JPS6284258A - fluid heating device - Google Patents
fluid heating deviceInfo
- Publication number
- JPS6284258A JPS6284258A JP60223980A JP22398085A JPS6284258A JP S6284258 A JPS6284258 A JP S6284258A JP 60223980 A JP60223980 A JP 60223980A JP 22398085 A JP22398085 A JP 22398085A JP S6284258 A JPS6284258 A JP S6284258A
- Authority
- JP
- Japan
- Prior art keywords
- heat exchanger
- tube group
- exchanger tube
- heat
- heat transfer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000012530 fluid Substances 0.000 title claims description 32
- 238000010438 heat treatment Methods 0.000 title claims description 20
- 238000002485 combustion reaction Methods 0.000 claims description 46
- 239000000919 ceramic Substances 0.000 claims description 14
- 239000002737 fuel gas Substances 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 18
- 239000000567 combustion gas Substances 0.000 description 14
- 238000009835 boiling Methods 0.000 description 8
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 8
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 8
- 229910010271 silicon carbide Inorganic materials 0.000 description 8
- 239000000446 fuel Substances 0.000 description 7
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000003345 natural gas Substances 0.000 description 4
- 229910017604 nitric acid Inorganic materials 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910000505 Al2TiO5 Inorganic materials 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052863 mullite Inorganic materials 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- JFBZPFYRPYOZCQ-UHFFFAOYSA-N [Li].[Al] Chemical compound [Li].[Al] JFBZPFYRPYOZCQ-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910052878 cordierite Inorganic materials 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 1
- 125000002485 formyl group Chemical class [H]C(*)=O 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- AABBHSMFGKYLKE-SNAWJCMRSA-N propan-2-yl (e)-but-2-enoate Chemical compound C\C=C\C(=O)OC(C)C AABBHSMFGKYLKE-SNAWJCMRSA-N 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- -1 subodumene Chemical compound 0.000 description 1
- 230000003685 thermal hair damage Effects 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Landscapes
- Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
- Gas Burners (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
「技術分野」
本発明は、湯沸し器、風呂釜、温水ボイラなどに使用さ
れる流体加熱装置に関する。DETAILED DESCRIPTION OF THE INVENTION TECHNICAL FIELD The present invention relates to a fluid heating device used in water heaters, bathtubs, hot water boilers, and the like.
「従来技術およびその問題点」
従来、湯沸し器、風呂釜、温水ボイラなどの流体加熱装
置においては、バーナ等の燃焼手段を有し、燃焼室にて
燃料を燃焼させた後、燃焼ガスを伝熱管群に導き、伝熱
管群の内部を流れる水等の流体を加熱するようになって
いた。"Prior art and its problems" Conventionally, fluid heating devices such as water heaters, bathtubs, and hot water boilers have a combustion means such as a burner, and after burning fuel in a combustion chamber, the combustion gas is transmitted. It was designed to heat the fluid such as water flowing inside the heat transfer tube group.
近年、これらの流体加熱装置においては、極力コンパク
トにするため、燃焼室をできる限り小型化すると共に、
燃焼室と熱交換部とを一体化した°構造とする傾向にあ
る。In recent years, in order to make these fluid heating devices as compact as possible, the combustion chamber has been made as small as possible, and
There is a trend towards a structure in which the combustion chamber and heat exchange section are integrated.
しかしながら、このように燃焼室を小型化すると、燃焼
途中の燃料が伝熱管の壁に接触する(すなわち火炎が冷
却される)ことにより、不完全燃焼を起こすことがあっ
た。このことは、燃料の損失となるばかりか、GO,ス
ス、アルデヒド等が発生し、人体にも悪影響を及ぼす結
果となる。However, when the combustion chamber is miniaturized in this way, incomplete combustion may occur due to the fuel in the middle of combustion coming into contact with the wall of the heat transfer tube (ie, the flame is cooled). This not only results in a loss of fuel, but also generates GO, soot, aldehyde, etc., which has an adverse effect on the human body.
また、ボイラーのように燃焼室の壁が伝熱面になってい
たり、伝熱管が火炎に接近していたりすると、未燃燃料
が伝熱面に付着して伝熱面が過熱して損傷したり、燃焼
室内の燃焼ガスの混合が悪いため、局部的に伝熱負荷が
増大し、同じく伝熱面を損傷させることがあった。Additionally, if the wall of the combustion chamber is a heat transfer surface, such as in a boiler, or if the heat transfer tubes are close to the flame, unburned fuel may adhere to the heat transfer surface, causing it to overheat and be damaged. Also, due to poor mixing of combustion gas in the combustion chamber, the heat transfer load increases locally, which can also damage the heat transfer surface.
このため、燃焼室の小型化には限界があり、例えば現在
市販されているガス湯沸し器においては、燃焼室と熱交
換部との大きさを比較すると約2:1であって、バーナ
先端と下方の伝熱管との距離は200〜3QO+sa+
もある。これ以上燃焼室を小さくして熱交換部を火炎に
近づけることは、伝熱管の損傷を早めたり、COの発生
を増加させる等の理由で困難となっていた。For this reason, there is a limit to the miniaturization of the combustion chamber; for example, in gas water heaters currently on the market, the size of the combustion chamber and the heat exchanger are approximately 2:1, and the size of the burner tip is approximately 2:1. The distance to the lower heat exchanger tube is 200~3QO+sa+
There is also. It has become difficult to make the combustion chamber any smaller and bring the heat exchanger closer to the flame because this may accelerate damage to the heat exchanger tubes or increase the generation of CO.
