JPS6286102A - Manufacturing method of composite sintered body for tools - Google Patents
Manufacturing method of composite sintered body for toolsInfo
- Publication number
- JPS6286102A JPS6286102A JP402986A JP402986A JPS6286102A JP S6286102 A JPS6286102 A JP S6286102A JP 402986 A JP402986 A JP 402986A JP 402986 A JP402986 A JP 402986A JP S6286102 A JPS6286102 A JP S6286102A
- Authority
- JP
- Japan
- Prior art keywords
- diamond
- sintered body
- cemented carbide
- powder
- base material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002131 composite material Substances 0.000 title claims description 28
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 239000010432 diamond Substances 0.000 claims description 126
- 229910003460 diamond Inorganic materials 0.000 claims description 125
- 239000000463 material Substances 0.000 claims description 58
- 239000000843 powder Substances 0.000 claims description 38
- 150000004767 nitrides Chemical class 0.000 claims description 26
- 150000001247 metal acetylides Chemical class 0.000 claims description 17
- 230000000737 periodic effect Effects 0.000 claims description 14
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical group [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 10
- 150000001875 compounds Chemical class 0.000 claims description 9
- 238000005245 sintering Methods 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 7
- 229910045601 alloy Inorganic materials 0.000 claims description 6
- 239000000956 alloy Substances 0.000 claims description 6
- 239000006104 solid solution Substances 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 238000007731 hot pressing Methods 0.000 claims description 2
- 229910052582 BN Inorganic materials 0.000 claims 2
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims 2
- 239000008247 solid mixture Substances 0.000 claims 2
- 238000005304 joining Methods 0.000 claims 1
- 238000005520 cutting process Methods 0.000 description 31
- 239000002184 metal Substances 0.000 description 28
- 229910052751 metal Inorganic materials 0.000 description 28
- 239000002245 particle Substances 0.000 description 27
- 239000011230 binding agent Substances 0.000 description 10
- 238000005219 brazing Methods 0.000 description 10
- 239000011812 mixed powder Substances 0.000 description 9
- 230000007423 decrease Effects 0.000 description 8
- 229910009043 WC-Co Inorganic materials 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 239000010949 copper Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000004049 embossing Methods 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- -1 iron group metals Chemical class 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 238000003303 reheating Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 1
- 240000002853 Nelumbo nucifera Species 0.000 description 1
- 235000006508 Nelumbo nucifera Nutrition 0.000 description 1
- 235000006510 Nelumbo pentapetala Nutrition 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 244000269722 Thea sinensis Species 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000011195 cermet Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical class [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229910000601 superalloy Inorganic materials 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 101150051314 tin-10 gene Proteins 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Landscapes
- Polishing Bodies And Polishing Tools (AREA)
- Laminated Bodies (AREA)
- Ceramic Products (AREA)
- Powder Metallurgy (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】 本発明はすぐれた接着強度を有する複合工具に関する。[Detailed description of the invention] The present invention relates to a composite tool having excellent adhesive strength.
ダイヤモンドは最も高硬度の物質であり、単結晶ダイヤ
モンドを用いて非鉄金属材料等を切削加工することは以
前から行われている。近年、超高圧焼結の技術を用いて
微細なダイヤモンド粒子をCoを主体とした金属で結合
したダイヤモンド焼結体が市販され、これは単結晶ダイ
ヤモンドよりも衝撃に対して強く、ダイヤモンド工具の
適用範囲を拡大するものとして注目されている。この金
属結合されたダイヤモンド焼結体は、ダイヤモンド層の
厚みが約0.JR−であり、WC−Co超硬合金母(オ
に直接接合されている。このもの\製法については特公
昭!;2−/2/2乙号公報に述べられているが、WC
−Co超硬合金の混合粉末、もしくはこれを予め焼結し
て得たWC−Co超硬合金に接してダイヤモンド粉末を
置き、これを超高圧装置を用いて高圧下で加熱して、母
材となるWC−Co混合粉末もしくはWC−C!o合金
中のCOを融解せしめて、この融解したCo成分がダイ
ヤモンド粉末層中に移動し、ダイヤモンドの結合材とな
る。Diamond is the hardest substance, and single-crystal diamond has been used to cut nonferrous metal materials and the like for a long time. In recent years, diamond sintered bodies in which fine diamond particles are bonded with Co-based metal using ultra-high-pressure sintering technology have become commercially available, and these are more resistant to impact than single-crystal diamond, making them suitable for use in diamond tools. It is attracting attention as a way to expand its range. In this metal-bonded diamond sintered body, the thickness of the diamond layer is approximately 0. JR-, and is directly joined to the WC-Co cemented carbide motherboard (O).The manufacturing method for this product is described in Tokukosho!; 2-/2/2 Publication No. O, but WC-Co cemented carbide is
Diamond powder is placed in contact with a mixed powder of -Co cemented carbide or a WC-Co cemented carbide obtained by pre-sintering this, and this is heated under high pressure using an ultra-high pressure device to form the base material. WC-Co mixed powder or WC-C! The CO in the o alloy is melted, and the molten Co component moves into the diamond powder layer and becomes a bonding material for diamond.
この場合、加圧・加熱条件はダイヤモンドが熱力学的に
安定な条件下にあり、融解したCoはダイヤモンドを溶
解し再析出せる溶媒作用を有し、ダイヤモンド焼結体の
結合材となると共に母材超硬合金の結合材となる。これ
により得られた焼結体は隣接するダイヤモンド粒子が相
互に直接接合しており、また超硬合金母材とダイヤモン
ド焼結体層は同じ結合金属からなる故に一体となった強
固な結合が得られるとされている。In this case, the pressurization and heating conditions are such that diamond is thermodynamically stable, and the molten Co has a solvent action that can dissolve and reprecipitate diamond, and serves as a binding material for the diamond sintered body and as a matrix. Serves as a bonding material for cemented carbide. In the sintered body thus obtained, adjacent diamond particles are directly bonded to each other, and since the cemented carbide base material and the diamond sintered body layer are made of the same bonding metal, a strong bond is achieved. It is said that
この市販ダイヤモンド焼結体を機械加工用工具として用
いる場合、切刃となる部分のみにダイヤモンド含有硬質
層を設け、これを剛性の高い母材に接合した複合工具と
することは工具としての強度を高める良い方法である。When using this commercially available diamond sintered body as a machining tool, a diamond-containing hard layer is provided only on the part that will become the cutting edge, and this is bonded to a highly rigid base material to create a composite tool, which increases the strength of the tool. This is a good way to increase it.
このような複合工具の例では近年TiCやTiNをWQ
基超超硬合金母材被覆した切削工具が一般に使用されて
いる。WCC超超硬合金それ自体も切削工具として広く
使用されているが、高剛性で靭性に優れ、熱伝導度も良
く、上記のような複合工具の母材としては特に適してい
る。In recent years, TiC and TiN have been used as an example of such composite tools.
Cutting tools coated with a base cemented carbide matrix are commonly used. Although WCC cemented carbide itself is widely used as a cutting tool, it has high rigidity, excellent toughness, and good thermal conductivity, and is particularly suitable as a base material for the above-mentioned composite tools.
しかしながら、これらの複合工具は次のような欠陥を有
している。However, these composite tools have the following deficiencies.
金flcoを結合材とする市販ダイヤモンド焼結体を磯
城加工用のバイトに仕立てる場合、ダイヤモンド焼結体
層が接合している超硬合金母材と鋼のパイトンヤンクを
ロウ付けしてバイトを作成する。When making a commercially available diamond sintered body using gold flco as a binding material into a cutting tool for Isoki processing, the tooling tool is created by brazing the cemented carbide base material to which the diamond sintered material layer is bonded and the steel Piton yank. .
