性能に及ぼ
す影響は大きい。
As a result, the metal electrode of the porous body in the part where the load is applied is compressed, and as a result, as shown in Figure 10, the pores in the electrode are reduced, and the effective area for electrode reaction is reduced. It turns out. The width A of the rib and the width B of the gas flow path are approximately B/A = 1.0 to 1.5, and the electrode area subject to compression accounts for 40 to 50% of the total area, which has a large effect on battery performance. .

次に、セパレータ4の凹部は、両端がリブ6により固定
されているため、熱膨張によりセパレータ凹部に集電板
3とともにはみ出してくることになる。このとき電解質
板との熱膨張率の違いにより、電解質板と電極との接触
が悪化し、極端な場合には、第10図に示すように、空
間部12を生じることにもなりかねない。もし、このよ
うな事態が発生すると、電極の濡れ性の低下やイオン伝
導率の低下を招き、性能に大きく影響することになる。
Next, since both ends of the concave portion of the separator 4 are fixed by the ribs 6, the separator 4 will protrude into the concave portion of the separator together with the current collector plate 3 due to thermal expansion. At this time, due to the difference in thermal expansion coefficient between the electrolyte plate and the electrolyte plate, contact between the electrolyte plate and the electrode deteriorates, and in extreme cases, a space 12 may be formed as shown in FIG. If such a situation occurs, the wettability of the electrode and the ionic conductivity will decrease, which will greatly affect the performance.

これらの問題に対処するため、集電板に強度を持たせる
ために厚くすることが試みられているか集電板の腐食が
アノード側で激しく、充分にその役割を果たしていると
は言えない。逆に、腐食により電気抵抗が増大し、電池
出力低下の一つの要因となっている。
In order to deal with these problems, attempts have been made to make the current collector plate thicker in order to give it strength, but the corrosion of the current collector plate is severe on the anode side, and it cannot be said that it is fulfilling its role satisfactorily. On the contrary, corrosion increases electrical resistance, which is one of the causes of a decrease in battery output.

また、集電板にはガス流路5のガスが電極2に抜けるよ
うに直径2〜3m程度の孔が多数あけられている1強度
を保つためには、穴径を大きくしたり、あるいは、穴の
数を増やすことには限りがある。この結果、集電板を電
極とガス流路の間に設けることはガスの電極への流路を
狭めることになり、ガスの物質移動の面から見て不利に
なる。
In addition, the current collector plate has a large number of holes with a diameter of about 2 to 3 m so that the gas in the gas flow path 5 can escape to the electrode 2. In order to maintain the strength, the hole diameter must be made large, or There is a limit to how many holes can be added. As a result, providing the current collector plate between the electrode and the gas flow path narrows the gas flow path to the electrode, which is disadvantageous in terms of gas mass transfer.

これらの問題に関連した公知例として、特開昭58−1
31664号公報と特開昭58−129786号公報が
ある。
As a publicly known example related to these problems, JP-A-58-1
There are No. 31664 and Japanese Unexamined Patent Publication No. 129786/1986.

前者は、従来のガス流路部を金属多孔体とするもので前
述したように電極のたれ込み、陥没に対する効果がある
が、従来の中空のガス流路と異なり、電極面へのガスの
拡散距離が長くなるため、電気化学反応過程に対しては
、不利な条件となる。
In the former, the conventional gas flow path is made of a metal porous body, and as mentioned above, it is effective against sagging and depression of the electrode, but unlike the conventional hollow gas flow path, the diffusion distance of the gas to the electrode surface is This becomes a disadvantageous condition for the electrochemical reaction process.

また、電池締め付けによるクリープ変形に対しては特別
な対策は構じられていない。
Further, no special measures are taken against creep deformation due to battery tightening.

後者はリン酸型燃料電池に用いられているリブ付き電極
を溶融塩型燃料電池にも適用するため。
The latter is because the ribbed electrodes used in phosphoric acid fuel cells can also be applied to molten salt fuel cells.