「発明の目的」
本発明の目的は、上記従来技術の問題点を解決し、不完
全燃焼を防止し、伝熱管等を損傷させることがなく、か
つ、熱損失の少ない高効率の流体加熱装置を提供するこ
とにある。``Object of the Invention'' The object of the present invention is to solve the problems of the prior art described above, prevent incomplete combustion, prevent damage to heat transfer tubes, etc., and provide a highly efficient fluid heating device with low heat loss. Our goal is to provide the following.
「発明の構成」
本発明による流体加熱装置は、燃焼手段に近接して第一
の伝熱管群を配置し、この第一の伝熱管群に隣接して前
記燃焼手段より離れた位置に通気性の輻射体を配置し、
さらにこの輻射体に隣接して前記燃焼手段より離れた位
置に第二の伝熱管群を配置したことを特徴とする。"Structure of the Invention" The fluid heating device according to the present invention includes a first group of heat transfer tubes disposed adjacent to the combustion means, and a ventilated tube located adjacent to the first group of heat transfer tubes and remote from the combustion means. Place the radiator of
Furthermore, a second heat exchanger tube group is arranged adjacent to the radiator and away from the combustion means.
本発明において、燃焼手段としては、プロパンガス、天
然ガス、石油等を燃料とし、これらの燃料を気化して燃
焼させるものが好ましく使用される。#に好ましくは、
ガスバーナが使用される。In the present invention, as the combustion means, one that uses propane gas, natural gas, petroleum, etc. as fuel and vaporizes and burns these fuels is preferably used. # preferably,
Gas burners are used.
ガスバーナは、必要に応じて複数本配置される。A plurality of gas burners are arranged as necessary.
第一の伝熱管群は、燃焼手段に最も近接して、例えば燃
焼手段によって形成される火炎中、あるいは火炎の先端
に近接した位置に配置される。この場合、燃焼手段の燃
料ガス吐出口(例えばバーナの先端)と第一の伝熱管群
との距離は100m+s以内とすることが好ましい、言
い換えると、火炎の長さは、燃焼手段の設計によって異
なるが、一般には50mm程度以下であるため、結局、
第一の伝熱管群は、火炎の先端付近から501程度以内
に配置されることになる。第一の伝熱管群を上記より離
れた位置に配置した場合には、熱損失が大きくなり、本
発明の効果を充分に得られなくなる。第一の伝熱管群は
、燃焼手段に最も近接しているが、内部を疏れる水等の
流体により冷却されるので、熱損傷が防止される。第一
の伝熱管群は、部分的過熱による熱損傷を防止するため
、外面にフィンが付いていないものが好ましいが、伝熱
面積増大率の小さいフィンを付けてもよい。The first heat transfer tube group is disposed closest to the combustion means, for example, in the flame formed by the combustion means or at a position close to the tip of the flame. In this case, it is preferable that the distance between the fuel gas discharge port of the combustion means (for example, the tip of the burner) and the first heat exchanger tube group is within 100 m+s. In other words, the length of the flame varies depending on the design of the combustion means. However, since it is generally less than about 50 mm, in the end,
The first heat exchanger tube group will be placed within about 501 points from the vicinity of the tip of the flame. If the first heat exchanger tube group is arranged at a position further away from the above, heat loss will increase and the effects of the present invention will not be sufficiently obtained. Although the first heat transfer tube group is closest to the combustion means, it is cooled by the fluid such as water that flows inside, so thermal damage is prevented. In order to prevent heat damage due to partial overheating, the first heat transfer tube group preferably does not have fins on its outer surface, but fins with a small heat transfer area increase rate may be provided.
通気性の輻射体は、第一の伝熱管群に隣接して燃焼手段
に対して離れた位置に配置される0通気性の輻射体とし
ては、特に限定されないが、例えばセラミックスハニカ
ム体などがその軽量性、低通気抵抗性、高実効輻射率な
どゆえに好適である。またセラミックスシュパンクバー
ナプレート、セラミックス三次元網状体なども採用しう
る。セラミックスとしては、アルミナ、ジルコニア、ム
ライト、スボジュメン、コージライト、アルミニウムチ
タネート、リチウムアルミニウムチタネート、炭化ケイ
素、窒化ケイ素などが使用できる0通気性の輻射体は、
燃焼ガスが通過することにより白熱し、第一の伝熱管群
および第二の伝熱管群に輻射熱を照射する。この場合、
第一の伝熱管群がないと、輻射熱は直接燃焼手段に照射
され、燃焼手段、例えばバーナ等が過熱されて好ましく
ない、第一の伝熱管群を燃焼手段に近接されて設けたこ
とによりCO等の不完全燃焼生成物が発生するが、これ
らの不完全燃焼生成物は通気性の輻射体を通過する際に
、輻射体の熱を受けて完全燃焼する。この場合、輻射体
がセラミックスの場合には、セラミックス自身が有する
触媒作用により、不完全燃焼生成物の完全燃焼が促進さ
れる。The air-permeable radiator is not particularly limited, but may be a ceramic honeycomb body, etc., which is arranged adjacent to the first heat exchanger tube group and away from the combustion means. It is suitable because of its light weight, low ventilation resistance, and high effective emissivity. Furthermore, a ceramic Schpank burner plate, a ceramic three-dimensional mesh body, etc. may also be used. As ceramics, alumina, zirconia, mullite, subodumene, cordierite, aluminum titanate, lithium aluminum titanate, silicon carbide, silicon nitride, etc. can be used.
