[go: up one dir, main page]

JPS6286606A - Strand for cable conductor and conductor for power cable - Google Patents

Strand for cable conductor and conductor for power cable

Info

Publication number
JPS6286606A
JPS6286606A JP22463785A JP22463785A JPS6286606A JP S6286606 A JPS6286606 A JP S6286606A JP 22463785 A JP22463785 A JP 22463785A JP 22463785 A JP22463785 A JP 22463785A JP S6286606 A JPS6286606 A JP S6286606A
Authority
JP
Japan
Prior art keywords
carbon fiber
conductor
cable
linear expansion
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22463785A
Other languages
Japanese (ja)
Inventor
由明 中尾
昭太郎 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP22463785A priority Critical patent/JPS6286606A/en
Publication of JPS6286606A publication Critical patent/JPS6286606A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Insulated Conductors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は導体用素線並びに電力ケーブル用導体に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a conductor wire and a power cable conductor.

(従来の技術)(発明が解決しようとする問題点) 従来から電力ケーブルの導体としては銅又はアルミニウ
ムが使用さ1ているが、負荷電流及び季節変化に伴う温
度変化によって熱伸縮を起す。そのためにケーブルにう
ねりを生じたり接続点に張力が加わったりなどして種々
のケーブル障害の原゛因となることがある。従って、上
記の熱伸縮を吸収させるためにケーブル布設に当たって
予めケーブルを蛇行させるいわゆるスネーク布設を行な
ったり、オフセットなどを設ける必要があり、こnらの
熱挙動対策が非常に重要であり、又この対策に要する費
用の線路建設費に占める割合が大きいという問題がある
。又カーゼンが多いと素線として線引加工が困難となる
という問題点があった。
(Prior Art) (Problems to be Solved by the Invention) Copper or aluminum has traditionally been used as a conductor for power cables, but they undergo thermal expansion and contraction due to temperature changes associated with load current and seasonal changes. As a result, the cable may become undulated or tension may be applied to the connection point, which may cause various cable failures. Therefore, in order to absorb the above-mentioned thermal expansion and contraction, it is necessary to perform so-called snake installation in which the cable meanderes in advance, or to provide offsets, etc., and measures against thermal behavior are extremely important. There is a problem in that the cost required for countermeasures accounts for a large proportion of the track construction cost. Further, there is a problem that if there is a large amount of curlen, it becomes difficult to draw the wire as a wire.

(問題点を解決するための手段) 本発明は、上記の問題点を解決するためになさnたもの
で、各種の金属の強度を高めるために、各種の繊維を金
属マトリックス中に介在させるととによって強化した複
合材料、即ち繊維強化複合金属材料(FRMと略称さn
ている)が種々の目的の几めに研究さnているが、炭素
繊維が負の線膨脹係数を有していることに着目し、ベー
スになる金属として従来から電力ケーブルに使用さnて
いる銅又はアルミニウムとし、強化繊維として炭素繊維
を用い、炭素繊維の体積含有率を5〜30%(体積抵抗
率で50%位まで)とした炭素繊維強化複合合金からな
る荒引線を所要サイズに線引加工したものを電力ケーブ
ル用導体とするものである。
(Means for Solving the Problems) The present invention has been made to solve the above problems, and in order to increase the strength of various metals, various fibers are interposed in a metal matrix. Fiber-reinforced composite metal materials (abbreviated as FRM)
Carbon fiber has been carefully researched for various purposes, but it has been focused on the fact that carbon fiber has a negative coefficient of linear expansion, and it has been used as a base metal for power cables. Rough wire made of carbon fiber-reinforced composite alloy with carbon fiber volume content of 5 to 30% (up to about 50% in volume resistivity) made of copper or aluminum as the reinforcing fiber is cut to the required size. The drawn wire is used as a conductor for power cables.

(作用) 前記の如き炭素繊維強化合金の等側線膨脹係数α′は次
式で表わさnる。
(Function) The isolateral linear expansion coefficient α' of the carbon fiber reinforced alloy as described above is expressed by the following equation.

ここに、αは線膨脹係数%Aは合金に占める体積含有率
、Eは弾性係数であり、 5uffix i  は炭素
繊維1mはベースになる金属(銅又はアルミニウム)を
示す。
Here, α is the coefficient of linear expansion, %A is the volumetric content in the alloy, E is the elastic modulus, and 5uffix i is the base metal (copper or aluminum) for 1 m of carbon fiber.

上式に於てαiは負であるので、α′〈6mとなる。In the above equation, αi is negative, so α′<6m.