その製造法を示したものであり、電解質板と電極のぬれ
性が良好となり、また、電極、セパレータとの接触抵抗
を小さくすることができる。しかし、ガスの拡散は従来
程度か、あるいは、電極の厚み、は増す方向にいくこと
が予想されるため、ガスの電極内の細孔拡散が電気化学
反応を律速することになる。また、前公知例と同様に、
クリープ変形に対する問題を認識していない。
The manufacturing method is shown, and the wettability between the electrolyte plate and the electrode is improved, and the contact resistance between the electrode and the separator can be reduced. However, it is expected that the gas diffusion will be at the conventional level or that the thickness of the electrode will increase, so that the pore diffusion of the gas within the electrode will determine the rate of the electrochemical reaction. Also, similar to the previous known example,
They are not aware of the problem with creep deformation.

間者の公知例には、ガス流路を工夫して、電極と電解質
板とを、全面的に均一な接触圧力で接触させていること
が大きな特徴となっているが、電極内ガスの拡散の促進
化や電極有効面積の増加が図れる電極構造を提供するま
でには至っていない。
A major feature of known examples of the latter is that the gas flow path is devised so that the electrode and electrolyte plate are in contact with each other with uniform contact pressure over the entire surface. However, it has not yet been possible to provide an electrode structure that can promote this and increase the effective area of the electrode.

〔発明の目的〕[Purpose of the invention]

本発明の目的は電池締付力によるクリープ変形を押え、
多孔質電極の有効反応面積の減少を防ぎ電極のぬれ性、
ガスの電極内への拡散の向上、及〔発明の概要〕 燃料電池の出力増加を図るための重要な因子として、次
の二点が挙げられる。先ず、一点は電極有効面積であり
、もう−円は反応ガスの電極表面への拡散である。この
電極有効面積とは電極を構成している多孔質体の表面が
電解液で濡れている領域の面積を云う。この面積が大き
いほど反応面積は広くなり、より大きい電池出力が得ら
れる。
The purpose of the present invention is to suppress creep deformation due to battery clamping force,
Prevents the reduction of the effective reaction area of the porous electrode and improves the wettability of the electrode.
The following two points are important factors for improving the diffusion of gas into the electrode and increasing the output of the fuel cell. First, one point is the effective area of the electrode, and the other circle is the diffusion of the reaction gas to the electrode surface. This effective electrode area refers to the area of the region where the surface of the porous body constituting the electrode is wetted with the electrolyte. The larger the area, the larger the reaction area, and the greater the battery output.

電極有効面積の増加は電極の厚みを増すことにより可能
となるが、従来の電池構造は電解質板とガス流路の間に
電極が存在していたために、電極を厚くすることにより
、ガスの電極全域への拡散が悪くなる。これは拡散が支
配的である電気化学反応の面からみて不利となる。
The effective area of the electrode can be increased by increasing the thickness of the electrode, but in conventional battery structures, the electrode existed between the electrolyte plate and the gas flow path. The spread to the whole area becomes worse. This is disadvantageous from the viewpoint of electrochemical reactions in which diffusion is dominant.

そこで1本発明者らは電極が厚くなってもガスの拡散性
能が低下することのないよう、直接、電極内にガスを通
過させることにより、拡散面積の大幅な増加と、電極が
厚くなることによる拡散距離の増加を最少限におさえる
ことができると考えた。
Therefore, the present inventors succeeded in significantly increasing the diffusion area and making the electrode thicker by passing the gas directly through the electrode so that the gas diffusion performance would not deteriorate even if the electrode became thicker. We believe that the increase in the diffusion distance caused by this can be minimized.

