JPS6284964A - lens polishing equipment - Google Patents
lens polishing equipmentInfo
- Publication number
- JPS6284964A JPS6284964A JP22354185A JP22354185A JPS6284964A JP S6284964 A JPS6284964 A JP S6284964A JP 22354185 A JP22354185 A JP 22354185A JP 22354185 A JP22354185 A JP 22354185A JP S6284964 A JPS6284964 A JP S6284964A
- Authority
- JP
- Japan
- Prior art keywords
- lens
- polishing
- tool
- polished
- air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q5/00—Driving or feeding mechanisms; Control arrangements therefor
- B23Q5/02—Driving main working members
- B23Q5/04—Driving main working members rotary shafts, e.g. working-spindles
- B23Q5/06—Driving main working members rotary shafts, e.g. working-spindles driven essentially by fluid pressure or pneumatic power
Landscapes
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
Abstract
Description
【発明の詳細な説明】 〔発明の利用分野〕 本発明はレンズ研磨装置に関するものである。[Detailed description of the invention] [Field of application of the invention] The present invention relates to a lens polishing device.
従来、レンズを主対象とした研磨は公知のように以前か
ら実施され、その基本原理は変っていない。この原理を
凹面を例にとって第5図に示されているレンズ研磨装置
の従来例に基づいて説明する。Conventionally, polishing mainly focused on lenses has been carried out for a long time as is well known, and its basic principle has not changed. This principle will be explained based on a conventional example of a lens polishing apparatus shown in FIG. 5, taking a concave surface as an example.
同図に示されているように1Vi被研磨物であるレンズ
、2は研磨工具例えばレンズ1の曲率半径に等しい凸面
の研磨器2で、駆動源例えばモータにより強制回転させ
られる。レンズ1はレンズ保持台例えばレンズ貼付は皿
3に貼付けられ、レンズ貼付は皿5の反対側には通称か
んざしと呼ばれるかんざし4を支持する座5が設けられ
ている。かんざし4には研磨荷重がかかると同時に、モ
ータにより一定振幅の揺動運動が与えられる。このよう
に溝底されたレンズ研磨装置でレンズ1は研磨面2の回
転運動とかんざし4の揺動運動とによって従属回転し、
研磨剤の供給によ0球面研磨ができる。As shown in the figure, a lens 2, which is a 1Vi polished object, is a polishing tool, for example, a polisher 2 having a convex surface equal to the radius of curvature of the lens 1, and is forcibly rotated by a driving source, for example, a motor. The lens 1 is attached to a lens holding stand, such as a lens attaching plate 3, and a seat 5 for supporting a hairpin 4, commonly called a hairpin, is provided on the opposite side of the lens attaching plate 5. A polishing load is applied to the hairpin 4, and at the same time, a swinging motion of a constant amplitude is applied by the motor. In the lens polishing device having the grooved bottom as described above, the lens 1 is rotated dependently by the rotational movement of the polishing surface 2 and the swinging movement of the hairpin 4.
Zero-spherical polishing is possible by supplying abrasive.
ところでこのレンズ研磨装置で油室半径1工真以下の微
小球面を研磨する場合に、研磨面2の回転振れによりレ
ンズ1Cごおどりが生じ、研磨が不安定となりエッヂを
破砕する問題がある。However, when polishing a microspherical surface with an oil chamber radius of 1 mm or less using this lens polishing apparatus, there is a problem that the rotational vibration of the polishing surface 2 causes the lens 1C to move, making the polishing unstable and causing the edges to break.