超硬合金と幽のロウ((に使用する銀ロウ材は各柚の
す、のデ](1!お発六 ハ て(ハス め(ロ ライ
、t L寸シ昌1rF 1寸−鐙ニ750〜1000C
である。この温度で上記ダイヤモンド焼結体をロウ付け
するとダイヤモンド層が母材超硬合金との界面より剥離
してしまう場合がある。Cemented carbide and Yuno's wax (The silver brazing material used for each Yuzu
Su, no de] (1! Odate six ha te (lotus me, t L size 1rF 1 size - stirrup Ni 750~1000C
It is. If the diamond sintered body is brazed at this temperature, the diamond layer may peel off from the interface with the base cemented carbide.
たとえ7回のロウ付けで剥離しない場合も、数回加熱を
繰返すと剥離する。更にこれを確認する為に超硬合金母
材に直接接合されたダイヤモンド焼−り
粘体そのものを、真空炉を用いて/’OmWLHgの真
空下でfoooCに30分間加熱保持してみた。炉から
取出した試料2個の中、7個はダイヤモンド焼結体層と
超硬合金母材界面が完全に剥離しており、他の7個は界
面に亀裂を生じており、力を加えると容易に剥廃した。Even if it does not peel off after seven brazing cycles, it will peel off after repeated heating several times. Furthermore, in order to confirm this, the diamond-fired viscous body directly bonded to the cemented carbide base material was heated and held at foooC for 30 minutes under a vacuum of /'OmWLHg using a vacuum furnace. Of the two samples taken out of the furnace, in seven of them the interface between the diamond sintered body layer and the cemented carbide base material had completely separated, and in the other seven, cracks had formed at the interface, and when force was applied, easily dismantled.
この場合、実際の剥離面はダイヤモンド焼結体層と超硬
合金母材の界面であり、この界面の接着強度が加熱によ
り低下したと考えられる。第1図は上記市販ダイヤモン
ド焼結体の超硬合金母材との接合界面の顕微臆写真(i
soo倍)である。黒色の連続したダイヤモンド焼結体
層はダイヤモンド粒子が相互に接合した構造を有し、そ
のすきまの白色部が金属COでダイヤモンド焼結体の結
合金属であり、また灰色の母材との界面においてはCO
が富化された層があり、ダイヤモンド粒子はCoを介し
てWC−Co超硬合金と接合している。In this case, the actual peeling surface was the interface between the diamond sintered body layer and the cemented carbide base material, and it is thought that the adhesive strength at this interface was reduced by heating. Figure 1 is a microscopic photograph (i
soo times). The black continuous diamond sintered body layer has a structure in which diamond particles are bonded to each other, and the white parts in the gaps are metal CO, which is the bonding metal of the diamond sintered body, and at the interface with the gray base material. is CO
There is a layer enriched with Co, and the diamond particles are bonded to the WC-Co cemented carbide via Co.
本発明者等の研究によると、ダイヤモンド粒子がダイヤ
モンドを溶)眸し、またダイヤモンドが熱力学的に安定
な条件下でこれを成長させる鉄族金属等の触媒−溶媒金
属を用いて超高圧高温下焼結してダイヤモンド焼結体は
常圧下で再加熱すると比較的低温でその強度が低下する
。これはダイヤモンド粒子に接して存在する鉄族金属が
ダイヤモンドの黒鉛への逆変態を促進する触媒作用を有
することによると推定される。ダイヤモンド焼結体層で
ダイヤモンド粒子間の直接接合が発達した焼結体におい
ては、ダイヤモンド結合金属である鉄族金属の実質的な
接触界面は減少しており、焼結体を再加熱した場合の強
度低下は軽減される。ところが市販されている前記の焼
結体ではダイヤモンド焼結体層は粒子間の結合が発達し
ているが、超硬合金母材との界面は前記した如くダイヤ
モンド粒子とCOの接合面となっている。従って、これ
を加熱した場合は母材との界面が強度低下の度合が犬で
あり、劣化が進むことが予想される。これはこの複合焼
結体の重大なる欠陥である。このような接合界面の強度
低下を防ぐ方法としては、劉えば工具を作成するときロ
ウ付けに用いるロウ材を更に低融点のものに変えて加熱
温度を下げることが考えられる。しかし低温ロウ材を用
いて作成したバイトでは切削中にバイトの刃先温度が上
昇するとロウ材が軟化し、ロウ付は部が外れることがあ
り、使用範囲が限定されてし士う。According to the research conducted by the present inventors, diamond particles look like diamond (melting diamond), and diamond grows under thermodynamically stable conditions using catalyst-solvent metals such as iron group metals. When a pre-sintered diamond sintered body is reheated under normal pressure, its strength decreases at a relatively low temperature. This is presumed to be because the iron group metal present in contact with the diamond particles has a catalytic effect that promotes the reverse transformation of diamond into graphite. In a sintered body in which direct bonding between diamond particles has developed in the diamond sintered body layer, the substantial contact interface of the iron group metal, which is the diamond bonding metal, is reduced, and when the sintered body is reheated, Strength reduction is reduced. However, in the above-mentioned commercially available sintered bodies, the diamond sintered body layer has a well-developed bond between the particles, but the interface with the cemented carbide matrix serves as a bonding surface between the diamond particles and CO as described above. There is. Therefore, if this is heated, the strength of the interface with the base material will be significantly reduced, and it is expected that deterioration will progress. This is a serious defect of this composite sintered body. One possible way to prevent such a decrease in the strength of the joint interface is to lower the heating temperature by changing the brazing material used for brazing when making the tool to one with a lower melting point. However, with a tool bit made using low-temperature brazing material, when the cutting edge temperature of the tooling tool increases during cutting, the brazing material softens and the brazing part may come off, limiting its range of use.
本発明者らは超硬合金母材との接合強度が再加熱によっ
てもイ多下しない複合ダイヤモンド焼結体を得る方法を
種々検討した。例えばダイヤモンド焼結体層はダイヤモ
ンド粒子間の直接結合を生じさせる為に鉄族金属をダイ
ヤモンドの溶媒として含むものであって、超硬合金母材
との界面にダイヤモンドを溶解しないCuの中間層を有
する焼結体を試作してみた。この複合焼結体では真空中
で7000°Cに加熱してもダイヤモンド焼結体層と母
材超硬合金の剥離は生じなかった。The present inventors have investigated various methods for obtaining a composite diamond sintered body whose bonding strength with the cemented carbide base material does not deteriorate significantly even after reheating. For example, a diamond sintered body layer contains an iron group metal as a solvent for diamond in order to create a direct bond between diamond particles, and an intermediate layer of Cu that does not dissolve diamond at the interface with the cemented carbide base material. I tried making a sintered body with this. In this composite sintered body, even when heated to 7000°C in vacuum, the diamond sintered body layer and the base cemented carbide did not separate.
超硬合金母材との界面にこのような高温強度の低い中間
層を有する複合焼結体は、これを切削工具として用いた
場合、刃先となるダイヤモンド焼結体層に加わる応力と
熱により中間層が塑性変形してしまい、刃先が破損する
という欠点が生じる。When a composite sintered body having such an intermediate layer with low high-temperature strength at the interface with the cemented carbide base material is used as a cutting tool, the intermediate layer will break due to the stress and heat applied to the diamond sintered body layer that will become the cutting edge. The disadvantage is that the layer is plastically deformed and the cutting edge is damaged.