また、多孔質体である電極の細孔分布として小さい空孔
径のものから、大きな空孔径のものまで、分布に広い範
囲を持たせることにより、ガスの流路部と電極反応部の
お互いの領域がはっきり区別できなくなることにより、
従来では、電極が濡れすぎることにより、反応表面積が
飽和状態となり、ガスの拡散性を悪くするだけであった
現象が、過剰な電解液がガス流路として用いられていた
領域表面を漏らすため、ガスの流路だけではなく反応領
域としても用いられ、有効面積の拡大が図れることにな
る。なお、電極とガス流路を一体化した空隙率の大きい
金属多孔質体のため、ガスシールのための電池締付力に
よるクリープ変形を防止するため、セパレータ補強材を
備えつけ、電極、セパレータ、補強材を一体化して一枚
の平板とすることにより、電極には電解質板との接触を
良好にするための力だけが加わり、電解質板とセパレー
タ間のガスシールのために必要なより大きな力が〔発明
の実施例〕 電極にかからないようにしている。
In addition, by creating a wide range of pore distribution in the electrode, which is a porous material, from small pore diameters to large pore diameters, we have created As a result, it becomes impossible to clearly distinguish between
In the past, when the electrode became too wet, the reaction surface area became saturated, which only worsened the gas diffusivity. It is used not only as a gas flow path but also as a reaction area, thereby increasing the effective area. In addition, since the electrode and gas flow path are integrated into a metal porous body with a high porosity, a separator reinforcing material is provided to prevent creep deformation due to the battery clamping force for gas sealing. By integrating the materials into a single flat plate, only the force required to make good contact with the electrolyte plate is applied to the electrode, and the greater force necessary for gas sealing between the electrolyte plate and the separator is applied. [Embodiment of the invention] Avoid contact with the electrode.

以下、本発明の一実施例を第1図により説明する。第1
図は本発明による電池の断面図を拡大したものであり、
電池の単純側のみを示す。電解質板1と酸化剤と燃料の
流路を分離しているセパレータ4と接して電極2が間に
はさまれた形となっている。電極2は金属(Ni)や酸
化金属(N i O)の微粉末を焼結して作られた多孔
質構造体である。
An embodiment of the present invention will be described below with reference to FIG. 1st
The figure is an enlarged cross-sectional view of a battery according to the present invention,
Only the simple side of the battery is shown. The electrode 2 is sandwiched between the electrolyte plate 1 and a separator 4 that separates the oxidizer and fuel flow paths. The electrode 2 is a porous structure made by sintering fine powder of metal (Ni) or metal oxide (N i O).

電解質板1に近い側の電極部13は粒径の小さい粒子で
構成されており、比表面も大きく電解質板からの電解液
で電極の表面は良好に濡れており、電気化学反応が最も
活発に行われる領域である。
The electrode part 13 on the side closer to the electrolyte plate 1 is composed of particles with a small particle size and has a large specific surface, so that the surface of the electrode is well wetted with the electrolyte from the electrolyte plate, and the electrochemical reaction is most active. This is the area in which it is carried out.

電解質板1からセパレータ4に向かって粒子の径は大き
くなり、空孔径もこれに比例して大きくなってくる。セ
パレータ4に近い空孔14では、電極部13よりもガス
の流路としての機能が強い。
The diameter of the particles increases from the electrolyte plate 1 toward the separator 4, and the pore diameter also increases in proportion to this. The holes 14 near the separator 4 have a stronger function as a gas flow path than the electrode section 13.

しかし、前記電極2の中間部15では、ガス30の流路
としても働き、また、電解質板Iからの電解液も浸透す
ることができ、その表面は、電極部13はど濡れ性は良
好でないにしても、@極反応部として有効に働く領域と
なり、ガス30の拡散も最も良好となる領域と云える。
However, the middle part 15 of the electrode 2 also acts as a flow path for the gas 30, and the electrolytic solution from the electrolyte plate I can also permeate, and the surface of the middle part 15 of the electrode part 13 does not have good wettability. However, it can be said that this is a region that effectively functions as a @polar reaction region, and that the diffusion of gas 30 is also the best.

すなわち、第2図に、電極2の厚さ方向に空孔径と電極
の濡れ性の関係を示す。ガス30はこの電極2の断面内
を通って流れるために電解質板1に最も近い電極部を除
いては電解液でガス30の流路が完全に閉寒されている
とは考えられず、殆どがガスの通路としての役割を果た
しており、第3図に示すように金属微粒子16のまわり
を電解液17が覆っており、ガス30は18.19に示
す流路を流れることになり前記金属粒子16への拡散面
積はかなり広くなる。すなわち、ガス流路18.19は
流路としての機能だけでなく直接反応部と接しているた
め拡散を促進させる効果をもつ。
That is, FIG. 2 shows the relationship between the pore diameter and the wettability of the electrode 2 in the thickness direction. Since the gas 30 flows through the cross section of the electrode 2, it is unlikely that the flow path of the gas 30 is completely closed off by the electrolyte except for the electrode portion closest to the electrolyte plate 1; serves as a gas passage, and as shown in FIG. 3, the electrolytic solution 17 covers the metal particles 16, and the gas 30 flows through the flow path shown in 18.19. The diffusion area to 16 becomes considerably large. That is, the gas channels 18 and 19 not only function as channels but also have the effect of promoting diffusion because they are in direct contact with the reaction section.