また、微小球面を対象とする場合に、かんざし4の揺動
振幅はレンズ1が研磨面2から外れないで研磨されるた
めに大きくとれない0このためレンズ1は従属回転が得
られ難く、研磨が進行しない問題がるる。更には機構上
レンズ1にかかる研磨荷重を小さく抑えらルない問題も
有している。このように従来の装置ではレンズ1を高e
!!度に研磨できなかった。In addition, when targeting a microspherical surface, the swing amplitude of the hairpin 4 cannot be large because the lens 1 is polished without coming off the polishing surface 2. Therefore, it is difficult for the lens 1 to obtain dependent rotation, and the polishing There is a problem with not progressing. Furthermore, there is also the problem that the polishing load applied to the lens 1 cannot be kept small due to its mechanism. In this way, in the conventional device, the lens 1 has a high e.g.
! ! I couldn't polish it at once.
な2これに関するものとして光学素子加工技術′81.
昭56−10−10発行9編集1発行二光学工業技術協
会p、220〜222(塩谷珪助)がある0
〔発明の目的〕
本発明は以上の点に鑑みなされたものであり、レンズを
高精度に研磨することを可能としたレンズ研磨装置を提
供することを目的とするものである。2 Regarding this, optical element processing technology '81.
Published 10-10-1980 9 Edited 1 Published by 2 Optical Industry Technology Association p. 220-222 (Keisuke Shioya) 0 [Object of the Invention] The present invention was made in view of the above points, and it It is an object of the present invention to provide a lens polishing device that enables highly accurate polishing.
すなわち本発明はレンズと、このレンズを保持している
レンズ保持台と、前記レンズを研磨する研磨工具と、こ
の研磨工具を駆動する駆動源とを備え、前記研磨工具を
回転させてレンズを研磨するようになしたレンズ研磨装
置において、前記駆動源を揺動自在な工具軸を有する風
車装置で形成したことを特徴とするものであり、これに
よって安定した研磨ができるようになる。That is, the present invention includes a lens, a lens holder holding the lens, a polishing tool for polishing the lens, and a drive source for driving the polishing tool, and rotates the polishing tool to polish the lens. The lens polishing apparatus is characterized in that the drive source is formed by a windmill device having a swingable tool shaft, thereby making it possible to perform stable polishing.
以下、図示し念実施例に基づいて本発明を説明する。第
1図には本発明の一実施例が示されている。なお従来と
同じ部品には同じ符号を付したので説明を省略する。本
実施例では研磨工具2aを駆動する駆動源を、揺動自在
な工具軸6を有する風車装置で形成した。このようにす
ることにより駆動源は揺動自在な工具軸6を有する風車
装置で形成されるようになって、安定した研磨ができる
ようになり、レンズ1を高精度に研磨することを可能と
したレンズ研磨装置を得ることができる。The present invention will be described below based on illustrative embodiments. FIG. 1 shows an embodiment of the invention. Note that parts that are the same as those in the conventional system are given the same reference numerals, and therefore their explanations will be omitted. In this embodiment, the drive source for driving the polishing tool 2a is formed by a windmill device having a swingable tool shaft 6. By doing this, the drive source is formed by a windmill device having a swingable tool shaft 6, which makes it possible to perform stable polishing and to polish the lens 1 with high precision. It is possible to obtain a lens polishing device that has the following characteristics.