本発明者等はこのような欠点を解消すべく更に検討を加
えた。前記した理由により、ダイヤモンド焼結体層とダ
イヤモンドの溶媒金属であるCOを含有する超硬合金は
直接接合せずに、この接合界面には高温で変形し難い物
質が存在していれば良い。更にこの中間接合層に要求さ
れる特性は、超高圧下、焼結時にダイヤモンド及び母材
超硬合金とりnj固に接合し得ること、また焼結体に過
大な残留応力を生じさせない為に熱膨張係数がダイヤモ
ンド焼結体及び母材超硬合金のそれと略一致しているこ
とが必要である。また切削工具として使用した場合、刃
先に発生する熱を逃がす為に熱伝導度が良い方が望まし
く、強度面からも余り脆いものは使えない。The inventors of the present invention have conducted further studies in order to eliminate such drawbacks. For the reasons described above, the diamond sintered body layer and the cemented carbide containing CO, which is a solvent metal for diamond, are not directly bonded, but it is sufficient that a substance that is difficult to deform at high temperatures exists at this bonding interface. Furthermore, the characteristics required of this intermediate bonding layer are that it can firmly bond diamond and the base material cemented carbide during sintering under ultra-high pressure, and that it can be heated to prevent excessive residual stress from occurring in the sintered body. It is necessary that the expansion coefficient substantially match that of the diamond sintered body and the base cemented carbide. Furthermore, when used as a cutting tool, it is desirable to have good thermal conductivity in order to dissipate the heat generated at the cutting edge, and from the viewpoint of strength, it is not possible to use a tool that is too brittle.
以上の観点から、各種(オrFを検討した結果、立方晶
8望什イ+IIII表(C1下CBNンゴーオ)、L−
1,1j110■?11パAl1a、!fra族の炭化
物、窒化物、炭窒化物が適しているとの結論に達した。From the above point of view, as a result of examining various types of (orF), cubic crystal 8-bodi + III table (C1 lower CBN ngo-o), L-
1,1j110■? 11 pa Al1a,! It was concluded that carbides, nitrides, and carbonitrides of the FRA group are suitable.
本発明における中間接合層はCBNとサーメットの成分
であり、剛性が高く、高温強度が溌れており、更に熱伝
導率も良い。The intermediate bonding layer in the present invention is composed of CBN and cermet, and has high rigidity, excellent high-temperature strength, and also good thermal conductivity.
本発明者等の実験によると、ダイヤモンド焼結体を製造
する超高圧、高温条件下では、ダイヤモンド焼結体と超
硬合金母材は、この中間接合層を介して強固に接合して
いた。これらのCBNと炭化物、窒化物から成る中間接
合層を有する複合焼結体はダイヤモンド焼結体層と中間
接合層との界面には超硬合金母材等より流出したCo等
のダイヤモンド溶媒金属が多量に存在せず、ダイヤモン
ド粒子と中IFji +:!合層が直接接している領域
が犬である。According to experiments conducted by the present inventors, the diamond sintered body and the cemented carbide base material were firmly bonded via this intermediate bonding layer under the ultra-high pressure and high temperature conditions for manufacturing the diamond sintered body. These composite sintered bodies having an intermediate bonding layer consisting of CBN, carbide, and nitride have diamond solvent metals such as Co flowing out from the cemented carbide base material etc. at the interface between the diamond sintered body layer and the intermediate bonding layer. Not present in large quantities, diamond particles and medium IFji +:! The area where the laminae are in direct contact is the dog.
このため再加熱による強度低下が生じない。以上の如く
、本発明によればダイヤモンド焼結層を超(使合金母材
に強固に付着させることができ、非常に有用であるが、
このように強固に接合させられる理由としては次のよう
に推測される。Therefore, there is no decrease in strength due to reheating. As described above, according to the present invention, the diamond sintered layer can be firmly attached to the super-alloy base material, which is very useful.
The reason for such a strong bond is presumed to be as follows.
まず、中間接合層と超(1い合金は材との恍?1につい
てであるが、中間接合層中に含有される周期律表第4a
、、!;a族の炭化物や窒化物は、超硬合金母材の主成
分であるWCと相互固溶体を形成し、更に中間層中のC
BNは超硬合金母材のWC−Coと反応してポライドを
生成するため、両者は強固に付着するすのと思われる。First, regarding the relationship between the intermediate bonding layer and the super(1) alloy, we will discuss
,,! ; Group A carbides and nitrides form a mutual solid solution with WC, which is the main component of the cemented carbide matrix, and furthermore, carbon in the intermediate layer.
Since BN reacts with WC-Co, which is the cemented carbide base material, to produce polide, it is thought that the two adhere firmly.
次に中間接合層とダイヤモンド焼結体の接着については
ダイヤモンド粉末や通常ダイヤモンドの結合相として用
いられる鉄族金属や炭化物、窒化物とも中間接合層中の
周期律表第’Aa、!;a族の炭化物、窒化物と親和性
に優れており、更に中間接合層とダイヤモンド焼結体層
は焼結前において粉末状態で接しているため、焼結後、
中間接合層とダイヤモンド焼結体層が混合した層が存在
して、強く接合するものと考えられる。Next, regarding the adhesion between the intermediate bonding layer and the diamond sintered body, diamond powder and iron group metals, carbides, and nitrides, which are usually used as a bonding phase for diamond, are also included in the intermediate bonding layer as shown in 'Aa' of the periodic table! It has excellent affinity with group A carbides and nitrides, and furthermore, since the intermediate bonding layer and the diamond sintered body layer are in contact with each other in a powder state before sintering, after sintering,
It is thought that there is a layer in which the intermediate bonding layer and the diamond sintered body layer are mixed, resulting in strong bonding.
また、周期律表第4a、5a族の炭化物、窒化物に0.
7〜50重量%のAlやSiを添加することにより、中
間接合層自体の焼結性が向上すると共に、これらの炭化
物や窒化物とダイヤモンド粒子との親和性も向上する。In addition, carbides and nitrides of groups 4a and 5a of the periodic table have 0.
By adding 7 to 50% by weight of Al or Si, the sinterability of the intermediate bonding layer itself is improved, and the affinity between these carbides and nitrides and diamond particles is also improved.
特に周期律表第4a、、5a族の窒化物であるTiNに
Alをθ/〜jO重債%含有したものを用いるとその効
果は犬である。In particular, when TiN, which is a nitride of Groups 4a and 5a of the periodic table, contains Al in an amount of θ/~jO, the effect is excellent.
AIまたは/およびSlの含有量が07重量%未満の場
合は添加の効果がなく、含有量が50重量%を越えると
、中間接合層中のAIまたは/およびSi量が多すぎ中
間層の強度が低下する。If the content of AI or/and Sl is less than 0.7% by weight, the addition has no effect, and if the content exceeds 50% by weight, the amount of AI or/and Si in the intermediate bonding layer is too large and the strength of the intermediate layer is reduced. decreases.
この種中間接合層は、中間接合層の組成に配合した粉末
をスラリー状として、超硬合金母材上に塗布してもよい
し、また、粉末状のま\で置くかまたは予め型押体とし
て、これを超硬合金上に配置することが可能である。塗
布する場合は薄い中間層の、また型押体を用いる場合は
厚い中間層を形成する上で有利な方法である。This type of intermediate bonding layer may be applied on the cemented carbide base material in the form of a slurry of powder blended with the composition of the intermediate bonding layer, or it may be left in powder form or pre-embossed. As such, it is possible to place this on cemented carbide. This is an advantageous method for forming a thin intermediate layer when coating, or a thick intermediate layer when using an embossing body.
本発明による中間接合層はCBNを含有しているため熱
伝導率が高く、高温強度も高く、熱膨張係数もダイヤモ
ンド焼結体と同程度のものとすることができる。CBN
の含有量が70重量%を越えると残部の周期律表第4a
、5a族の炭化物や窒化物の量が30重量%未満となり
、この炭化物や窒化物と超硬合金母材の主成分であるW
Cとで形成する相互固溶体の量が減少し、更に中間接合
層中のOBNとWC−Coが反応して生じるポライドが
脆いため、中間接合層と超硬合金母材との接着強度が低
下する傾向がある。またOBNの含有量が5重量%未満
であるとCBN含有の効果がなくなる。Since the intermediate bonding layer according to the present invention contains CBN, it has high thermal conductivity, high high-temperature strength, and can have a coefficient of thermal expansion comparable to that of a diamond sintered body. CBN
If the content exceeds 70% by weight, the remaining periodic table 4a
, the amount of group 5a carbides and nitrides is less than 30% by weight, and these carbides and nitrides and W, which is the main component of the cemented carbide base material.