このことから1本実施例では電極の濡れている部分がす
べて電極有効面積となり、しかも完全に電解液につかっ
ている所以外は全てガスの通路となるため、拡散が促進
され、電池出力の向上につながることになる。
From this, in this example, the entire wetted part of the electrode becomes the effective electrode area, and all parts other than the part completely immersed in the electrolyte become gas passages, which promotes diffusion and improves battery output. This will lead to

しかも、何らかの原因で必要以上の電解質が浸透しても
、第2図の破線に示すように、電解質板に近い所ではガ
ス通路の閉塞領域は広がるが、セパレータ領域に近いと
ころまで電極の濡れ性が良好となる領域が増えるため、
全体の電極有効面積が増えることにより、電解質板に近
い領域のガス拡散性の低下による電池性能の低下を防ぐ
効果がある。
Furthermore, even if more electrolyte penetrates than necessary for some reason, the blocked area of the gas passage will expand near the electrolyte plate, as shown by the broken line in Figure 2, but the wettability of the electrode will increase up to the area near the separator. Since the number of areas where the condition is good increases,
The increase in the overall effective electrode area has the effect of preventing deterioration in battery performance due to deterioration in gas diffusivity in areas close to the electrolyte plate.

また、電極内にガス流路を設けたことにより、電解板と
電極との接触は面積は従来より広くなり。
Additionally, by providing a gas flow path within the electrode, the area of contact between the electrolytic plate and the electrode is wider than before.

しかも、均一にかかる構造となるため、電極のたれ込み
、陥没が防げ、電極の濡れ性の向上によりイオン伝導性
が良好となり電極反応有効面積が増加する。
Furthermore, since the structure is uniform, sagging and depression of the electrode can be prevented, and the wettability of the electrode is improved, resulting in good ion conductivity and an increase in the effective area for electrode reaction.

第4図は電極構造を用いた、単電池構造を示すもので外
部マニホールド型である。フローパターンは直交流型で
ある。従って、電解質板の下側の電極側では、ガスは入
ロアから出口8に向かって電極内2を流れる。上側につ
いてもこれと直角にガスが流れる。セパレータ4と電極
2及びセパレータ4に接着している補強部材9は互いに
密着して接着しており、一枚の平板の形を呈している。
FIG. 4 shows a single cell structure using an electrode structure, which is an external manifold type. The flow pattern is cross-flow type. Therefore, on the lower electrode side of the electrolyte plate, gas flows through the electrode 2 from the inlet lower to the outlet 8. Gas also flows on the upper side at right angles to this. The separator 4, the electrode 2, and the reinforcing member 9 bonded to the separator 4 are closely bonded to each other and have the shape of a single flat plate.

補強部材9は、ガス流れと平行に二本以上、設けられて
おり電解質板との接触部32により、締付荷重が加わっ
ても、これ以上、電極のクリープ変形が進まないように
なっている。すなわち、締め付は荷重が加わっている状
態で第4図のように電解質板と接触しているセパレータ
4、補強部材9、電極2は面が一致しており、予め、電
極2の変形量が他の部材に比べて大きいことを考慮して
電極2の厚みを調整しているため、締付力が加わった時
点でセパレータ4、及び補強材9にのみ大きな力が加わ
り電極2には、濡れ性を良好にする程度の接触圧力だけ
がかかつている。このように締付力に伴う電極のクリー
プ変形がなくなるため、いつまでも電極有効面積を最初
と同じ程度に保つことができる。
Two or more reinforcing members 9 are provided parallel to the gas flow, and the contact portion 32 with the electrolyte plate prevents further creep deformation of the electrode even if a tightening load is applied. . That is, when tightening, the surfaces of the separator 4, reinforcing member 9, and electrode 2 that are in contact with the electrolyte plate are aligned as shown in FIG. 4 when a load is applied, and the amount of deformation of the electrode 2 is The thickness of the electrode 2 is adjusted considering that it is larger than other members, so when the tightening force is applied, a large force is applied only to the separator 4 and the reinforcing material 9, and the electrode 2 is wetted. Only enough contact pressure is applied to provide good properties. Since the creep deformation of the electrode due to the tightening force is eliminated in this way, the effective area of the electrode can be maintained at the same level as at the beginning.