すなわち駆動源を揺動自在な工具軸6を有する風車装置
で形成したが、この風車装#Lを工具軸6に固定した羽
根車7と、この羽根車7を回転させる空気噴出装置とで
形成した。そしてこの空気噴出装置を羽根車7に対向し
たエア供給ノズル8と、このエア供給ノズル8に空気を
供給するエアポンプ9とで形成した。工具軸6はガイド
10に設けたクリアランスを有するガイド穴11に案内
支持されるようにし、揺動自在とした。なお同図におい
て3aはレンズ保持台である。このようにすることによ
り次に述べるようにしてレンズ1を研磨することができ
る。レンズ保持台5aを調整してレンズ1を位置決めし
、研磨工具2aの先端をレンズ1の被研磨面に押し当て
る。この場合に研磨剤は研磨工具2aあるいはレンズ1
に塗布するか、外部から供給するかしてもよいし、レン
ズ1の周囲に枠を設けてプールさせてもよい。この状態
でエアポンプ9を作動させ、エア供給ノズル8からエア
を羽根車7に向って噴出させる。これにより研磨工具2
aは回転駆動され、研磨が進行する。この場合にガイド
穴11は上述のように工具軸6に対してクリアランスを
有しているので、仮に工具軸6に回転振れがあっても研
磨工具2aはレンズ1の被研磨面に案内支持され、工具
軸6は位置の拘束を受けず、安定した研磨状態が得られ
る。このように本実施例によれば工具軸6は機械的に連
結しなくても空気流により駆動できるようになって、従
来のように機械的精度に支配されず安定して研磨できる
ようになり、エツジを破砕することなく表面粗さのすぐ
れた高品位な研磨面を得ることができる。また、このよ
うに空気流によって研磨工具2aを備えた工具軸6を回
転させ、レンズ1の被研磨面を案内支持面として研磨す
るようにしたので、レンズ1にかかる研磨荷重を小さく
することができる。That is, although the drive source is formed by a wind turbine device having a swingable tool shaft 6, this wind turbine device #L is formed by an impeller 7 fixed to the tool shaft 6 and an air blowing device that rotates this impeller 7. did. This air blowing device was formed by an air supply nozzle 8 facing the impeller 7 and an air pump 9 supplying air to the air supply nozzle 8. The tool shaft 6 is guided and supported by a guide hole 11 having a clearance provided in a guide 10, so that it can swing freely. In addition, in the same figure, 3a is a lens holding stand. By doing so, the lens 1 can be polished as described below. The lens 1 is positioned by adjusting the lens holding table 5a, and the tip of the polishing tool 2a is pressed against the surface of the lens 1 to be polished. In this case, the abrasive is the polishing tool 2a or the lens 1.
It may be applied to the lens 1 or supplied from the outside, or a frame may be provided around the lens 1 to pool it. In this state, the air pump 9 is operated to blow air from the air supply nozzle 8 toward the impeller 7. This allows polishing tool 2
A is rotated and polishing progresses. In this case, since the guide hole 11 has a clearance with respect to the tool shaft 6 as described above, even if the tool shaft 6 has rotational runout, the polishing tool 2a is guided and supported by the surface of the lens 1 to be polished. The tool shaft 6 is not constrained in position, and a stable polishing state can be obtained. In this way, according to this embodiment, the tool shaft 6 can be driven by airflow without being mechanically connected, and stable polishing can be performed without being controlled by mechanical precision as in the past. , it is possible to obtain a high-quality polished surface with excellent surface roughness without fracturing the edges. In addition, since the tool shaft 6 equipped with the polishing tool 2a is rotated by the air flow in this manner, and the surface to be polished of the lens 1 is used as a guide support surface for polishing, the polishing load applied to the lens 1 can be reduced. can.
第2図には本発明の他の実施例が示されている。本実施
例では空気噴出装TILを羽根車7に対向したエア供給
ノズル8と、このエア供給ノズル8に空気を供給するエ
アポンプ9と、ノズル8の一部に設けられ、噴出量を調
整する流量弁12と、この流量弁12を制御する非接触
変位センサ13および変位検出制御装[14とで形成し
た。Another embodiment of the invention is shown in FIG. In this embodiment, the air blowing device TIL includes an air supply nozzle 8 facing the impeller 7, an air pump 9 that supplies air to the air supply nozzle 8, and a flow rate that is provided in a part of the nozzle 8 to adjust the blowout amount. It is formed of a valve 12, a non-contact displacement sensor 13 and a displacement detection control device [14] that control the flow rate valve 12.