The amount of mutual solid solution formed with C decreases, and the polide produced by the reaction between OBN and WC-Co in the intermediate bonding layer is brittle, resulting in a decrease in the adhesive strength between the intermediate bonding layer and the cemented carbide base material. Tend. Moreover, if the content of OBN is less than 5% by weight, the effect of containing CBN will be lost.
従って、中間接合層中のCBNの含有量は5〜70重量
%が望ましい。Therefore, the content of CBN in the intermediate bonding layer is preferably 5 to 70% by weight.
本発明による複合焼結体のダイヤモンド含有硬質層の厚
みは使用目的によって変るが、一般的にはQ、j; a
mから2騙の範囲が好適である。切削加工用のバイト刃
先として使用する場合は、工具が摩耗により力命となる
ときの工具刃先逃げ面の摩耗中は通常約0.5nL−以
下であるから、それ以上の厚み、即ちQ、j; am以
上のダイヤモンド含有硬質層があればよく、また2朋を
越える厚みは実際上必要でない。The thickness of the diamond-containing hard layer of the composite sintered body according to the present invention varies depending on the purpose of use, but generally Q, j; a
A range of 2 degrees from m is suitable. When used as a tool cutting edge for cutting, the flank surface of the tool cutting edge is usually less than about 0.5 nL- during wear when the tool is at its last due to wear, so the thickness should be larger than that, that is, Q, j. ; It is sufficient to have a diamond-containing hard layer with a thickness of at least 2 am, and a thickness exceeding 2 am is not actually necessary.
本発明の特徴であるCBNと炭化物、窒化物よりなる中
間接合層の厚みはσ0/〜°2 mmが良い。中間接合
層の厚みが001m−未満であると中間接合層を使用し
た効果がなく、また2mmを越える厚さは必この中間接
合層を用いて接合する母材としては超硬合金を用いる。The thickness of the intermediate bonding layer made of CBN, carbide, and nitride, which is a feature of the present invention, is preferably σ0/˜°2 mm. If the thickness of the intermediate bonding layer is less than 0.001 m, there is no effect of using the intermediate bonding layer, and if the thickness exceeds 2 mm, it is necessary to use cemented carbide as the base material to be bonded using the intermediate bonding layer.
特にWCC超超硬合金母材剛性が高く、熱伝導性も優れ
ており、また金属結合材を含むことから靭性も優れてお
り、母材として適している。In particular, WCC cemented carbide base material has high rigidity and excellent thermal conductivity, and since it contains a metal binder, it also has excellent toughness, making it suitable as a base material.
本発明による工具用複合焼結体の構造を第2図に示す。The structure of the composite sintered body for tools according to the present invention is shown in FIG.
1は工具刃先として使用されるダイヤモンド含有硬質焼
結体層で、2は母材のWCC超超硬合金3が本発明の特
徴である炭化物、窒化物よりなる中間接合層である。Reference numeral 1 is a diamond-containing hard sintered body layer used as a cutting edge of a tool, and reference numeral 2 is an intermediate bonding layer in which the base material WCC cemented carbide 3 is made of carbide or nitride, which is a feature of the present invention.
本発明の中間接合層における炭化物、窒化物としては例
えばTiC,ZrC,HfC,NbC,TaOとイッた
炭化物やT i N + Z rN+ HfN+ Nb
N! T aNといった窒化物。Examples of carbides and nitrides in the intermediate bonding layer of the present invention include carbides such as TiC, ZrC, HfC, NbC, and TaO, and TiN+ZrN+HfN+Nb.
N! Nitride such as TaN.
またはこれ等の混合物やTi (C,N)、 Zr (
0,N)といった炭窒化物が用いられる。Or a mixture of these or Ti (C,N), Zr (
Carbonitrides such as 0, N) are used.
本発明による複合焼結体の製造方法としては、炭化物や
窒化物の粉末を超硬合金母材とダイヤモンド含有硬質層
形成粉末の間に必要な量を粉末状でまたは型押体として
、また超硬合金母材に適当な溶媒を加えてスラリー状に
した粉末を塗布することによって中間接合層を形成する
粉末層を設け、これを超高圧、高温下でホットプレスす
ることにより、ダイヤモンド含有硬質層の焼結と同時に
炭化物、窒化物よりなる中間接合層を焼結し、同時に母
材と接合せしめる方法も採用できる。The method for producing a composite sintered body according to the present invention involves adding a necessary amount of carbide or nitride powder between the cemented carbide base material and the diamond-containing hard layer forming powder in powder form or as a stamped body; A powder layer that forms an intermediate bonding layer is created by applying a powder made into a slurry by adding an appropriate solvent to a hard alloy base material, and then hot pressing this under ultra-high pressure and high temperature to create a diamond-containing hard layer. It is also possible to adopt a method in which an intermediate bonding layer made of carbide or nitride is simultaneously sintered and bonded to the base material at the same time.
本発明で用いる中間接合層中の周期律表第’+a+5a
族金属の炭化物や窒化物は高強度の化合物であるが、ダ
イヤモンド含有層の焼結を行う超高圧条件下(一般には
20 kb −90kb )ではこれ等化合物の理想剪
断強度に近い圧力で加圧されており、これ等化合物粉末
粒子は変形、破砕し、容易に緻密な状態に充填され、引
続いて加熱されることによって緻密な焼結体となる。Periodic table number '+a+5a in the intermediate bonding layer used in the present invention
Group metal carbides and nitrides are high-strength compounds, but under ultra-high pressure conditions (typically 20 kb - 90 kb) during sintering of diamond-containing layers, these compounds cannot be pressurized at pressures close to the ideal shear strength of these compounds. These compound powder particles are deformed, crushed, easily packed into a dense state, and then heated to form a dense sintered body.
中間接合層を形成する周期律表第5a族の炭化物。Carbide of group 5a of the periodic table that forms the intermediate bonding layer.
窒化物、炭窒化物粉末に金属をMとするとMCに。When metal is M in nitride or carbonitride powder, it becomes MC.
MNX 、 M(NI C)/Yで表わされ、化学量論
的組成(x−/)外にXの値の広い範囲で存在し得る。MNX is represented by M(NIC)/Y and can exist in a wide range of values of X outside of the stoichiometric composition (x-/).
本発明では特にこのXの値が0.9f以下、好ましくは
0.9〜0.5の範囲にある非化学景論的な化合物を用
いた場合に強固な接合が達成される。その理由は原子孔
を有することにより低温でも焼結し易く、またCBNを
含有する場合にはCENと反応して強固に結合すると共
に、硬質層のダイヤモンド粒子および母材のWCとも反
応して両者に強固に接合するためと思われる。なお、本
願の後述する実施例においてはこれ等化合物のXの値は
全てo、qg以下のものを用いた。特に’piN7はx
−0,fの粉末を使用した。In the present invention, a strong bond is achieved particularly when a non-chemical chemical compound having an X value of 0.9f or less, preferably in the range of 0.9 to 0.5 is used. The reason for this is that it is easy to sinter even at low temperatures due to the presence of atomic pores, and when it contains CBN, it reacts with CEN to form a strong bond, and also reacts with the diamond particles in the hard layer and the WC in the base material, resulting in both This seems to be due to the strong bond between the two. In addition, in the examples described later in this application, the values of X of these compounds were all equal to or less than o, qg. Especially 'piN7 is x
−0, f powder was used.