The combustion gas becomes incandescent as it passes through and irradiates the first heat exchanger tube group and the second heat exchanger tube group with radiant heat. in this case,
Without the first heat exchanger tube group, radiant heat would directly irradiate the combustion means, causing the combustion means, such as a burner, to overheat, which is undesirable. When these incomplete combustion products pass through a ventilated radiant, they receive heat from the radiant and are completely combusted. In this case, when the radiator is made of ceramics, the catalytic action of the ceramic itself promotes complete combustion of the incomplete combustion products.
さらには、輻射体に酸化触媒等の触媒を担持させて不完
全燃焼生成物の燃焼を促進させるようにしてもよい。第
一の伝熱管群が加熱されることにより、その内部を流れ
る流体が加熱されることはいうまでもない。Furthermore, a catalyst such as an oxidation catalyst may be supported on the radiator to promote combustion of incomplete combustion products. It goes without saying that by heating the first heat exchanger tube group, the fluid flowing inside it is heated.
第二の伝熱管群は、輻射体に隣接して燃焼手段に対して
さらに離れた位置に配置される。第二の伝熱管群は、輻
射体を通過してきた燃焼ガスに接触して加熱されると共
に、輻射体から輻射熱を受けて加熱される。そして、燃
焼ガスと熱交換することにより内部を流れる流体を加熱
する。第二の伝熱管群は、伝熱効率を向上させるため、
外面にフィンを有するものが好ましい、また、燃焼ガス
が平均して接触するようにするため、第二の伝熱管群は
、伝熱管が千鳥状に配列されることが好ましい。The second heat transfer tube group is arranged adjacent to the radiator and further away from the combustion means. The second heat transfer tube group is heated by contacting the combustion gas that has passed through the radiator, and is also heated by receiving radiant heat from the radiator. The fluid flowing inside is heated by exchanging heat with the combustion gas. The second heat transfer tube group improves heat transfer efficiency,
It is preferable that the heat transfer tubes have fins on the outer surface, and it is preferable that the heat transfer tubes in the second heat transfer tube group are arranged in a staggered manner so that the combustion gases come into contact with each other evenly.
なお、第一の伝熱管群および第二の伝熱管群の伝熱管の
材質は、炭化ケイ素、窒化ケイ素などの耐熱、耐食性に
優れたセラミックスであることが好ましく、特に、高熱
伝導率、低線膨張係数、高強度を有し、成形性にも優れ
た反応焼結炭化珪素が最も好ましい0本発明の場合、第
一の伝熱管群を燃焼手段に近接させたことにより、第一
および第二の伝熱管群が大きな伝熱負荷を受けて局部的
に高温となりやすい、また、場合によっては、水などの
被加熱流体が局部沸騰を起こして発生した蒸気等により
伝熱を阻害され、局部的に非常に高温となることもある
。したがって、耐熱性に乏しい金属製とした場合には、
伝熱壁が過熱して激しく酸化され、極端な場合は溶損す
ることもあるので材質、レイアウト、使用条件などの仕
様を適宜選択することが望ましい、この点、セラミック
ス製とした場合には、充分な耐熱性が得られる。また、
燃焼ガスの保有する熱を顕然のみならず潜熱まで回収し
ようとする場合には硝酸の発生をきたすことがあり(天
然ガス自体はクリーンであるが、高温の燃焼によりNO
xが発生し、これが低温になると水分と結びついて硝酸
となる)、その点からも#腐食性を有するセラミックス
が好ましい、同様な理由で、伝熱管の外面に設けるフィ
ンの材質もセラミックスが好ましいが、銅、ステンレス
などの金属も使用できる。The material of the heat exchanger tubes of the first heat exchanger tube group and the second heat exchanger tube group is preferably ceramics with excellent heat resistance and corrosion resistance, such as silicon carbide and silicon nitride. Reaction-sintered silicon carbide, which has a coefficient of expansion, high strength, and excellent formability, is most preferred. In the case of the present invention, by placing the first heat transfer tube group close to the combustion means, A group of heat transfer tubes is subject to a large heat transfer load and tends to reach high temperatures locally.In some cases, heat transfer may be inhibited by steam generated by local boiling of the fluid to be heated such as water, resulting in localized high temperatures. It can also reach very high temperatures. Therefore, if it is made of metal with poor heat resistance,
The heat transfer wall may overheat and become violently oxidized, and in extreme cases, it may melt, so it is desirable to select specifications such as material, layout, and usage conditions appropriately. Provides excellent heat resistance. Also,
When attempting to recover not only the obvious heat but also the latent heat possessed by combustion gas, nitric acid may be generated (natural gas itself is clean, but due to high temperature combustion, NO
x is generated, and when it becomes low temperature, it combines with moisture and becomes nitric acid). From this point of view as well, ceramics with corrosive properties are preferable.For the same reason, ceramics are also preferable for the material of the fins provided on the outer surface of the heat exchanger tube. Metals such as , copper, and stainless steel can also be used.
