[go: up one dir, main page]

JPS6280769A - Internal distortion method for unevenly spaced image distortion considering aperture characteristics - Google Patents

Internal distortion method for unevenly spaced image distortion considering aperture characteristics

Info

Publication number
JPS6280769A
JPS6280769A JP60220067A JP22006785A JPS6280769A JP S6280769 A JPS6280769 A JP S6280769A JP 60220067 A JP60220067 A JP 60220067A JP 22006785 A JP22006785 A JP 22006785A JP S6280769 A JPS6280769 A JP S6280769A
Authority
JP
Japan
Prior art keywords
interpolation
distortion
image
aperture
aperture characteristics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60220067A
Other languages
Japanese (ja)
Inventor
Yoichi Seto
洋一 瀬戸
Akira Tsuboi
坪井 晃
Nobuo Hamano
浜野 亘男
Fuminobu Furumura
文伸 古村
Tetsuo Yokoyama
哲夫 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60220067A priority Critical patent/JPS6280769A/en
Publication of JPS6280769A publication Critical patent/JPS6280769A/en
Pending legal-status Critical Current

Links

Landscapes

  • Image Analysis (AREA)
  • Image Processing (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は画像の補正処理に係り、特に撮影系によるボケ
(開口特性による劣化)および撮影系(検出素子等)の
ミスアライメントあるいは、振動で連続した画素間隔が
不等間隔の歪をもった画像の補正に好適な開口特性を考
慮した不等間隔画像歪の内挿方式に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to image correction processing, and is particularly concerned with blurring caused by the imaging system (deterioration due to aperture characteristics), misalignment of the imaging system (detection element, etc.), or continuous correction due to vibration. The present invention relates to an interpolation method for unevenly spaced image distortion that takes into account aperture characteristics suitable for correcting images that have distortions with uneven pixel spacing.

〔発明の背景〕[Background of the invention]

最新のセンサである, SPOTI7星に搭載されるH
 R V (}Iigh Resolution Vi
sible )センサの構成を第2図に示す。CCD 
(電荷転送素子)センサの素子数は約1000個余りの
集積度であり,1素子の解像度が15mとすると、1つ
のCCDの撮影巾は15kmと狭いため、搭載センサは
第2図に示すようにハーフミラ−加工30したプリズム
10に4つのCCDを結合して60kmの撮影巾を得て
いる。地表面の反射光20は、ハーフミラ−により分光
され、CCD40の受光面(素子部)50に入射される
The latest sensor, H installed on SPOTI 7 stars
R V (}Iigh Resolution Vi
FIG. 2 shows the configuration of the sensor. CCD
(Charge Transfer Element) The number of elements in the sensor is approximately 1000 elements, and if the resolution of one element is 15m, the imaging width of one CCD is as narrow as 15km, so the installed sensor is as shown in Figure 2. Four CCDs are connected to a prism 10 which has been processed with a half mirror to obtain an imaging width of 60 km. The reflected light 20 from the ground surface is separated by a half mirror and is incident on a light receiving surface (element section) 50 of the CCD 40 .

複数のCCDの結合面は、第3図のように、1つのCC
D内では素子60は等間隔に並んでいるが,各CCD間
は、完全に等間隔に構成することは出来ず(10μm以
下の機械的整合が必要である。また打上げ時のショック
等で不整合が生じる可能性大)CCDI (3)とCC
D (2}の間のように素子の重なり.70 (90)
一これをオーバラツブと呼ぶ−1あるいはCCD2とC
CD3の間のように素子の欠落−アンダラップと呼ぶ−
、両者を不等間隔歪と称する歪が生ずる。
The bonding surfaces of multiple CCDs are connected to one CC as shown in Figure 3.
In D, the elements 60 are arranged at equal intervals, but it is not possible to arrange the CCDs at completely equal intervals (mechanical alignment of 10 μm or less is required. Also, there may be problems due to shocks during launch, etc.). High possibility of matching) CCDI (3) and CC
Overlap of elements as between D (2}.70 (90)
- This is called overlapping -1 or CCD2 and C
Missing elements like between CD3 - called underlap -
, both of which produce a distortion called non-uniformly spaced distortion.

不等間隔歪は、従来のMSS(マルチスペクトラルスキ
ャナ)には、生じなかった歪である。
Unequal interval distortion is distortion that does not occur in conventional MSS (multispectral scanners).

衛星画像の他、医用画像においても同様の問題がある。Similar problems exist in medical images as well as satellite images.