本発明のダイヤモンド含有硬質層はダイヤモンド20〜
95重量%含有し、残部が公知の結合相よりなるもので
ある。この硬質層は切削工具等の工具として本発明の焼
結体を用いる場合、工具刃先となる部分である。本発明
ではこの硬質層の組成は用途によって変えることができ
る。特に耐摩耗性を重視する場合で、天然ダイヤモンド
工具が使用されている様な用途に対しては容積で90%
以上のダイヤモンドからなる焼結体とすることができる
。The diamond-containing hard layer of the present invention is diamond 20~
It contains 95% by weight, and the remainder consists of a known binder phase. When the sintered body of the present invention is used as a tool such as a cutting tool, this hard layer becomes the cutting edge of the tool. In the present invention, the composition of this hard layer can be changed depending on the application. Especially when wear resistance is important and for applications where natural diamond tools are used, 90% by volume
A sintered body made of the above diamonds can be obtained.
このようなダイヤモンド焼結体を得るにはダイヤモンド
粉末のみを焼結することもできるが、ダイヤモンド粉末
に結合材となる金属粉末や金属化合物粉末を混合しても
よい。To obtain such a diamond sintered body, it is possible to sinter only the diamond powder, but it is also possible to mix the diamond powder with a metal powder or a metal compound powder that serves as a binder.
この他、超高圧、高温下でダイヤモンド粉末層中にダイ
ヤモンド生成触媒金属や他の結合金属の融体を含浸せし
めることもできる。前述した現在市販されている超硬合
金母材に直接接合したダイヤモンド焼結体では超硬合金
母材に含まれる結合金属であるCOがダイヤモンド粉末
層中に浸入してダイヤモンド焼結体の結合金属となる。In addition, it is also possible to impregnate a molten diamond-forming catalyst metal or other binding metal into the diamond powder layer under ultra-high pressure and high temperature. In the aforementioned diamond sintered body directly bonded to the cemented carbide base material currently on the market, CO, which is the bonding metal contained in the cemented carbide base material, penetrates into the diamond powder layer and the bonding metal of the diamond sintered body is dissolved. becomes.
本発明の場合は母材超硬合金の結合金属と無関係に結合
金属を選択することができる。In the case of the present invention, the bonding metal can be selected regardless of the bonding metal of the base cemented carbide.
例えば発明者等の先願(特願昭5/ −173317号
)のように、Cuを主成分とする結合金属を有するダイ
ヤモンド焼結体とすることによって加熱劣化に対して従
来のダイヤモンド焼結体工具より優れた特性を有する複
合焼結体とすることができる。この焼結体ではダイヤモ
ンド焼結体層が約7000°Cの加熱によって劣化する
ことがなく、超硬合金母材との接合界面も同様に劣化し
ない。この他発明者等の先願(特願昭!;2−!;≠乙
乙7号)であるダイヤモンドと周期律表第4a、j;a
、乙a族金属の炭化物、窒化物。For example, as in the inventor's earlier application (Japanese Patent Application No. 5/173317), by making a diamond sintered body with a bonding metal mainly composed of Cu, conventional diamond sintered bodies can be prevented from heating deterioration. A composite sintered body having better properties than a tool can be obtained. In this sintered body, the diamond sintered body layer does not deteriorate when heated to about 7000°C, and the bonding interface with the cemented carbide base material also does not deteriorate. In addition, diamond and Periodic Table 4a, j;
, carbides and nitrides of group O-a metals.
硼化物、珪化物の化合物の複合焼結体で、これ等化合物
が組織中で連続した結合相となったもので、ダイヤモン
ド含有量が容積で20〜10%である硬質層モ本発明の
ダイヤモンド含有硬質層としテ適用できる。The diamond of the present invention is a composite sintered body of boride and silicide compounds, in which these compounds form a continuous binder phase in the structure, and the hard layer has a diamond content of 20 to 10% by volume. It can be applied as a containing hard layer.
また本発明者等の別の先願(特願昭!;2−3;/3了
/号)は従来の工具用ダイヤモンド焼結体の欠点の一つ
であった被研削性を改善したもので、焼結体中のダイヤ
モンド含有量は容積で30〜70%を占め、残部が/
、u以下のWCと鉄族金属からなる結合相を有するもの
である。このダイヤモンド含有硬質層も本発明に適用す
ることができる。In addition, another prior application by the present inventors (Patent Application Sho!; 2-3; /3 Ryo/) improves the grindability, which was one of the drawbacks of conventional diamond sintered bodies for tools. The diamond content in the sintered body accounts for 30 to 70% by volume, and the remainder is /
, has a binder phase consisting of WC below , u and an iron group metal. This diamond-containing hard layer can also be applied to the present invention.
ダイヤモンドの含有層が95容積%を越えると、周期律
表第4a、 5a、 l、a族の炭化物と鉄族金属より
なる結合材や銅合金よりなる結合材が減少するため十分
焼結できず、ダイヤモンドの含有量が、20容積%未満
であると、焼結ダイヤモンドの耐摩耗性が低下する。If the diamond content layer exceeds 95% by volume, the diamond cannot be sintered sufficiently because the binder made of carbides of groups 4a, 5a, l, and a of the periodic table and the iron group metal or the binder made of copper alloy decreases. If the diamond content is less than 20% by volume, the wear resistance of the sintered diamond decreases.
本発明の複合焼結体は機械加工用のバイトや、砥石のド
レッサー、ドリルピット等種々の用途に使用される。特
にロウ付は等の手段で加熱して工具支持体に接合する場
合に本発明の特徴が発揮され、従来の天然ダイヤモンド
工具や現在市販されているダイヤモンド焼結体工具より
も安定した接合強度を得ることができる。The composite sintered body of the present invention is used for various purposes such as machining tools, grindstone dressers, and drill pits. In particular, the features of the present invention are exhibited when the tool is bonded to the tool support by heating using methods such as brazing, and the bonding strength is more stable than that of conventional natural diamond tools or diamond sintered compact tools currently on the market. Obtainable.
以下実施例を述べる。Examples will be described below.
(実施例/)
〜VC−乙%CO組成の外径/Qmm、高さ3馴の焼結
体上面に523爪計%のCBNと残部がAIを10重債
%含有するTiNよりなる粉末をエチルセルロースを含
む有機溶媒に混入してスリラー状としたものを塗布した
。これを内径/QInm、外径/2鴎のMo製容器内に
置き、この上に平均粒径5.uのダイヤモンド粉末をC
BN、 TiNとAIの混合粉末を塗布した面に直接接
するようにして0.3g充填した。更にこの上に厚さθ
3朋のFe−Ni合金板を置いた。Mo製の栓をしてこ
の容器全体をダイヤモンド合成に用いる超高圧装置に入
れた。圧力媒体にはパイロフェライトを用い、ヒータニ
としては黒鉛円筒を使用した。先ず圧力を乙Okbまで
上げ、次いで温度を7300°Cまで上げ、30分間保
持した。超高圧装置uよりMO茶容器取出し、Moを研
削除去して焼結体を得た。得られた焼結体は外径約70
關で厚さ/朋のダイヤモンド焼結体が厚さ約50.uの
CBNを含有する中間接合層を介してWC−乙%CO超
硬合金母材に強固に接合していた。(Example/) - Powder made of TiN containing 523% CBN and the balance 10% AI on the top surface of a sintered body having an outer diameter/Qmm and a height of 3mm with a ~VC-B%CO composition. A slurry-like solution mixed with an organic solvent containing ethylcellulose was applied. This was placed in a Mo container with an inner diameter of QInm and an outer diameter of 2 nm, and an average particle size of 5 nm was placed on top of this. U diamond powder to C
0.3 g of the mixed powder of BN, TiN, and AI was filled in such a way that it was in direct contact with the coated surface. Furthermore, on top of this, the thickness θ
Three pieces of Fe-Ni alloy plates were placed. The container was capped with a Mo stopper and the entire container was placed in an ultra-high pressure device used for diamond synthesis. Pyroferrite was used as the pressure medium, and a graphite cylinder was used as the heater. First, the pressure was raised to Okb, and then the temperature was raised to 7300°C and held for 30 minutes. The MO tea container was taken out from the ultra-high pressure device u, and the Mo was ground off to obtain a sintered body. The obtained sintered body has an outer diameter of approximately 70
Thickness/My diamond sintered body is about 50mm thick. It was firmly bonded to the WC-%CO cemented carbide base material via an intermediate bonding layer containing u of CBN.