「発明の実施例」
第1図および第2図には本発明による流体加熱装置の一
実施例が示されている。Embodiment of the Invention FIGS. 1 and 2 show an embodiment of a fluid heating device according to the present invention.
この流体加熱装置11は、上方が開口されたケーシング
12で全体を囲まれており、ケーシング12内の下部に
はバーナ13が配置されている。バーナ13は複数のノ
ズル14を有し、ノズル14から燃料ガス、例えば天然
ガスを噴出させて火炎15を形成するようになっている
。The fluid heating device 11 is entirely surrounded by a casing 12 that is open at the top, and a burner 13 is disposed in the lower part of the casing 12. The burner 13 has a plurality of nozzles 14 from which fuel gas, for example natural gas, is ejected to form a flame 15.
八−す13の上部には第一の伝熱管群1Bが配置されて
いる。この実施例の場合、第一の伝熱管群1Bの伝熱管
は、外径5〜20mm、肉厚1〜3a+mとされ、伝熱
管の配列間隔は10〜20mm、バーナ13のノズル1
4先端からの距aaは100■以内とされている。なお
、第一の伝熱管群16の伝熱管は、通常の円筒状のもの
でもよく、あるいは横断面が楕円形等の管であってもよ
い。A first heat exchanger tube group 1B is arranged above the eighth 13. In the case of this embodiment, the heat exchanger tubes of the first heat exchanger tube group 1B have an outer diameter of 5 to 20 mm, a wall thickness of 1 to 3 a+m, the arrangement interval of the heat exchanger tubes is 10 to 20 mm, and the nozzle 1 of the burner 13
The distance aa from the 4 tips is within 100 cm. Note that the heat exchanger tubes of the first heat exchanger tube group 16 may be of a normal cylindrical shape, or may be tubes having an elliptical cross section or the like.
第一の伝熱管群16の上部には、通気性の輻射体18が
配置されている。この実施例では、輻射体18として、
第3図に示すようなセラミックスハニカム体が用いられ
ている。このセラミックスハニカム体は、壁の厚さWが
0.1〜2mm 、開孔率が60%以上、高さhが2〜
30II1層とされている。なお、セラミックスハニカ
ム体のセルの形状は、第3図に示すような正方形のもの
に限らず、必要に応じて長方形あるいは六角形のもので
あってもよい、さらには波板同士、あるいは波板と平板
を多数積層して形成されるようなセラミックスハこカム
体でもよい。A breathable radiator 18 is arranged above the first heat exchanger tube group 16 . In this embodiment, as the radiator 18,
A ceramic honeycomb body as shown in FIG. 3 is used. This ceramic honeycomb body has a wall thickness W of 0.1 to 2 mm, a porosity of 60% or more, and a height h of 2 to 2 mm.
It is said to be 30II 1 layer. Note that the shape of the cells of the ceramic honeycomb body is not limited to the square shape shown in Fig. 3, but may be rectangular or hexagonal as necessary. A ceramic cam body formed by laminating a large number of flat plates may also be used.
輻射体18のさらに上部には、第二の伝熱管群19が配
置されている。この実施例では、第二の伝熱管群19は
、波板と平板とを交互に多数積層して形成されたハニカ
ム体と、このハニカム体を貫通する複数の伝熱管とから
なる。ハこカム体のセルの走行方向に対して伝熱管は垂
直に配置されており、各伝熱管は相互に平行に、かつ、
千鳥状に配置されている0貫通部においてハニカム体と
伝熱管とは接していてハニカム体の各部がフィン20と
して機能している。第二の伝熱管群19の伝熱管は外径
5〜20mm、肉厚1〜3■とされ、伝熱管の配列間隔
は15〜5hmとされ、また、フィン20の肉厚は0.
1〜1mm 、 フィン20の配列間隔は1〜10mm
とされている。Further above the radiator 18, a second heat exchanger tube group 19 is arranged. In this embodiment, the second heat exchanger tube group 19 includes a honeycomb body formed by laminating a large number of corrugated plates and flat plates alternately, and a plurality of heat exchanger tubes passing through the honeycomb body. The heat exchanger tubes are arranged perpendicularly to the running direction of the cells of the box body, and each heat exchanger tube is parallel to each other and
The honeycomb body and the heat transfer tubes are in contact with each other at the zero penetration portions arranged in a staggered manner, and each part of the honeycomb body functions as a fin 20. The heat exchanger tubes of the second heat exchanger tube group 19 have an outer diameter of 5 to 20 mm and a wall thickness of 1 to 3 cm, the arrangement interval of the heat exchanger tubes is 15 to 5 hm, and the wall thickness of the fins 20 is 0.5 mm.
1 to 1 mm, the arrangement interval of the fins 20 is 1 to 10 mm
It is said that
なお、第一および第二の伝熱管群16.19の伝熱管は
、一般には水平に配置されるが、被加熱流体が沸騰した
際に気泡が抜けやすいように、被加熱流体の入口側に比
べて出口側が上方となるように傾斜させてもよい。The heat exchanger tubes of the first and second heat exchanger tube groups 16.19 are generally arranged horizontally, but they are placed on the inlet side of the heated fluid so that air bubbles can easily escape when the heated fluid boils. It may also be inclined so that the outlet side is upward.