第9図にXgCT (Computed Tomogr
aphy)装置の概要を示す。放射源300から放射さ
れたX線は、被検体310を透過し検出器に入射され。
Figure 9 shows XgCT (Computed Tomogr
aphy) device. X-rays emitted from the radiation source 300 pass through the subject 310 and enter the detector.

投影画像340が得られる。A projected image 340 is obtained.

検出器は解像度を向−Hさせるためコリメータによりあ
る開口角をもつ。1つの検出器の大きさは約0.21で
開口度は約8°である。
The detector has a certain aperture angle due to the collimator to improve the resolution. The size of one detector is about 0.21 and the aperture is about 8°.

検出部分は、1単位数10〜数100個の検出器が数個
〜数10個単位直列に結合されて総数600個の検出器
より構成される。1単位内の検出器配列は等間隔1等寸
法にできるが、問題は。
The detection section is composed of a total of 600 detectors in which several to several tens of detectors are connected in series. The detector array within one unit can be equally spaced and of equal size, but there is a problem.

検出器1320と検出器11330の間は、ハンダ付は
等で結合されているため、検出器配列が不連続(アンダ
ラップ)になる。(検出器m、 rv、 vの間も同様
)このため検出器間の不連続歪が投影画像データに含ま
れ、再構成画像に′っなぎリングアーチファクト″が生
じ画質劣化が生ずる。
Since the detector 1320 and the detector 11330 are connected by soldering or the like, the detector arrangement becomes discontinuous (underlap). (Similarly between detectors m, rv, and v) For this reason, discontinuous distortion between the detectors is included in the projection image data, and a ``ring artifact'' occurs in the reconstructed image, resulting in deterioration of image quality.

また以上のような歪の他に画像利用ユーザがらボケ等を
補正した画像の高画質化が望まれている。
In addition to the above-mentioned distortions, image users desire higher quality images that are corrected for blurring and the like.

これは、第4図に示すように、対象シーンI(x)14
0のデータは、コリメータレンズ、鏡等の光学系150
、検出器160、増巾器等のアナログ電子回路170お
よびサンプリング電子回路180の劣化要因により観測
画像サンプルデータP(x)200はボケだものになっ
ている。
As shown in FIG. 4, this corresponds to the target scene I(x)14
Data of 0 indicates the optical system 150 such as collimator lens and mirror.
, the detector 160, the analog electronic circuit 170 such as an amplifier, and the sampling electronic circuit 180 are degraded, and the observed image sample data P(x) 200 is blurred.

第5図に示すように撮影系が理想的なδ (デルタ)関
数的ならば観測画像サンプルデータP(x)は。
As shown in FIG. 5, if the imaging system is an ideal δ (delta) function, the observed image sample data P(x) is.

で表わせる。しかし撮影系は、H(=Ho−Ho・H^
・Hs )なる劣化要因(空間不変性が保存されている
と仮定する。)を持っているので実際の観測画像サンプ
ルデータP’ (x) P’(x)=  Σ  I(jΔX)−H(X)−δ 
(x−jΔX)j=−■ = Σ  I(jΔx)・h(x+JΔx)     
 (2)j=−ω ここで 串 :コンボリューション h(x、jΔx)=H*δ(x−jΔx )     
  (3)と表わせられる。
It can be expressed as However, the shooting system is H (=Ho-Ho・H^
・Hs) (assuming that spatial invariance is preserved), the actual observed image sample data P' (x) P' (x) = Σ I (jΔX) - H ( X)-δ
(x-jΔX)j=-■ = Σ I(jΔx)・h(x+JΔx)
(2) j=-ω where: Convolution h(x, jΔx)=H*δ(x-jΔx)
It can be expressed as (3).

(3)式のHのインパレス応答、つまり点光源的な信号
が入ったときの撮影系Hの観測データを意味しhを、 
 P S F (Point 5pread Func
tion )という。PSFは系の劣化要因を示す。よ
って撮影系の劣化を補正するためにはPSFを求め[1
!IデータP(x)200に対するH÷なる特性のフィ
ルタによる復元処理190を行えばよい。復元処理は、
PSFを開口特性とよばれることがら開口特性補正とも
言う。
The impulse response of H in equation (3), that is, the observed data of the imaging system H when a point light source-like signal is input, and h is
P S F (Point 5pread Func
tion). PSF indicates the deterioration factor of the system. Therefore, in order to correct the deterioration of the imaging system, find the PSF [1
! Restoration processing 190 using a filter with a characteristic of H÷ for I data P(x) 200 may be performed. The restoration process is
Since PSF is called aperture characteristic, it is also called aperture characteristic correction.