また、この接合界面をXMAを用いて調べたところ、超
硬合金母材中のCoやダイヤモンド焼結に用いたFeや
Niの豊富な箇所は認められず、平均粒径3 、uのダ
イヤモンド粒子は/2容量%のFe−Niの結合材によ
り強固に焼結されていた。In addition, when this bonding interface was examined using XMA, no areas rich in Co in the cemented carbide base material or Fe or Ni used in diamond sintering were found, and diamond particles with an average particle size of 3. was strongly sintered with a Fe--Ni binder of /2% by volume.
この複合焼結体をダイヤモンド切断砥石を用いて切断し
、鋼のバイトシャンクに通常の超硬合金用銀ロウ材を用
いて約ト00°Cでロウ付けした。ロウ付は後、刃先を
ダイヤモンド砥石で研磨して調べたが、ダイヤモンド焼
結体層と超硬合金母材の接合状態に異常はなかった。こ
のバイトを用いてWC−72%Coの外径jO隨の超硬
合金製丸棒を切削速度/!;m/M、切込み05朋、送
りθ/騙/回転の条件で切削した。20分切削したがダ
イヤモンド焼結体層が剥離することはなかった。工具逃
げ面の摩耗中はθ15騙であった。Coを結合材とした
ダイヤモンド焼結体が超硬合金母材に直接接合した市販
の工具用焼結体を用いて同一条件でバイトを作成し、前
記した条件で同じ超硬合金製丸棒を切削したところ、切
削w期にダイヤモンド焼結体層が超硬合金母材界面より
剥離してしまい、切削不能となった。This composite sintered body was cut using a diamond cutting wheel and brazed to a steel bite shank using a usual silver solder for cemented carbide at about 00°C. After brazing, the cutting edge was polished with a diamond grindstone and examined, but there was no abnormality in the bonding state between the diamond sintered body layer and the cemented carbide base material. Using this cutting tool, cut a WC-72% Co cemented carbide round bar with an outer diameter of JO at a speed of /! ; Cutting was performed under the conditions of m/M, depth of cut 05, and feed θ/de/rotation. Although cutting was performed for 20 minutes, the diamond sintered body layer did not peel off. While the tool flank was worn, the angle was θ15. A cutting tool was made under the same conditions using a commercially available tool sintered body in which a diamond sintered body with Co as a binder was directly bonded to a cemented carbide base material, and a round bar made of the same cemented carbide was made under the same conditions as described above. When cutting, the diamond sintered body layer peeled off from the cemented carbide base material interface during the cutting period W, making it impossible to cut.
(′μm′M例り
平均粒度3 、uのCBN粉末、平均粒度/ 、u (
7) TiN粉末、平均粒度1、uのTIc粉末をそれ
ぞれ重量で≠0 : 37 : 23に混合した。この
粉末を外径/Qmrn。('μm'M example average particle size 3, u CBN powder, average particle size / , u (
7) TiN powder and TIc powder with an average particle size of 1, u were mixed in a weight ratio of ≠0:37:23, respectively. This powder has an outer diameter/Qmrn.
高さ7羽に型押した。外径/2止、内径/QmmのMo
製の容器にWC−10%CoIq硬合金母(オを置き、
その上に上記型押体を置き、更にその上に平均粒度3
、uのダイヤモンド粉末とTIcが容積でざ:、2の割
合である混合粉末を充填した。他は実施例/と同様にし
て超高圧下でホットプレスした。得られた焼結体はど0
容器m96のダイヤモンドと20容Qk%の1盲cから
成る硬質層がCBN、 TiN、 ’l’ic トTi
(C,N) 、J: ”)成る1“/さ約O9に羽の
中間接合層を介して超硬合金母材に強固に接合していた
。焼結体を真空炉中で1000°Cに加熱しテ30分1
ifl 保持i t−カ、lt”A 岳(k h−+
$化がなく接合面が剥離するようなことはなかった。Embossed with 7 wings in height. Outer diameter/2 stops, inner diameter/Qmm Mo
Place the WC-10% CoIq hard alloy motherboard (O) in a container made of
Place the above-mentioned embossing body on top of that, and then place the average particle size of 3 on top of that.
, u of diamond powder and TIc were filled with a mixed powder having a volume ratio of: , 2. The rest was hot pressed under ultra-high pressure in the same manner as in Example. The obtained sintered body is
The hard layer consisting of diamond and 20 volume Qk% of 1 blind c in container m96 is CBN, TiN, 'l'ic Ti
(C,N), J: ”) was firmly bonded to the cemented carbide base material through the intermediate bonding layer of the blade. The sintered body was heated to 1000°C in a vacuum furnace for 30 minutes.
ifl hold i t-ka, lt”A mount (k h-+
There was no delamination and no peeling of the bonded surfaces.
(実施例3)
外径72鴎、内径70馴のMo製容器に33重量%のC
BNとAL Si、 TiNを10.へg7重量%の割
合で混合した粉末乙7重量%とを混合し、この混合粉末
を塗布したWC−g%COを置き、この混合粉末に接し
て平均粒度1、u以下のダイヤモンド粒子とWCとCo
より成り、それぞれの割合が容積でIQ : /j :
jである混合粉末を充填したものと、粒度1、u以下
のダイヤモンド粒子とWCとCoの割合が’10 :
30 : 10である混合粉末を充填した。これらの両
カプセル共Moで栓をして超高圧装置に入れ、乙Okb
で/3oo0cに加熱して30分間保持した。得られた
これ等の焼結体はダイヤモンド焼結体部がCBNとTi
N、 AI 、 Siより成る中間接合層を介して超硬
合金母材に強固に接合していた。これ等の複合焼結体の
バイトを実施例/と同様にして作成し、Vτ1′青を円
周方向に2箇所/f00間隔で存在する破削材Al−2
0%s夏を速度700m/rrm。(Example 3) 33% by weight C was added to a Mo container with an outer diameter of 72 mm and an inner diameter of 70 mm.
BN and AL Si, TiN 10. WC-g%CO coated with this mixed powder is placed, and diamond particles with an average particle size of 1, u or less and WC are placed in contact with this mixed powder. and Co
The ratio of each is the volume and IQ: /j:
The one filled with a mixed powder of j, the diamond particles with a particle size of 1, u or less, and the ratio of WC and Co is '10:
A mixed powder having a ratio of 30:10 was filled. Both capsules were plugged with Mo and placed in an ultra-high pressure device.
It was heated to /3oo0c and held for 30 minutes. In these obtained sintered bodies, the diamond sintered body part is composed of CBN and Ti.
It was firmly bonded to the cemented carbide base material via an intermediate bonding layer made of N, AI, and Si. A cutting tool of these composite sintered bodies was prepared in the same manner as in Example/, and Vτ1' blue was placed at two locations/f00 interval in the circumferential direction at the cutting material Al-2.
0%s summer speed 700m/rrm.