即ち炭素繊維で強化することにより合金の線膨脹係数は
ベースになる金属の線膨脹係数よりも小さくなり、とn
は炭素繊維の含有割合が増えるに伴って益々小さくなる
。電力ケーブル用導体としては線膨脹係数は小さい程好
ましいのであるが1本発明に於て炭素繊維含有率を前述
の如く限定した理由を説明する。炭素繊維はベースにな
る金属よりも導電率が低いので炭素繊維強化合金の等価
導′rlL率はベースになる金属の導電率よりも悪くな
る。
That is, by reinforcing with carbon fiber, the linear expansion coefficient of the alloy becomes smaller than that of the base metal, and n
becomes smaller and smaller as the carbon fiber content increases. Although it is preferable for a conductor for a power cable to have a smaller linear expansion coefficient, the reason why the carbon fiber content is limited as described above in the present invention will be explained. Since carbon fibers have a lower electrical conductivity than the base metal, the equivalent conductivity of the carbon fiber reinforced alloy will be worse than the conductivity of the base metal.

そこで炭素繊維の含有量が少ないと線膨張率が太き過ぎ
、含有量が太きいと導電率が低下することから含有tt
最適と判断さnる範囲としたものである。
Therefore, if the content of carbon fiber is small, the coefficient of linear expansion will be too thick, and if the content is too thick, the conductivity will decrease, so the content tt
This is a range that is determined to be optimal.

化繊維として外径5〜10μの炭素短繊維を用い該繊維
の含有率5〜30%として、長手方向に繊実施例2とし
てベースになる金属を銅とし、強化繊維として外径5〜
lOμの炭素長繊維を用い該繊維の含有率を5〜30%
とし長尺の炭素繊維糸を溶融鋼をくぐらせることにより
炭素繊維強化鋼の荒引線を製造した。
Short carbon fibers with an outer diameter of 5 to 10 μm are used as reinforced fibers, the content of the fibers is 5 to 30%, fibers are produced in the longitudinal direction as in Example 2, copper is used as the base metal, and reinforcing fibers with an outer diameter of 5 to 10 μm are used.
Using lOμ long carbon fibers, the fiber content is 5 to 30%.
A carbon fiber reinforced steel wire was manufactured by passing a long carbon fiber thread through molten steel.

上記の実施例について、線膨脹係数1体積抵抗率及び引
張強さを試算し几結果は次表のとおシである。
For the above examples, the linear expansion coefficient, volume resistivity, and tensile strength were estimated and the results are shown in the following table.

次にベース金属を銅又はアルミニウムとし炭素繊維の含
有割合を変化させた場合の線膨脹係数及び体積抵抗率の
計算値を図に示した。第1図〜第3図において線膨脹係
数最大で50%ダウン、体積抵抗率の50%アップ以下
の値から炭素繊維の含有割合の最適値として本発明に於
て前述の如く限定したものである。
Next, the calculated values of linear expansion coefficient and volume resistivity are shown in the figure when the base metal is copper or aluminum and the content ratio of carbon fiber is varied. In Figures 1 to 3, the optimum value of the carbon fiber content ratio is determined as described above in the present invention from values that reduce the linear expansion coefficient by at most 50% and increase the volume resistivity by 50% or less. .

(発明の効果) 本発明によ1ば導体としての線膨脹係数がかなり小さく
なるので、とf’L’i電カケ−プルに用いた場合、温
度変化による熱伸縮が小さくなるので、ケーブルのうね
りや接続部での張力が軽減さ几るので、ケーブル布設に
際してスネーク布設やオフセラ)1設けるなどの熱挙動
対策が軽減さルそnだけ線路建設費用の節減が期待さn
る。
(Effects of the Invention) According to the present invention, the coefficient of linear expansion as a conductor is considerably reduced, and when used in an f'L'i electric cable, thermal expansion and contraction due to temperature changes is reduced. Since undulations and tension at connections are reduced, the need for thermal behavior measures such as snake installation and off-series installation during cable installation is reduced, which is expected to result in reductions in track construction costs.
Ru.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の導体における炭素繊維含有率−線膨脹
係数の関係を示すグラフ、第2図は炭素繊維含有率一体
積抵抗率の関係を示すグラフ、第3図は炭素繊維含有率
−引張り強さの関係を示すグラフである。 代理人 弁理士  竹 内  守 第1図 及柔邑#1合貫子(に)− 炭(原本令π手(%)− 第3区 泉1**舎帽1z)−
Figure 1 is a graph showing the relationship between carbon fiber content and linear expansion coefficient in the conductor of the present invention, Figure 2 is a graph showing the relationship between carbon fiber content and volume resistivity, and Figure 3 is a graph showing the relationship between carbon fiber content and volume resistivity. It is a graph showing the relationship between tensile strength. Agent Patent Attorney Mamoru Takeuchi 1st Zu and Jumura #1 Goukukushi (ni) - Charcoal (Original Rei π hand (%) - 3rd Ward Izumi 1** Shahat 1z) -