従来の画像処理においては、「画像処理と解析」(共立
出版)p192に示されるよう補正した画像に対して開
口時性の補正を行うものであり、すでにある関数により
内挿が施されており、最適な開口特性補正が行われたと
は言えない。
In conventional image processing, the opening time correction is performed on the corrected image as shown in "Image Processing and Analysis" (Kyoritsu Shuppan) p. 192, and interpolation is already performed using an existing function. , it cannot be said that optimal aperture characteristic correction has been performed.

また、不等間隔画像歪は空間不変性が保存されていない
ため、空間不変性が保存されたという仮定のもとに求め
たPSFを、この方式に適用することは困難である。
Furthermore, since spatial invariance is not preserved in unevenly spaced image distortion, it is difficult to apply to this method a PSF obtained on the assumption that spatial invariance is preserved.

開口特性を考慮して不等間隔画像歪を補正するには、w
ii測画像画像データし開口特性補償フィルタを通した
後、不等間隔内挿関数により着目する点の画素強度を求
めればよい。しがし上記にも記したように開口特性補償
フィルタは空間不変性に基づいPSFより算出している
ため走査量で空間不変性が保存されない不等間隔歪をも
つ両僅には、この考え方はそのまま適用できない。
To correct uneven image distortion by considering the aperture characteristics, w
After passing the measured image data through an aperture characteristic compensation filter, the pixel intensity at the point of interest may be determined using an unequal interval interpolation function. However, as mentioned above, the aperture characteristic compensation filter is calculated from the PSF based on spatial invariance, so this way of thinking cannot be applied to both cases where spatial invariance is not preserved in the scanning amount and has nonuniformly spaced distortion. It cannot be applied as is.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、撮影系を起因とする画像のボケおよび
不等間隔画像歪を高速にかつ高精度に内挿する方式を提
供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for interpolating image blur and irregularly spaced image distortion caused by the imaging system at high speed and with high precision.

〔発明の概要〕[Summary of the invention]

撮影系の開口特性を考1−し、不等間隔画像歪を補正す
るには、観測画像データに対し開口特性捕償フィルタを
通した後−不等間隔内挿関数により着目する点の画素強
度を求めればよい。しかし開口特性補償フィルタは、空
間不変性(SpaceInvarriant)に基づい
たPo1nt 5pread Function(P 
S F)より算出しているため検出素子間あるいは走査
量で空間不変性が保存されない不等間隔量をもつ画像に
は上記の考え方は、そのまま適用できない。このため次
の方式を発明した。
Considering the aperture characteristics of the imaging system, and correcting the nonuniform image distortion, after passing the observed image data through an aperture characteristic compensation filter, the pixel intensity of the point of interest is calculated using a nonuniform interpolation function. All you have to do is ask for. However, the aperture characteristic compensation filter is based on the Po1nt 5 pread Function (P
Since the calculation is based on SF), the above concept cannot be applied as is to images with non-uniform spacing in which spatial invariance is not preserved between detection elements or in the amount of scanning. For this reason, we invented the following method.

本発明の方式の考え方は3ステツプより構成される。The concept of the method of the present invention consists of three steps.

表記について:第6図に示すよう1点xjの内挿値x(
xj)は隣接する複数の点Xの強度I (X)に適当な
重み付けをすることにより求まる重み関数(内挿関数)
Wとすると、I(xj)は、次式で表わせる ここでu=XJ Xl N=使用するサンプル点数 内挿関数はテーブル値として与える6 第7図に従い本方式の考え方を述べる。
Regarding notation: As shown in Figure 6, the interpolated value x(
xj) is a weighting function (interpolation function) found by appropriately weighting the intensities I (X) of multiple adjacent points
Assuming W, I(xj) can be expressed by the following equation, where u=XJ

ステップ1:不等間隔サンプルデータP(y 1)26
0から等間隔サンプルデータI傘(xi)270を得る
4等間隔サンプルデータl5(xi)270は不等間隔
サンプルデータP (yi)260と不等間隔内挿関数
200WNE(x)のコンボリューションにより求まる
Step 1: Unequally spaced sample data P(y 1) 26
Obtain evenly spaced sample data I umbrella (xi) 270 from 0 4 Evenly spaced sample data l5 (xi) 270 is obtained by convolution of nonuniformly spaced sample data P (yi) 260 and nonuniformly spaced interpolation function 200WNE(x) Seek.