切込み/朋、送り030”/ revで切削した。比較
のためCOを結合材としたダイヤモンド焼結体が超硬合
全母材に直接接合した市販の工具用焼結体も同一条件で
切削した。本発明の焼結体の双方共70000回v尚を
通過した後も刃先が欠けたり、接合界面より剥離しなか
ったが、市販の工具用焼結体は700回V回分溝過して
界面より剥離した。Cutting was carried out at a depth of cut of 0.30"/rev. For comparison, a commercially available tool sintered body in which a diamond sintered body using CO as a binder was directly bonded to a cemented carbide base material was also cut under the same conditions. Both of the sintered bodies of the present invention did not have their cutting edges chipped or peeled off from the bonding interface even after passing through V grooves 70,000 times, but the commercially available sintered bodies for tools did not peel off from the joint interface after passing through V grooves 700 times. It peeled off more.
(実施例11>
内径/Qmm、外径/2朋のMO製の容器にWC−乙%
Co組成の外径/Qmm、高さ3馴の焼結体を置き、そ
の上に平均粒度SμのCBN、 TiN、 TaNが重
量比で1Kg : jf乙3:、2’、’、9である混
合粉末の外径70朋、厚みQ、j rntnの型押体を
置き、この上に平均粒度7 、uのダイヤモンド粉末0
.3gを充填した。更にこの上に厚さO,,2mmの銅
板と厚さθ/朋のNi製円板を置いた。Mo製の栓をし
実施例/と同様にして7300°Cで20分間超高圧装
置内で焼結した。得られた焼結体は銅とN1を均一に含
有し、外径約10驕、厚さ/ mmのダイヤモンド焼結
体が、+=さ011mmのCBN含有の中間接合層を介
して、WC−Co超硬合金母材に強固に接続していた。(Example 11> WC-Otsu% in an MO container with an inner diameter of Qmm and an outer diameter of 2 mm.
A sintered body of Co composition, outer diameter/Q mm, and height 3 was placed, and on top of it, CBN, TiN, and TaN with an average particle size of Sμ were placed at a weight ratio of 1 kg: jf3:, 2', ', 9. A stamped body of mixed powder with an outer diameter of 70mm and a thickness of Q and jrntn was placed, and on top of this was placed a diamond powder with an average particle size of 7mm and a diameter of 0.
.. 3g was filled. Furthermore, a copper plate with a thickness of 0, 2 mm and a Ni disk with a thickness of θ/2 mm were placed on top of this. A stopper made of Mo was attached and sintered in an ultra-high pressure apparatus at 7300°C for 20 minutes in the same manner as in Example. The obtained sintered body uniformly contains copper and N1, and the diamond sintered body with an outer diameter of about 10 mm and a thickness of 1 mm is bonded to WC- It was firmly connected to the Co cemented carbide base material.
この複合焼結体を真空中で7000°Cで2時間加熱し
たが、接合界面でも剥離したすせず、実施例/と同様の
切削試験に十分耐えることができた。This composite sintered body was heated at 7000° C. for 2 hours in a vacuum, but there was no peeling at the bonded interface, and it was able to sufficiently withstand the same cutting test as in Example.
第1図は市販されている超硬合金母材と一体となった工
具用ダイヤモンド焼結体のダイヤモンド焼結体層と母材
超硬合金の界面の顕微鏡写真であり、第2図は本発明の
工具用複合焼結体の構造を示す図である。
1・・・工具刃先として使用されるダイヤモンド含有硬
質焼結体層、2・・・母材のWCC超超硬合金3・・・
本発明の特徴である炭化物、窒化物よりなる中間接合層
。
図面のトジ、、;!−:: :’ !セ;゛、“jこ変
更なし)手続補正書(方式)6.補
1.事件の表示
[昭和乙/年特許願第≠029号 を2
、発明の名称 「
工具用複合焼結体の製造法 類6捕正
をする者 (2)事件
との関係 特許出願人 る住 所
大阪市東区北浜5丁目/j番地名 称
(2/3)住友電気工業株式会社社長 用上哲部
4、代理人
住 所 5乙O大阪府豊中市螢池北町2丁目弘番乙号正
の対象
明細書の図面の簡単な説明の礫および図面圧の内容
明細書第2’1頁第S行目の
焼結体層と母材超硬合金の界面の顕微鏡写真」下記のと
おり補正する。
焼結体層と母材超硬合金の界面の金属組懺の術鏡写真」Figure 1 is a micrograph of the interface between the diamond sintered body layer and the base cemented carbide of a commercially available diamond sintered body for tools integrated with the cemented carbide base material, and Figure 2 is a photomicrograph of the interface between the diamond sintered body layer and the base cemented carbide. FIG. 3 is a diagram showing the structure of a composite sintered body for a tool. 1... Diamond-containing hard sintered body layer used as a tool cutting edge, 2... WCC cemented carbide as base material 3...
An intermediate bonding layer made of carbide or nitride, which is a feature of the present invention. The details of the drawing...;! −:: :' ! C;゛、"jNo change) Procedural amendment (method) 6. Supplement 1. Indication of the case
[Showa Otsu/Year Patent Application No.≠029 2
, title of invention “
Method of manufacturing composite sintered bodies for tools Class 6 person (2) Relationship to the case Patent applicant Address Kitahama 5-chome/j, Higashi-ku, Osaka Name
(2/3) Sumitomo Electric Industries, Ltd. President Tetsube 4, agent address 5 Otsu O 2-chome, Hiroban, Toyonaka-shi, Osaka Prefecture and "Microphotograph of the interface between the sintered body layer and the base cemented carbide on page 2', line S of the contents description of the drawing thickness" and amend it as follows. "Microscopic photograph of the metal assemblage at the interface between the sintered body layer and the base cemented carbide"
Claims (1)
重量%と残部が周期律表第4a、5a族の炭化物、窒化
物、炭窒化物またはこれら2種以上の固溶体もしくは混
合物よりなる粉末を粉末状でもしくは型押体でおくか、
または超硬合金母材上に予め塗布しておき、この上にダ
イヤモンドを容積で20%以上含有する硬質焼結体形成
粉末を型押成型して若しくは粉末状で置き、この全体を
超高圧、高温下でホットプレスしてダイヤモンドを含有
する硬質層および中間層粉末を焼結し、同時に母材超硬
合金に接合させることを特徴とする工具用複合焼結体の
製造法。 2、周期律表第4a族の炭化物、窒化物、炭窒化物をM
C_x、MN_x、M(C、N)_xと表わしたときに
xの値が0.98以下、好ましくは0.9〜0.5の範
囲にある非化学量論的な化合物を用いる特許請求の範囲
第1項記載の工具用複合焼結体の製造法。 3、周期律表第4a族の窒化物がTiN_xである特許
請求の範囲第1項記載の工具用複合焼結体の製造法。 4、超硬合金母材に接して、立方晶型窒化硼素5〜70
重量%と残部が周期律表第4a、5a族の炭化物、窒化
物、炭窒化物またはこれら2種以上の固溶体もしくは混
合物が50〜99.9重量%これらにAlまたはSiあ
るいはこの双方を重量で0.1〜50重量%以上含有す
る粉末を粉末状でもしくは型押体でおくか、または超硬
合金母材上に予め塗布しておき、この上にダイヤモンド
を容積で20%以上含有する硬質焼結体形成粉末を型押
成型して若しくは粉末状で置き、この全体を超高圧、高
温下でホットプレスしてダイヤモンドを含有する硬質層
および中間層粉末を焼結し、同時に母材超硬合金に接合
させることを特徴とする工具用複合焼結体の製造法。 5、周期律表第4a族の炭化物、窒化物、炭窒化物をM
C_x、MN_x、M(C、N)_xと表わしたときに
xの値が0.98以下、好ましくは0.9〜0.5の範
囲にある非化学量論的な化合物を用いる特許請求の範囲
第4項記載の工具用複合焼結体の製造法。 6、周期律表第4a族の窒化物がTiNである特許請求
の範囲第4項記載の工具用複合焼結体の製造法。[Claims] 1. In contact with the cemented carbide base material, cubic boron nitride 5 to 70
A powder in which the weight percent and the balance are carbides, nitrides, carbonitrides of Groups 4a and 5a of the periodic table, or solid solutions or mixtures of two or more of these is prepared in powder form or in an embossed form, or
Alternatively, the cemented carbide base material is coated in advance, and a hard sintered body-forming powder containing 20% or more of diamond by volume is pressed or placed in powder form, and the whole is heated under ultra-high pressure. A method for producing a composite sintered body for tools, characterized by sintering a diamond-containing hard layer and intermediate layer powder by hot pressing at high temperatures, and simultaneously bonding them to a base cemented carbide. 2. Carbides, nitrides, and carbonitrides of Group 4a of the periodic table are M
Claims using non-stoichiometric compounds in which the value of x, when expressed as C_x, MN_x, M(C, N)_x, is 0.98 or less, preferably in the range of 0.9 to 0.5. A method for producing a composite sintered body for tools according to scope 1. 3. The method for manufacturing a composite sintered body for tools according to claim 1, wherein the nitride of Group 4a of the periodic table is TiN_x. 4. In contact with the cemented carbide base material, cubic boron nitride 5-70