このようにすることにより空気噴出装置は羽根車7に対
向したエア供給ノズル8.このエア供給ノズル8に空気
を供給するエアポンプ9.ノズル8の一部に設けられ、
噴出量を調整する流量弁12.この流量弁12を制御す
る非接触変位センサ15および変位検出制御装置14等
で形成されるよう心こなって、羽根車7に吹付ける空気
流量が調整できるようになり、レンズ1il′i研磨工
具2aを浮上させた状態で研磨できるようになる。By doing so, the air blowing device has an air supply nozzle 8 facing the impeller 7. An air pump 9 that supplies air to this air supply nozzle 8. Provided in a part of the nozzle 8,
Flow valve for adjusting the amount of ejection 12. The flow rate valve 12 is controlled by a non-contact displacement sensor 15, a displacement detection control device 14, etc., so that the flow rate of air blown to the impeller 7 can be adjusted. Polishing can now be performed with 2a floating.
すなわち、エアポンプ9を作動させ、空気流量を一定量
以上に上げると浮上刃が発生し、研磨工具2aは回転し
た状態で浮上する。この浮上量を非接触変位センサ15
で検出し、変位検出制御装置14に入力する。この入力
信号をもとに変位検出制御装置14で流量弁12を制御
し、浮上′Ikを調整する。この場合に研磨剤はレンズ
1の周囲に枠を設け、プールさせておく。このようにす
ることにより研磨工具2aを被研磨面に対し、て一定間
隔を保ち乍ら、研磨工具2aの回転運動に伴う研磨剤の
流動運動でレンズ1を研磨することができる。このよう
に本実施例によれば、レンズ1は研磨工具2aと非接触
状態で研磨されるようになって、加工歪の小さい高品位
の研磨面を得ることができる。That is, when the air pump 9 is operated and the air flow rate is increased to a certain amount or more, floating blades are generated, and the polishing tool 2a floats in a rotating state. This floating amount is measured by the non-contact displacement sensor 15.
is detected and inputted to the displacement detection control device 14. Based on this input signal, the displacement detection control device 14 controls the flow rate valve 12 to adjust the floating 'Ik. In this case, a frame is provided around the lens 1 to pool the abrasive. By doing so, the lens 1 can be polished by the fluid movement of the polishing agent accompanying the rotational movement of the polishing tool 2a while maintaining a constant distance between the polishing tool 2a and the surface to be polished. As described above, according to this embodiment, the lens 1 is polished without contact with the polishing tool 2a, and a high-quality polished surface with small processing distortion can be obtained.
第3図には本発明の更に他の実施例が示されている。本
実施例はレンズ1 aが平面の場合である。この場合も
レンズ1aは研磨工具2bを浮上させた状態で研磨でき
るようになって、前述の場合と同様な作用効果を奏する
ことができる0
すなわち研磨工具2bもその先端を平面に形成した。そ
してガイド10aに設けられるガイド穴11aは、前述
の場合よりも案内面を長くとった。このようにすること
によりエアポンプ9を作動させると、流量弁12の調整
によりレンズ1aは研磨工具2aと接触あるいは非接触
の状態で研磨されるようになるが、ガイド穴11aを長
くとったので工具軸6は回転起動時に倒れることなく、
平面形状のレンズ1aも安定して研磨することができる
。FIG. 3 shows yet another embodiment of the invention. In this embodiment, the lens 1a is a flat surface. In this case as well, the lens 1a can be polished with the polishing tool 2b floating, and the same effects as in the above case can be achieved.In other words, the polishing tool 2b also has its tip formed flat. The guide hole 11a provided in the guide 10a has a longer guide surface than the case described above. By doing this, when the air pump 9 is operated, the lens 1a can be polished with or without contact with the polishing tool 2a by adjusting the flow rate valve 12. The shaft 6 does not fall down when starting to rotate.
Planar lenses 1a can also be polished stably.