なお、本実施例では、従来ような電極と溝付きセパレー
タの間に集電板を用いる必要はなく、セパレータ4.電
極2、補強部材9が一体化構造となっているので、電極
とセパレータ間の接触抵抗は小さくすることができ、従
って、セパレータ4が集電板の代わりの役目を果たすこ
とが可能である。集電板が不要になると、電極、集電板
間の接触抵抗の問題がなくなることになる。
Note that in this embodiment, there is no need to use a current collector plate between the electrode and the grooved separator as in the conventional case, and the separator 4. Since the electrode 2 and the reinforcing member 9 have an integrated structure, the contact resistance between the electrode and the separator can be reduced, and the separator 4 can therefore serve as a current collector plate. Eliminating the need for a current collector plate eliminates the problem of contact resistance between the electrode and the current collector plate.

また、ガスシールに関しても電極、セパレータ一体化構
造が可能なので電池積層する前に電極とセパレータ及び
補強部材間の面を調整しておくこ、層により、積層構造
におけるガスシールの信頼性は高まる。
Also, regarding gas seals, an integrated structure of electrodes and separators is possible, so by adjusting the surfaces between the electrodes, separators, and reinforcing members before stacking the batteries, the reliability of the gas seal in the stacked structure will be increased.

第5図は内部マニホールド型の場合の単電池構造を示す
もので、各セルにガスを供給するための縦孔31が設け
られており、ガスは横穴33から電極2内を流れ、横穴
34から、縦孔32に入り排出される。電極2、セパレ
ータ4、補強部材9は、外部マニホールド型と全く同じ
ようにして一体化されており、同様の効果が得られる。
Figure 5 shows the cell structure in the case of an internal manifold type, in which a vertical hole 31 is provided for supplying gas to each cell, the gas flows through the electrode 2 from the horizontal hole 33, and from the horizontal hole 34. , enters the vertical hole 32 and is discharged. The electrode 2, separator 4, and reinforcing member 9 are integrated in exactly the same way as in the external manifold type, and the same effects can be obtained.

第6図、第7図は、本発明の電極構造の変形の一実施例
である。空孔径が小から大へ連続的に変化している電極
20.2]、22をガス流れ方向に対して、直角方向に
、空孔径の大きい領域40小さくすることができ、従っ
て、セパレータ4が解質板1とセパレータ4の間に配置
されている。
FIGS. 6 and 7 show an example of a modification of the electrode structure of the present invention. The electrodes 20.2], 22 whose pore diameters continuously change from small to large can be made smaller in the region 40 with larger pore diameters in the direction perpendicular to the gas flow direction, so that the separator 4 It is arranged between the solute plate 1 and the separator 4.

そして、この電極構造を用いた単電池の構造は、第4図
、第5図と全く同じである。また、この電極構造の効果
は、第1図の電極構造の効果と同じである。ただし、本
実施例の場合は細孔分布特性を第1図の電極構造と同じ
にしながら電極の厚みをいろいろと変化させることがで
きる利点がある。
The structure of a cell using this electrode structure is exactly the same as that shown in FIGS. 4 and 5. Further, the effect of this electrode structure is the same as that of the electrode structure shown in FIG. However, this embodiment has the advantage that the thickness of the electrode can be varied while keeping the pore distribution characteristics the same as the electrode structure shown in FIG.