第一の伝熱管群16および第二の伝熱管群18内には、
被加熱流体が流される。被加熱流体としては、液体、特
には水が好適である。被加熱流体は第一の伝熱管群1B
と第二の伝熱管群19とにそれぞれ独立に流されてもよ
いが、好ましくは両者間をシリーズに流される。この場
合、温度効率を大きくする上では、まず第二の伝熱管群
19に流し、ここを出た被加熱流体を次いで第一の伝熱
管群IBに流すことにより、燃焼ガスの流れに対して向
流に流すことが好ましい、一方、管内での局部沸騰を防
止するためには、これと逆に接続して、燃焼ガスの流れ
に対して並流とすることが好ましい、また各伝熱管群に
おいて伝熱管が燃焼ガス流れ方向に複数段設けられてい
るときには、第一の伝熱管群16内においては並流とし
、第二の伝熱管群!9内においては向流とすることなど
もできる。Inside the first heat exchanger tube group 16 and the second heat exchanger tube group 18,
A fluid to be heated is flowed. A liquid, particularly water, is suitable as the fluid to be heated. The fluid to be heated is the first heat exchanger tube group 1B.
Although the heat exchanger may be flowed independently between the heat exchanger tube group 19 and the second heat exchanger tube group 19, it is preferably flowed in series between the two. In this case, in order to increase the temperature efficiency, the fluid to be heated is first flowed through the second heat exchanger tube group 19, and the heated fluid exiting here is then flowed to the first heat exchanger tube group IB, so that the flow of combustion gas is It is preferable to flow in a countercurrent direction.On the other hand, in order to prevent local boiling within the tubes, it is preferable to connect them in the opposite direction so that the flow is parallel to the flow of combustion gas. When heat transfer tubes are provided in multiple stages in the combustion gas flow direction, parallel flow occurs in the first heat transfer tube group 16, and parallel flow occurs in the second heat transfer tube group! 9, it is also possible to provide countercurrent flow.
上記実施例の流体加熱装置11と、これとは異なる構成
の流体加熱装置とを用いて性能を評価する実験を行なっ
た。実験条件および実験結果は次の通りである。An experiment was conducted to evaluate the performance using the fluid heating device 11 of the above embodiment and a fluid heating device having a different configuration. The experimental conditions and experimental results are as follows.
(実験条件)
■燃料:天然ガス、空気過剰率1.02■被加熱流体:
入ロ水温は20℃の水をまず第一の伝熱管群1Bに流し
、ここを出たのち、第二の伝熱管群18に流す
■第一の伝熱管群16:内径4.5tata +外径7
m厘 、配列間隔12+u+ 、全部で10本−列に配
置1反応焼結炭化ケイ素製
■輻射体18:20セル/1nch2.セル断面が正方
形のハニカム、ガス流れ方向の高さh20mm、ムライ
ト酸
■第二の伝熱管群19:伝熱管の内径8.5層膚、外径
12mm 、フィンの厚さ0.4mm 、フィンによる
伝熱面積増大率20倍1反応焼結炭化ケイ素製、外面基
準伝熱面a1.4rn’、燃焼ガス流れ方向の寸法b
85なお、実施例の装置においては、バーナ13のノズ
ル14先端から第一の伝熱管群16までの距離aを50
mm、バーナ13のノズル14先端から第二の伝熱管a
t 19 t テc7) 距gI c ’Ft 80m
mとした。(Experimental conditions) ■Fuel: natural gas, excess air ratio 1.02■Fluid to be heated:
Water with an input water temperature of 20°C is first flowed into the first heat exchanger tube group 1B, and after leaving here, it is flowed into the second heat exchanger tube group 18 ■First heat exchanger tube group 16: inner diameter 4.5 tata + outside Diameter 7
m, array spacing 12+u+, total of 10 radiators arranged in rows made of 1-reaction sintered silicon carbide 18:20 cells/1nch2. Honeycomb with square cell cross section, height h20 mm in gas flow direction, mullite acid ■Second heat transfer tube group 19: Heat transfer tube inner diameter 8.5 layers, outer diameter 12 mm, fin thickness 0.4 mm, by fins Heat transfer area increase rate 20 times 1 Made of reaction sintered silicon carbide, external reference heat transfer surface a1.4rn', dimension b in the combustion gas flow direction
85 In the apparatus of the embodiment, the distance a from the tip of the nozzle 14 of the burner 13 to the first heat exchanger tube group 16 is 50
mm, from the tip of the nozzle 14 of the burner 13 to the second heat exchanger tube a
t 19 t te c7) Distance gI c 'Ft 80m
It was set as m.
また、対照例の装置においては、第一の伝熱管群I6お
よび輻射体18を設けず、実施例の装置に用いたのと同
様に第二の伝熱管群19のみを設け、7′−−す13の
ノズル14先端から第二の伝熱管群19までの距#Cを
250mmとした。In addition, in the device of the control example, the first heat exchanger tube group I6 and the radiator 18 were not provided, and only the second heat exchanger tube group 19 was provided as in the device of the example, and 7'-- The distance #C from the tip of the nozzle 14 of the pipe 13 to the second heat exchanger tube group 19 was set to 250 mm.