第4図には以上の各実施例における研磨特性が示されて
いる。同図は縦軸に表面粗さ、浮上量をとり、横軸に研
磨工具の回転数をとって表面粗さ、浮上量と研磨工具の
回転数との関係を示したものである。同図から明らかな
ように浮上量が大きくなる、すなわちレンズと研磨工具
とが非接触研磨域で表面粗さが小さくなっている0
〔発明の効果〕
上述のように本発明はレンズを高精度に研磨できるよう
薯こなって、レンズを高ffl!度に研磨することを可
能としたレンズ研磨装置tを得ることができる。FIG. 4 shows the polishing characteristics of each of the above examples. This figure shows the relationship between the surface roughness, the flying height, and the rotational speed of the polishing tool, with the vertical axis representing the surface roughness and the flying height, and the horizontal axis representing the rotational speed of the polishing tool. As is clear from the figure, the flying height increases, that is, the surface roughness decreases in the non-contact polishing area between the lens and the polishing tool. Polish the lens to a high ffl! Thus, it is possible to obtain a lens polishing device t that can perform polishing at once.
第1図は本発明のレンズ研磨装置の一実施例の一部縦断
側面図、第2図は本発明のレンズ研、g装置の他の実施
例の一部縦断側面図、第3図は本発明のレンズ研磨装置
の更に他の実施例の一部縦断1iii面図、第4図は本
発明のレンズ研磨装置の表面粗さ、浮上量と研磨工具回
転数との関係を示す特性図、第5図は従来のレンズ研磨
装置の一部縦断側面図である
1、1a・・・レンズ 2a、2b・・・研磨工具6
a・・・レンズ保持台 6・・工具軸7・・・羽根用
8・・・エア供給ノズル9・・−エアポンプ
10.10a・・・ガイド11.11a・・・ガイ
ド穴 12・・・流量弁13・・非接触変位センサ
14・・変位検出制御装[直
(’3里人弁理士 小 川 勝 ′男手1 図
第2図
も3記
第S図
↓FIG. 1 is a partially longitudinal side view of an embodiment of the lens polishing apparatus of the present invention, FIG. 2 is a partially longitudinal side view of another embodiment of the lens polishing apparatus of the present invention, and FIG. FIG. 4 is a partial vertical sectional view of still another embodiment of the lens polishing device of the invention, and FIG. FIG. 5 is a partially vertical side view of a conventional lens polishing device.1, 1a...lens 2a, 2b...polishing tool 6
a... Lens holder 6... Tool shaft 7... For blades
8...Air supply nozzle 9...-Air pump
10.10a...Guide 11.11a...Guide hole 12...Flow rate valve 13...Non-contact displacement sensor 14...Displacement detection control device [Direct ('3 Ritoto Patent Attorney Masaru Ogawa') 1 Figure 2 and Figure 3 S ↓
Claims (1)
と、前記レンズを研磨する研磨工具と、この研磨工具を
駆動する駆動源とを備え、前記研磨工具を回転させてレ
ンズを研磨するようになしたレンズ研磨装置において、
前記駆動源を揺動自在な工具軸を有する風車装置で形成
したことを特徴とするレンズ研磨装置。 2、前記風車装置が、前記工具軸に固定した羽根車と、
この羽根車を回転させる空気噴出装置とで形成されたも
のである特許請求の範囲第1項記載のレンズ研磨装置。 3、前記空気噴出装置が、前記羽根車に対向したエア供
給ノズルと、このエア供給ノズルに空気を供給するエア
ポンプと、前記ノズルの一部に設けられ、噴出量を調整
する流量弁と、この流量弁を制御する非接触変位センサ
および変位検出制御装置とで形成されたものである特許
請求の範囲第2項記載のレンズ研磨装置。[Claims] 1. A lens, a lens holder holding the lens, a polishing tool for polishing the lens, and a drive source for driving the polishing tool, the polishing tool being rotated. In a lens polishing device configured to polish a lens,
A lens polishing device characterized in that the driving source is formed by a windmill device having a swingable tool shaft. 2. The windmill device includes an impeller fixed to the tool shaft;
The lens polishing device according to claim 1, which comprises an air blowing device for rotating the impeller. 3. The air ejection device includes an air supply nozzle facing the impeller, an air pump that supplies air to the air supply nozzle, a flow valve that is provided in a part of the nozzle and adjusts the amount of ejection; 3. The lens polishing device according to claim 2, wherein the lens polishing device is formed of a non-contact displacement sensor that controls a flow valve and a displacement detection control device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22354185A JPH0622798B2 (en) | 1985-10-09 | 1985-10-09 | Lens polishing machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22354185A JPH0622798B2 (en) | 1985-10-09 | 1985-10-09 | Lens polishing machine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6284964A true JPS6284964A (en) | 1987-04-18 |