電極が濡れ過ぎて電極24にまで電解液が浸透した場合
でも、電極24内の細孔部45内に電解液を保持するこ
とが可能であり、セパレータ4の電解液の付着による腐
食の促進を阻止することができる。また、電極24も電
極有効面積として寄与することができる。さらに、電極
24側に、電解液を含浸させておくことも可能となり、
電極の有効面積の増加が図れる。
Even if the electrode becomes too wet and the electrolyte penetrates into the electrode 24, it is possible to retain the electrolyte in the pores 45 in the electrode 24, thereby preventing the electrolyte from adhering to the separator 4 and accelerating corrosion. can be prevented. Furthermore, the electrode 24 can also contribute as an effective electrode area. Furthermore, it is also possible to impregnate the electrode 24 side with an electrolytic solution,
The effective area of the electrode can be increased.

電池性能面だけでなく、電池の電解液の損失を防止でき
る本発明の他の実施例を第8図に示す。
Another embodiment of the present invention is shown in FIG. 8, which not only improves battery performance but also prevents loss of electrolyte in the battery.

第1図に示す電極25.26を電解質板1からセパレー
タ4に向って空孔径が小→大、小→大となるように積層
する。そして、二つの電極25゜26が接する面52に
予めそれぞれの電極に溝50を設けておき、そこに、電
解質を保持した電解質補給体51を充填しておく、この
電解質補給体51から出た電解液は電極26の細孔領域
48に保持され、電解質補給体51を介して、電極25
内の電解液とつながり電解質板1に達している。この電
解質補給体51の導入により、電解質板lの電解質の損
失を補うことが可能となり、電池性能をいつまでも初期
と変わらぬ程度に保つことができる。なお、本実施例で
は電極25内全域にわたり、充分に電解液により電極表
面が濡れている必要がある。
The electrodes 25 and 26 shown in FIG. 1 are stacked so that the pore diameters increase from small to large and from small to large from the electrolyte plate 1 toward the separator 4. Grooves 50 are previously provided in the surfaces 52 where the two electrodes 25 and 26 touch, and an electrolyte replenisher 51 holding electrolyte is filled in the grooves. The electrolyte is retained in the pore region 48 of the electrode 26 and is transferred to the electrode 25 via the electrolyte replenisher 51.
It connects with the electrolyte inside and reaches the electrolyte plate 1. By introducing this electrolyte replenisher 51, it becomes possible to compensate for the loss of electrolyte in the electrolyte plate 1, and the battery performance can be maintained at the same level as the initial state. In this embodiment, the electrode surface must be sufficiently wetted with the electrolytic solution over the entire area inside the electrode 25.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、多孔質体電極の有効反応面積の拡大が
図れ、しかも、ガスの電極内への拡散が促進され、電池
の出力を大幅に向上することができる。
According to the present invention, the effective reaction area of the porous electrode can be expanded, and the diffusion of gas into the electrode can be promoted, so that the output of the battery can be significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の電極構造の断面図、第2図
は空孔径分布及び濡れ特性線図、第3図は電極拡大模式
図、第4図ないし第8図は本発明の電極構造の軸断面図
、第9図、第10図従来例の断面図である。 ■・・・電解質板、2・・・電極、3・・・集電板、4
・・・セパレータ、9・・・補強部材、52・・・電解
質補給体。
Figure 1 is a sectional view of an electrode structure according to an embodiment of the present invention, Figure 2 is a pore size distribution and wetting characteristic diagram, Figure 3 is an enlarged schematic diagram of an electrode, and Figures 4 to 8 are a diagram of an electrode structure according to an embodiment of the present invention. FIG. 9 is an axial sectional view of the electrode structure, and FIGS. 9 and 10 are sectional views of the conventional example. ■... Electrolyte plate, 2... Electrode, 3... Current collector plate, 4
Separator, 9 Reinforcing member, 52 Electrolyte replenisher.

Claims (1)