(実験結果)
実施例の装置と対照例の装置の性能を比較すると次表の
通りである。なお、排出COC度以外は相対比で示しで
ある。(Experimental Results) The following table shows a comparison of the performance of the device of the example and the device of the control example. Note that the values other than the discharge COC degree are shown in relative ratios.
(以下、余白)
また、水の流れを少なくとしていくと、対照例の装置で
は、出口水温72℃で局部沸騰が最上部の伝熱管内で発
生した。これに対して、実施例の装置では、出口水温8
3℃で初めて最上部の伝熱管内で局部沸昆が発生した。(Hereinafter, blank space) Furthermore, when the flow of water was decreased, local boiling occurred in the uppermost heat transfer tube at an outlet water temperature of 72° C. in the device of the control example. On the other hand, in the device of the embodiment, the outlet water temperature is 8
Local boiling occurred for the first time in the uppermost heat transfer tube at 3°C.
なお、局部沸騰の発生は、大きな音と共に振動が発生す
る状態で判断した。The occurrence of local boiling was determined based on the occurrence of vibrations along with loud noises.
このように、実施例の装置では、第一の伝熱管群16お
よび輻射体18を設けたことにより、coe度を低く抑
えつつ、バーナを伝熱管に近接させて燃焼空間を大幅に
縮小化することができる。また、局部沸騰を起こしにく
くなり、出口水温を大幅に上昇することができる。As described above, in the apparatus of the embodiment, by providing the first heat exchanger tube group 16 and the radiator 18, the degree of coe can be kept low, and the burner can be brought close to the heat exchanger tubes, thereby significantly reducing the combustion space. be able to. In addition, local boiling is less likely to occur, and the outlet water temperature can be significantly increased.
実施例の装置が局部沸騰を起こしにくい理由は次のよう
に考えられる。すなわち、輻射体18は燃焼ガスにより
加熱され、内部の伝熱によりその温度は均一化される。The reason why the apparatus of the embodiment is less likely to cause local boiling is considered to be as follows. That is, the radiator 18 is heated by the combustion gas, and its temperature is made uniform by internal heat transfer.
そして、輻射体18から第二の伝熱管群19に均一な輻
射熱が照射され、第二の伝熱管群19が均一に加熱され
るためと考えられる。It is thought that this is because uniform radiant heat is irradiated from the radiator 18 to the second heat exchanger tube group 19, and the second heat exchanger tube group 19 is uniformly heated.
また、第一の伝熱管群16が局部沸騰を起こさないのは
、外面にフィンをもたないので管壁の温度が低く抑えら
れるため、および、第一の伝熱管群18が火炎による強
い対流伝熱だけでなく、これと同等の輻射熱を輻射体1
8から受けているためと考えられる。In addition, the first heat exchanger tube group 16 does not cause local boiling because it does not have fins on its outer surface, so the temperature of the tube wall can be kept low, and the first heat exchanger tube group 18 does not cause strong convection due to the flame. In addition to heat transfer, the radiant body 1 also radiates the same amount of heat.
This is thought to be because it has been received since 8.
実験中、第二の伝熱管4T10は、輻射体18からの強
い輻射熱を受けて、フィン20の先端は小豆色に色付い
ており、650℃以上になっていたものと推定される。During the experiment, the second heat transfer tube 4T10 received strong radiant heat from the radiator 18, and the tips of the fins 20 were colored reddish red, and it is estimated that the temperature was 650° C. or higher.
第二の伝熱管群19の材質としては反応焼結炭化ケイ素
を用いたが、反応焼結炭化ケイ素は、熱伝導率が常温テ
170kcal/rn’h ℃、1000℃で50 k
cal/rn’h ”Cと非常に大であり、もし熱伝導
率が高々20 kca l/m16℃の耐熱合金を用い
ていたとしたら、フィン20の先端は850℃以上にな
るものと推定される。また、第一の伝熱管群1Bは、内
部に比較的低温の水が流れるのであるが、火炎に近接し
ているので局部的にはかなり高温となる。したがって、
このような使用条件に対しては、耐熱合金では長期の使
用に耐えがたい可能性もあり、より適切な仕様を設定す
るのが好ましい。なお、第一および第二の伝熱管群16
.19を反応焼結炭化ケイ素としたことにより、NOx
の発生に伴なう硝酸に対して、耐腐食性も得られる。Reactive sintered silicon carbide was used as the material for the second heat transfer tube group 19, and the thermal conductivity of reactive sintered silicon carbide is 170 kcal/rn'h at room temperature and 50 kcal/rn'h at 1000°C.
cal/rn'h ''C, which is extremely large, and if a heat-resistant alloy with a thermal conductivity of at most 20 kcal/m and 16°C was used, it is estimated that the temperature at the tip of the fin 20 would be 850°C or higher. In addition, although relatively low-temperature water flows inside the first heat transfer tube group 1B, since it is close to the flame, the temperature locally becomes quite high.
Under such usage conditions, heat-resistant alloys may not be able to withstand long-term use, so it is preferable to set more appropriate specifications. Note that the first and second heat exchanger tube groups 16
.. By using reaction sintered silicon carbide as No. 19, NOx
It also provides corrosion resistance against nitric acid associated with the generation of nitric acid.