Claims (2)

【特許請求の範囲】[Claims] (1)銅又はアルミニウムを負の線膨脹係数を有する炭
素繊維で強化し、該炭素繊維の体積含有率が5〜30%
である炭素繊維複合金属材料からなることを特徴とする
ケーブル導体用素線。
(1) Copper or aluminum is reinforced with carbon fiber having a negative coefficient of linear expansion, and the volume content of the carbon fiber is 5 to 30%.
A wire for a cable conductor characterized by being made of a carbon fiber composite metal material.
(2)銅又はアルミニウムを負の線膨脹係数を有する炭
素繊維で強化し、該炭素繊維の体積含有率が5〜30%
である炭素繊維強化複合金属材料からなることを特徴と
する電力ケーブル用導体。
(2) Copper or aluminum is reinforced with carbon fiber having a negative coefficient of linear expansion, and the volume content of the carbon fiber is 5 to 30%.
A conductor for a power cable, characterized by being made of a carbon fiber reinforced composite metal material.
JP22463785A 1985-10-11 1985-10-11 Strand for cable conductor and conductor for power cable Pending JPS6286606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22463785A JPS6286606A (en) 1985-10-11 1985-10-11 Strand for cable conductor and conductor for power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22463785A JPS6286606A (en) 1985-10-11 1985-10-11 Strand for cable conductor and conductor for power cable

Publications (1)

Publication Number Publication Date
JPS6286606A true JPS6286606A (en) 1987-04-21

Family

ID=16816829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22463785A Pending JPS6286606A (en) 1985-10-11 1985-10-11 Strand for cable conductor and conductor for power cable

Country Status (1)

Country Link
JP (1) JPS6286606A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0371509A (en) * 1989-08-09 1991-03-27 Hitachi Cable Ltd overhead power lines
US7093416B2 (en) 2004-06-17 2006-08-22 3M Innovative Properties Company Cable and method of making the same
US7131308B2 (en) 2004-02-13 2006-11-07 3M Innovative Properties Company Method for making metal cladded metal matrix composite wire
US8653370B2 (en) 2004-06-17 2014-02-18 3M Innovative Properties Company Cable and method of making the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0371509A (en) * 1989-08-09 1991-03-27 Hitachi Cable Ltd overhead power lines
US7131308B2 (en) 2004-02-13 2006-11-07 3M Innovative Properties Company Method for making metal cladded metal matrix composite wire
US7093416B2 (en) 2004-06-17 2006-08-22 3M Innovative Properties Company Cable and method of making the same
US8653370B2 (en) 2004-06-17 2014-02-18 3M Innovative Properties Company Cable and method of making the same

Similar Documents

Publication Publication Date Title
JPWO2005024851A1 (en) Covered wire and automotive wire harness
CA1045222A (en) Aluminum alloy composite electrical conductor
JPS6286606A (en) Strand for cable conductor and conductor for power cable
JP3454981B2 (en) Robot electric wire and robot cable using the same
CN100545952C (en) Concentric stranded conductor
CN105680391B (en) A kind of composite core strengthens cable strain clamp
CN208226123U (en) A kind of wire clamp for connecting into subscriber
US7604860B2 (en) High tensile nonmagnetic stainless steel wire for overhead electric conductor, low loss overhead electric conductor using the wire, and method of manufacturing the wire and overhead electric conductor
JPH04308610A (en) Overhead transmission line
CA2154656A1 (en) Process and connection for electrically connecting two superconducting cables
CN200943008Y (en) High-speed elevator load control cabinet
JPH0583931U (en) Overhead power line
EP1804337A1 (en) Superconducting cable connection structure
CN2906842Y (en) Multipurpose Gap Wire
JPH04308611A (en) overhead power lines
JP3014508B2 (en) Compression connection of twisted wire
JPH0371509A (en) overhead power lines
JPH04308609A (en) overhead power lines
JP2001043740A (en) Overhead transmission line
RU216307U1 (en) Wire uninsulated steel-aluminum
JPH0487212A (en) Stranded cable
JPH0444366B2 (en)
JP2020161263A (en) Wire harness twist wire
JP3063023B2 (en) Snow melting wire
JPH05314819A (en) Overhead power line