【特許請求の範囲】 1、一対の電極とその間にはさまれる電解質板、及び燃
料と酸化剤とを分離して流すための分離板とから構成さ
れる燃料電池において、 前記電極の内部を電池運転に必要なガス量がガスの入口
、出口間で大きな圧力損失を生じることなく通過できる
程度の空隙率と断面積をもつ電極構造としたことを特徴
とする燃料電池。 2、特許請求の範囲第1項において、 前記電極と、前記、分離板、及び前記電極の補強部材を
密着して一体化し、平板形状にしたことを特徴とする燃
料電池。 3、特許請求の範囲第1項において、 前記電極の空孔を従来の電極の平均的な空孔径からそれ
よりも大きな空孔径まで種々の大きさの空孔径としたこ
とを特徴とする燃料電池構造。 4、特許請求の範囲第2項において、 前記補強部材をガスの流れ方向と平行に前記分離板上に
配置したことを特徴とする燃料電池。 5、特許請求の範囲第3項おいて、大きさの異なる空孔
を無秩序に前記電極内に配列したことを特徴とする燃料
電池。 6、特許請求の範囲第3項において、 電解質に近い部分の空孔径を最も小さくし、前記分離板
側に向かって徐々に空孔径を大きくしたことを特徴とす
る燃料電池。 7、特許請求の範囲第3項において、 ガスの流れ方向に対して直角方向に厚さ方向には一様な
空孔径とし空孔径の小さい部分と大きい部分とが隣接す
るように、その組み合わせが幾つも並んだことを特徴と
する燃料電池。 8、特許請求の範囲第6項において、前記を二枚重ねた
構造とし、前記電解質板と前記分離板側には空孔径の小
さい部分となり、電極中心部に空孔の大きい領域が形成
されることを特徴とする燃料電池。 9、特許請求の範囲第5項、第6項、第7項または第8
項における電極の空孔径の小さい領域に予め電解質を含
浸させたことを特徴とする燃料電池。 10、特許請求の範囲第6項において、前記電極を二枚
重ねた構造とし、前記電解質板から前記分離板に向かっ
て空孔径が小→大→小→大になるように配列し、両電極
の接触面に電解液を含浸させたことを特徴とする燃料電
池。 11、特許請求の範囲第3項おいて、細孔分布のピーク
値が異なる種々の電極材料の多孔質体を多層積層して電
極としたことを特徴とする燃料電池。 12、特許請求の範囲第10項において、電解液を含浸
させる手段として電解質を電解質保持材に含浸させた部
材を接触面に設けたことを特徴とする燃料電池。
[Claims] 1. A fuel cell comprising a pair of electrodes, an electrolyte plate sandwiched between them, and a separation plate for separating and flowing fuel and oxidizing agent, wherein the inside of the electrodes is connected to the battery. A fuel cell characterized by an electrode structure having a porosity and cross-sectional area that allows the amount of gas required for operation to pass between the gas inlet and outlet without causing a large pressure loss. 2. The fuel cell according to claim 1, wherein the electrode, the separation plate, and the reinforcing member of the electrode are closely integrated into a flat plate shape. 3. The fuel cell according to claim 1, wherein the pores in the electrode have various pore diameters ranging from the average pore diameter of conventional electrodes to a larger pore diameter. structure. 4. The fuel cell according to claim 2, wherein the reinforcing member is arranged on the separation plate in parallel to the gas flow direction. 5. A fuel cell according to claim 3, characterized in that pores of different sizes are arranged randomly within the electrode. 6. The fuel cell according to claim 3, wherein the pore diameter is made smallest in a portion close to the electrolyte, and gradually increases toward the separation plate side. 7. In claim 3, the pore diameter is uniform in the thickness direction in the direction perpendicular to the gas flow direction, and the combination is such that a portion with a small pore diameter and a portion with a large pore diameter are adjacent to each other. A fuel cell is characterized by having a number of them lined up. 8. In claim 6, the structure is such that two layers are stacked, and the electrolyte plate and the separation plate have portions with small pore diameters, and a region with large pores is formed in the center of the electrode. Characteristic fuel cells. 9.Claim 5, 6, 7 or 8
A fuel cell characterized in that the region of the electrode with a small pore diameter is impregnated with an electrolyte in advance. 10. Claim 6, wherein the electrodes have a structure in which two layers are stacked, and the pore diameters are arranged from small to large to small to large from the electrolyte plate to the separation plate, and the electrodes are in contact with each other. A fuel cell characterized by having its surface impregnated with an electrolyte. 11. A fuel cell according to claim 3, characterized in that the electrode is made by laminating multiple layers of porous bodies made of various electrode materials having different peak values of pore distribution. 12. A fuel cell according to claim 10, characterized in that a member in which an electrolyte holding material is impregnated with an electrolyte is provided on the contact surface as a means for impregnating the electrolyte with an electrolyte.
JP60223568A 1985-10-09 1985-10-09 Fuel cell Pending JPS6286666A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60223568A JPS6286666A (en) 1985-10-09 1985-10-09 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60223568A JPS6286666A (en) 1985-10-09 1985-10-09 Fuel cell