第4図および第5図には、本発明による流体加熱装置の
他の実施例が示されている。この流体加熱袋fillで
は、ケーシング20の上部が閉塞され、下部に排気口2
1が形成されている。そして、ケーシング20内に、バ
ーナ13.第一の伝熱管群16、輻射体18、第二の伝
熱管群18が順次上方から下方に向けて配置されている
。さらに、ケーシング20の底部には凝縮水の受は皿2
2が配置されている。したがって、この装置11では、
燃焼ガスが上方から下方へ流れ、凝縮水が下方に流れる
ようになっている。この装置11は、燃焼ガス中の潜熱
をも回収するタイプのものに好適である。4 and 5 show another embodiment of a fluid heating device according to the invention. In this fluid heating bag fill, the upper part of the casing 20 is closed, and the lower part has an exhaust port 2.
1 is formed. Then, within the casing 20, a burner 13. A first heat exchanger tube group 16, a radiator 18, and a second heat exchanger tube group 18 are arranged sequentially from above to below. Furthermore, a tray 2 is provided at the bottom of the casing 20 to receive condensed water.
2 is placed. Therefore, in this device 11,
Combustion gas flows from above to below, and condensed water flows downward. This device 11 is suitable for a type that also recovers latent heat in combustion gas.
また第1図、第4図に示す実施例において、通気性の輻
射体18とフィンを備える第二の伝熱管群19との間に
、さらにフィンなしの伝熱管群を配置することも好まし
い、これにより、フィンを備える第二の伝熱管群18の
高温部側と低温部側との温度差を緩和できる。さらに、
燃焼手段側から順にフィンなし伝熱管群、通気性の輻射
体、フィンなし伝熱管群、通気性の輻射体、フィンつき
伝熱管群を配置するごとくしてもよい。In the embodiments shown in FIGS. 1 and 4, it is also preferable to further arrange a group of heat transfer tubes without fins between the breathable radiator 18 and the second group of heat transfer tubes 19 provided with fins. Thereby, the temperature difference between the high temperature part side and the low temperature part side of the second heat exchanger tube group 18 provided with fins can be alleviated. moreover,
A finless heat exchanger tube group, an air permeable radiator, a finless heat exchanger tube group, an air permeable radiator, and a finned heat exchanger tube group may be arranged in this order from the combustion means side.
「発明の効果」
以上説明したように、本発明によれば、燃焼手段に近接
した位置から、第一の伝熱管群、通気性の輻射体、第二
の伝熱管群を順次配置したので、通気性の輻射体から第
一の伝熱管群および第二の伝熱管群に輻射熱が照射され
、燃焼熱を有効に利用することができる。また、第一の
伝熱管群を燃焼手段に近接させることにより不完全燃焼
生成物が発生したとしても、輻射体を通過する際に完全
燃焼されるので、不完全燃焼生成物の発生を極めて少な
くすることができる。さらに、第一の伝熱管群を燃焼手
段に近接して燃焼空間を大幅に縮小し、装置をコンパク
ト化することができる。"Effects of the Invention" As explained above, according to the present invention, since the first heat exchanger tube group, the breathable radiator, and the second heat exchanger tube group are sequentially arranged from the position close to the combustion means, Radiant heat is irradiated from the breathable radiator to the first heat exchanger tube group and the second heat exchanger tube group, allowing effective use of combustion heat. Furthermore, by placing the first heat transfer tube group close to the combustion means, even if incomplete combustion products are generated, they will be completely combusted when passing through the radiator, so the generation of incomplete combustion products can be minimized. can do. Furthermore, by placing the first heat transfer tube group close to the combustion means, the combustion space can be significantly reduced, and the apparatus can be made more compact.
第1図は本発明による流体加熱装置の一実施例を示す正
面断面図、第2図は第1図におけるTI −11線に沿
った断面図、第3図は同装置で使用される輻射体の一例
を示す斜視図、第4図は本発明による流体加熱装置の他
の実施例を示す正面断面図、第5図は第4図のV−V線
に沿った断面図である。
図中、11は流体加熱装置、12はケーシング、13は
バーナ、14はノズル、15は火炎、1Bは第一の伝熱
管群、18は通気性の輻射体、19は第二の伝熱管群、
20はフィンである。
一■
一■
第1vA
第2図FIG. 1 is a front sectional view showing an embodiment of a fluid heating device according to the present invention, FIG. 2 is a sectional view taken along the TI-11 line in FIG. 1, and FIG. 3 is a radiator used in the device. 4 is a front sectional view showing another embodiment of the fluid heating device according to the present invention, and FIG. 5 is a sectional view taken along line V-V in FIG. 4. In the figure, 11 is a fluid heating device, 12 is a casing, 13 is a burner, 14 is a nozzle, 15 is a flame, 1B is a first heat exchanger tube group, 18 is a breathable radiator, and 19 is a second heat exchanger tube group ,
20 is a fin. 1■ 1■ 1vA Figure 2
Claims (4)
の第一の伝熱管群に隣接して前記燃焼手段より離れた位
置に通気性の輻射体を配置し、さらにこの輻射体に隣接
して前記燃焼手段より離れた位置に第二の伝熱管群を配
置したことを特徴とする流体加熱装置。(1) A first group of heat exchanger tubes is arranged adjacent to the combustion means, a breathable radiator is arranged adjacent to the first group of heat exchanger tubes at a position away from the combustion means, and A fluid heating device characterized in that a second heat exchanger tube group is arranged adjacent to the body and away from the combustion means.