The balance is 50 to 99.9% by weight of carbides, nitrides, carbonitrides of groups 4a and 5a of the periodic table, or solid solutions or mixtures of two or more of these, and the balance is 50 to 99.9% by weight of Al or Si or both. A powder containing 0.1 to 50% by weight or more is prepared in powder form or in the form of an embossed body, or it is pre-coated on a cemented carbide base material, and then a hard diamond containing 20% or more by volume of diamond is applied on top of the cemented carbide base material. The sintered body-forming powder is molded or placed in powder form, and the whole is hot-pressed under ultra-high pressure and high temperature to sinter the diamond-containing hard layer and intermediate layer powder, and at the same time, the hard layer containing diamond and the intermediate layer powder are sintered. A method for manufacturing a composite sintered body for tools, characterized by joining it to an alloy. 5. Carbides, nitrides, and carbonitrides of Group 4a of the periodic table are M
Claims using non-stoichiometric compounds in which the value of x, when expressed as C_x, MN_x, M(C, N)_x, is 0.98 or less, preferably in the range of 0.9 to 0.5. A method for producing a composite sintered body for tools according to scope 4. 6. The method for producing a composite sintered body for tools according to claim 4, wherein the nitride of Group 4a of the periodic table is TiN.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP402986A JPS6286102A (en) | 1986-01-10 | 1986-01-10 | Manufacturing method of composite sintered body for tools |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP402986A JPS6286102A (en) | 1986-01-10 | 1986-01-10 | Manufacturing method of composite sintered body for tools |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12912779A Division JPS5655506A (en) | 1979-10-06 | 1979-10-06 | Composite sintered body for tool and its production |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6286102A true JPS6286102A (en) | 1987-04-20 |
JPS6257681B2 JPS6257681B2 (en) | 1987-12-02 |
Family
ID=11573535
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP402986A Granted JPS6286102A (en) | 1986-01-10 | 1986-01-10 | Manufacturing method of composite sintered body for tools |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6286102A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005288685A (en) * | 2004-03-10 | 2005-10-20 | Read Co Ltd | Dresser for polishing cloth, and manufacturing method thereof |
JP2006346800A (en) * | 2005-06-15 | 2006-12-28 | Disco Abrasive Syst Ltd | Vitrified bond grindstone and method of producing the same |
JP2014531967A (en) * | 2011-08-23 | 2014-12-04 | エレメント シックス リミテッド | Fine polycrystalline diamond compact with a grain growth inhibitor layer between diamond and substrate |
WO2015072250A1 (en) * | 2013-11-15 | 2015-05-21 | 住友電工ハードメタル株式会社 | Diamond bonded body, tool provided with same, and method for producing diamond bonded body |
US9393629B2 (en) | 2010-06-16 | 2016-07-19 | Element Six Abrasives S.A. | Cutter elements, rotary machine tools comprising same and method for making same |
-
1986
- 1986-01-10 JP JP402986A patent/JPS6286102A/en active Granted
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005288685A (en) * | 2004-03-10 | 2005-10-20 | Read Co Ltd | Dresser for polishing cloth, and manufacturing method thereof |
JP2006346800A (en) * | 2005-06-15 | 2006-12-28 | Disco Abrasive Syst Ltd | Vitrified bond grindstone and method of producing the same |
US9393629B2 (en) | 2010-06-16 | 2016-07-19 | Element Six Abrasives S.A. | Cutter elements, rotary machine tools comprising same and method for making same |
JP2014531967A (en) * | 2011-08-23 | 2014-12-04 | エレメント シックス リミテッド | Fine polycrystalline diamond compact with a grain growth inhibitor layer between diamond and substrate |
WO2015072250A1 (en) * | 2013-11-15 | 2015-05-21 | 住友電工ハードメタル株式会社 | Diamond bonded body, tool provided with same, and method for producing diamond bonded body |
KR20160085754A (en) * | 2013-11-15 | 2016-07-18 | 스미또모 덴꼬오 하드메탈 가부시끼가이샤 | Diamond bonded body, tool provided with same, and method for producing diamond bonded body |
CN105916615A (en) * | 2013-11-15 | 2016-08-31 | 住友电工硬质合金株式会社 | Diamond bonded body, tool provided with same, and method for producing diamond bonded body |
JPWO2015072250A1 (en) * | 2013-11-15 | 2017-03-16 | 住友電工ハードメタル株式会社 | Diamond joined body, tool including the same, and method for manufacturing diamond joined body |
US10603720B2 (en) | 2013-11-15 | 2020-03-31 | Sumitomo Electric Hardmetal Corp. | Bonded diamond body, tool comprising the same, and method for manufacturing bonded diamond body |
Also Published As
Publication number | Publication date |
---|---|
JPS6257681B2 (en) | 1987-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4403015A (en) | Compound sintered compact for use in a tool and the method for producing the same | |
CA2705158C (en) | A diamond metal composite | |
US4959929A (en) | Tool insert | |
JPH09254039A (en) | Manufacture of grinding material compact having improved characteristics | |
JPH0218365A (en) | Wear-resistant polycrystalline diamond heat resistor | |
GB2048956A (en) | Sintered compact for a machining tool | |
JP2008502794A (en) | Wear member made of diamond-containing composite material | |
US20090000208A1 (en) | Composite Material | |
GB2107298A (en) | A diamond compact for a tool and a process for the production of the same | |
JPS6133865A (en) | Grinding tool | |
JPS59134665A (en) | Method of coupling cubic boron nitride compact | |
JPH04244309A (en) | Chip for rotary drill made of mold of diamond or cbn which is stable against heat | |
JPS6125761B2 (en) | ||
JPS6286102A (en) | Manufacturing method of composite sintered body for tools | |
JP2003095743A (en) | Diamond sintered compact and method of manufacturing the same | |
GB2091763A (en) | Laminated sintered compositions including boron nitride | |
JPS6049589B2 (en) | Composite sintered body for tools and its manufacturing method | |
JPS6022680B2 (en) | Composite sintered body for tools and its manufacturing method | |
JPS5916942A (en) | Composite diamond-sintered body useful as tool and its manufacture | |
JPH06198504A (en) | High hardness sintered body cutting tool | |
JPH08225376A (en) | Brazable cobalt-containing cbn molding | |
JPH0368938B2 (en) | ||
JPS6323155B2 (en) | ||
JP2000246645A (en) | Polycrystalline polishing material molding improved in corrosion resistance | |
JPH0798964B2 (en) | Cubic boron nitride cemented carbide composite sintered body |