Publications (1)

Publication Number Publication Date
JPS6286666A true JPS6286666A (en) 1987-04-21

Family

ID=16800200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60223568A Pending JPS6286666A (en) 1985-10-09 1985-10-09 Fuel cell

Country Status (1)

Country Link
JP (1) JPS6286666A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0466418A1 (en) * 1990-07-07 1992-01-15 Ngk Insulators, Ltd. Solid oxide fuel cell and porous electrode for use in the same
WO2005045963A3 (en) * 2003-11-05 2006-07-06 Honda Motor Co Ltd Electrolyte-electrode joined assembly and method for producing the same
US9035183B2 (en) 2011-12-27 2015-05-19 Hitachi Metals, Ltd. Connection structure, connection method and differential signal transmission cable

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54115739A (en) * 1977-08-15 1979-09-08 United Technologies Corp Fuel cell laminated body
JPS58131664A (en) * 1982-01-29 1983-08-05 Hitachi Ltd Fuel cell
JPS6059664A (en) * 1983-09-09 1985-04-06 Mitsubishi Electric Corp Electrode for molten carbonate fuel cell
JPS60207253A (en) * 1984-03-02 1985-10-18 アメリカ合衆国 Fuel cell electrodes and fuel cells using the electrodes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54115739A (en) * 1977-08-15 1979-09-08 United Technologies Corp Fuel cell laminated body
JPS58131664A (en) * 1982-01-29 1983-08-05 Hitachi Ltd Fuel cell
JPS6059664A (en) * 1983-09-09 1985-04-06 Mitsubishi Electric Corp Electrode for molten carbonate fuel cell
JPS60207253A (en) * 1984-03-02 1985-10-18 アメリカ合衆国 Fuel cell electrodes and fuel cells using the electrodes

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0466418A1 (en) * 1990-07-07 1992-01-15 Ngk Insulators, Ltd. Solid oxide fuel cell and porous electrode for use in the same
WO2005045963A3 (en) * 2003-11-05 2006-07-06 Honda Motor Co Ltd Electrolyte-electrode joined assembly and method for producing the same
US7300718B2 (en) 2003-11-05 2007-11-27 Honda Motor Co., Ltd. Electrolyte-electrode joined assembly and method for producing the same
US9035183B2 (en) 2011-12-27 2015-05-19 Hitachi Metals, Ltd. Connection structure, connection method and differential signal transmission cable

Similar Documents

Publication Publication Date Title
US4900643A (en) Lead acid bipolar battery plate and method of making the same
JPS6130385B2 (en)
JP7308208B2 (en) Electrochemical cell with improved fluid flow design
JP6890916B2 (en) Separation plate and fuel cell including it
JP7192148B2 (en) Fuel cell plates, bipolar plates and fuel cell devices
CN107851824A (en) Fuel cell and fuel cell pack
CA2693522C (en) Fuel cell with non-uniform catalyst
JP2007311089A (en) Fuel cell separator
US20040157111A1 (en) Fuel cell
JP2001250568A (en) Current collector plate for polymer electrolyte fuel cells
JPS6286666A (en) Fuel cell
CN209401734U (en) Secondary batteries and battery modules
US20190131660A1 (en) Solid-state battery design using a mixed ionic electronic conductor
JPH04206468A (en) Sealed alkali-zinc storage battery
JPS59154772A (en) Fuel cell
JP2000012053A (en) Solid polymer electrolyte fuel cell
JP2633522B2 (en) Fuel cell
JP4498681B2 (en) Polymer electrolyte fuel cell
JP2005050566A (en) Fuel cell separator
US20220223920A1 (en) Electrode and secondary battery including the same
JPS6358768A (en) Fuel cell
US20190288328A1 (en) Lithium-ion battery with wire-containing electrodes
IT9067582A1 (en) MELTED CARBONATE FUEL BATTERY
JPH07335234A (en) Fuel cell
JPS59154770A (en) Fuel cell