JPH0622798B2 JPH0622798B2 (en) | 1994-03-30 |
Family
ID=16799774
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22354185A Expired - Lifetime JPH0622798B2 (en) | 1985-10-09 | 1985-10-09 | Lens polishing machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0622798B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0617854U (en) * | 1992-08-13 | 1994-03-08 | 共立精機株式会社 | Work holding device in lens processing machine |
CN110253384A (en) * | 2019-07-03 | 2019-09-20 | 上饶市奥飞光学仪器有限公司 | A kind of machining eyeglass pendulum machine positioning device |
CN115319818A (en) * | 2022-10-10 | 2022-11-11 | 南通华凯包装制品有限公司 | Packing paper cutting device for packaging machinery equipment |
-
1985
- 1985-10-09 JP JP22354185A patent/JPH0622798B2/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0617854U (en) * | 1992-08-13 | 1994-03-08 | 共立精機株式会社 | Work holding device in lens processing machine |
CN110253384A (en) * | 2019-07-03 | 2019-09-20 | 上饶市奥飞光学仪器有限公司 | A kind of machining eyeglass pendulum machine positioning device |
CN110253384B (en) * | 2019-07-03 | 2021-01-08 | 上饶市奥飞光学仪器有限公司 | Lens processing is with last pendulum machine sizing device |
CN115319818A (en) * | 2022-10-10 | 2022-11-11 | 南通华凯包装制品有限公司 | Packing paper cutting device for packaging machinery equipment |
Also Published As
Publication number | Publication date |
---|---|
JPH0622798B2 (en) | 1994-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3027063B2 (en) | Optical fiber end face polishing equipment | |
JPS6161757A (en) | Method and device for polishing optical surface | |
JP2003021142A (en) | Drive device using air bearing | |
US3977130A (en) | Removal-compensating polishing apparatus | |
JP2712782B2 (en) | Polishing spindle | |
US6413155B2 (en) | Polishing apparatus | |
KR20210149724A (en) | double-sided grinding device | |
JPS6284964A (en) | lens polishing equipment | |
JP2002307278A (en) | Polishing tool retaining device and polishing device | |
JPH1029153A (en) | Semiconductor wafer polishing device | |
JPH05177535A (en) | Method and device for polishing | |
JP2005111629A (en) | Polishing tool, polishing device using the same, and polishing method | |
JP4050835B2 (en) | Lens processing method | |
JP2000117607A (en) | Grinding tool | |
JPH02131851A (en) | Polishing device for curved face | |
JP3217731B2 (en) | Wafer processing method and double-sided surface grinder | |
JP2510560B2 (en) | Processing device for workpieces with aspherical shape | |
JPS61188071A (en) | Polishing method of wafer | |
JP2002307279A (en) | Polishing tool, polishing tool holding device, polishing device, and combination polishing method for processing polishing tool | |
CN110774168B (en) | Coupling mechanism provided with spherical bearing, method for determining bearing radius of spherical bearing, and substrate polishing device | |
JP2005271160A (en) | Grinding wheel for surface grinding | |
JP2002046048A (en) | Method for machining spherical surface in lens polishing device and device for it | |
JP2003109923A (en) | Device for polishing semiconductor wafer | |
JP3181089B2 (en) | Air spindle angle adjustment method | |
JP2003117790A (en) | Lens spherical surface machining device in lens polishing apparatus and its machining method |