管群、前記通気性の輻射体および前記第二の伝熱管群は
いずれもセラミックスからなる流体加熱装置。(2) The fluid heating device according to claim 1, wherein the first heat exchanger tube group, the air-permeable radiator, and the second heat exchanger tube group are all made of ceramics.
記第一の伝熱管群は外面にフィンのない管とし、前記第
二の伝熱管群は外面にフィンを有する管とした流体加熱
装置。(3) In claim 1 or 2, the first group of heat exchanger tubes are tubes without fins on their outer surfaces, and the second group of heat exchanger tubes are tubes with fins on their outer surfaces for fluid heating. Device.
において、前記第一の伝熱管群は、前記燃焼手段の燃料
ガス吐出口より100mm以内の範囲に配置されている
流体加熱装置。(4) In any one of claims 1 to 3, the first heat exchanger tube group is a fluid heating device disposed within 100 mm from the fuel gas discharge port of the combustion means. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60223980A JPH0739880B2 (en) | 1985-10-08 | 1985-10-08 | Fluid heating device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60223980A JPH0739880B2 (en) | 1985-10-08 | 1985-10-08 | Fluid heating device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6284258A true JPS6284258A (en) | 1987-04-17 |
JPH0739880B2 JPH0739880B2 (en) | 1995-05-01 |
Family
ID=16806687
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60223980A Expired - Lifetime JPH0739880B2 (en) | 1985-10-08 | 1985-10-08 | Fluid heating device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0739880B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63279052A (en) * | 1987-05-07 | 1988-11-16 | Asahi Glass Co Ltd | Improved fluid heating device |
JPS63286657A (en) * | 1987-05-18 | 1988-11-24 | Asahi Glass Co Ltd | Hot-water supplier |
JPS6414549A (en) * | 1987-07-09 | 1989-01-18 | Asahi Glass Co Ltd | Heater device |
JP2017530322A (en) * | 2014-06-30 | 2017-10-12 | チュビタック (ターキー ビリムセル ヴィ テクノロジク アラスティルマ クルム)Tubitak (Turkiye Bilimsel Ve Teknolojik Arastirma Kurumu) | Hybrid homogeneous catalytic combustion system |
CN112833541A (en) * | 2021-03-12 | 2021-05-25 | 龙正环保股份有限公司 | Biomass gasification furnace |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61225542A (en) * | 1985-03-29 | 1986-10-07 | Kawasaki Steel Corp | Heat exchanger |
-
1985
- 1985-10-08 JP JP60223980A patent/JPH0739880B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61225542A (en) * | 1985-03-29 | 1986-10-07 | Kawasaki Steel Corp | Heat exchanger |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63279052A (en) * | 1987-05-07 | 1988-11-16 | Asahi Glass Co Ltd | Improved fluid heating device |
JPS63286657A (en) * | 1987-05-18 | 1988-11-24 | Asahi Glass Co Ltd | Hot-water supplier |
JPS6414549A (en) * | 1987-07-09 | 1989-01-18 | Asahi Glass Co Ltd | Heater device |
JP2017530322A (en) * | 2014-06-30 | 2017-10-12 | チュビタック (ターキー ビリムセル ヴィ テクノロジク アラスティルマ クルム)Tubitak (Turkiye Bilimsel Ve Teknolojik Arastirma Kurumu) | Hybrid homogeneous catalytic combustion system |
CN112833541A (en) * | 2021-03-12 | 2021-05-25 | 龙正环保股份有限公司 | Biomass gasification furnace |
Also Published As
Publication number | Publication date |
---|---|
JPH0739880B2 (en) | 1995-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5043859B2 (en) | Condenser boiler heat exchanger for heating and hot water supply | |
JPH0642812A (en) | Heat exchanger for gas boiler | |
WO2011064804A2 (en) | Double tubing condensation exchanger for heating water and/or for producing sanitary hot water | |
JPS6284258A (en) | fluid heating device | |
JP2986982B2 (en) | Small gas fired air heater | |
JP5234350B2 (en) | Heat exchanger and water heater | |
CN215491189U (en) | Convection-radiation combined heat exchanger | |
JPH0159520B2 (en) | ||
US7013843B1 (en) | Downdraft boiler with turbulators | |
JP4165097B2 (en) | Water tube boiler | |
JPH05761Y2 (en) | ||
CN218469299U (en) | Seawater type low-nitrogen condensation integrated normal-pressure hot water boiler | |
JPS62233639A (en) | fluid heating device | |
JPS62288446A (en) | Forced combustion type water heater not using heat absorbing fins | |
JPS5844174B2 (en) | bath kettle | |
JPS63207910A (en) | Fluid heating device with radiant cloth | |
JPS63207911A (en) | fluid heating device | |
JPS63251750A (en) | fluid heater | |
RU2296270C1 (en) | Air heater | |
JPS63286657A (en) | Hot-water supplier | |
SU382910A1 (en) | THERMOGRAPHIC HEAT TUBE | |
JPS63207912A (en) | Fluid heating device with radiant | |
JPH0625796Y2 (en) | Heat exchanger for instant hot water heater | |
JPS63207913A (en) | Fluid heating device with radiant | |
JPS63210514A (en) | Improved fluid heating device |