ここで不等間隔内挿関数WNE (x)260は、不等
間隔量に対応したものを1次あるいは3次のスプライン
関数で11出しておく。
Here, the unequal interval interpolation function WNE (x) 260 is a linear or cubic spline function that corresponds to the unequal interval quantity.

I−(xi)=  ΣWNE(xt−ya)P(yi)
   (5)ステップ2:等間隔サンプルデータIネ(
xi)270と開口特性補償フィルタF(x)のコンボ
リューションにより開口特性を考慮した等間隔サンプル
データI  (xi)を求める。(第7図では、ステッ
プ2とステップ3をまとめて、開口特性補償内挿280
としである。) ここで開口特性補償フィルタF (x)は、実撮影画像
の特性、例えばP S F (Point 5prea
dFunction)を測定し、PSFを補償する逆フ
ィルタとして設計する。
I-(xi)=ΣWNE(xt-ya)P(yi)
(5) Step 2: Equally spaced sample data I (
xi) 270 and the aperture characteristic compensation filter F(x) to obtain equally spaced sample data I (xi) in consideration of the aperture characteristics. (In FIG. 7, step 2 and step 3 are combined and the aperture characteristic compensation interpolation 280
It's Toshide. ) Here, the aperture characteristic compensation filter F (x) is based on the characteristics of the actually photographed image, for example, P S F (Point 5 prea
dFunction) and is designed as an inverse filter that compensates for the PSF.

ステップ3:推定サンプルデータI(xi)290を開
口特性補償した等間隔サンプルデータI(xi)と等間
隔内挿関数W CC(x )のコンボリューションによ
り求める。
Step 3: Estimated sample data I(xi) 290 is determined by convolution of uniformly spaced sample data I(xi) with aperture characteristic compensation and uniformly spaced interpolation function W CC (x).

本発明の特徴は、次のように3ステツプの処理を1ステ
ツプにまとめることにより計算速度の向上、内挿関数テ
ーブル容量の減少をはかった点にある。
The feature of the present invention is that the calculation speed is improved and the interpolation function table capacity is reduced by combining three steps into one step as described below.

(6)式を(7)式に代入する。Substitute equation (6) into equation (7).

ここで WA P (x I  x a)=Σ WCC(xt−
xk)F (xlxt)(5)式を(8)式へ代入 に:1 ここで よって推定サンプデータ■290は、1種煩の〜 内挿関数Wとml ill!Iサンプルデータ260よ
り求めることが出来る。
Here, WA P (x I x a) = Σ WCC (xt-
xk) F (xlxt) Substituting equation (5) into equation (8): 1 Here, the estimated sample data ■290 is the first type of interpolation function W and ml ill! It can be obtained from the I sample data 260.

1点の推定画像を求めるために、各ステップ毎に演算す
ると内挿係数6740個をテーブル化しておき、加乗算
100回行う必要がある。
In order to obtain an estimated image of one point, it is necessary to prepare a table of 6740 interpolation coefficients and perform addition and multiplication 100 times if the calculation is performed for each step.

しかし本方式では、それぞれ6612個、11回となり
演算回数を著しく削減できる効果がある。
However, in this method, the number of calculations is 6612 and 11, respectively, which has the effect of significantly reducing the number of calculations.

(計算速度は10倍向上する。) 〔発明の実施例〕 以下、本発明の一実施例を説明する。(Computation speed is improved by 10 times.) [Embodiments of the invention] An embodiment of the present invention will be described below.

本実施例は、第3図で説明した5POT衛星HRV画像
に生じた不等間隔画像歪と撮影系における劣化型を同時
に補正する処理システムである。
This embodiment is a processing system that simultaneously corrects the uneven image distortion occurring in the 5POT satellite HRV image described in FIG. 3 and the deterioration type in the imaging system.

第1図にHRV画像形状歪補正処理システム概要を示す
FIG. 1 shows an overview of the HRV image shape distortion correction processing system.

まず第1に等間隔内挿関数2(実際はテーブル値、以下
、同様)、開口特性を考慮しない不等間隔内挿関数3.
および開口特性補償内挿関数4を用い、開口特性を考慮
した不等間隔内挿関数5を内挿関数算出処理1で求める
First of all, there is an equal interval interpolation function 2 (actually a table value, the same applies hereafter), an unequal interval interpolation function 3 that does not take the aperture characteristics into account.
Using the aperture characteristic compensation interpolation function 4 and the aperture characteristic compensation interpolation function 4, an unequal interval interpolation function 5 that takes the aperture characteristics into consideration is determined in an interpolation function calculation process 1.

ラップfitDを第8図のように定義する。P−1゜P
o 、Plの画素は第3図のCCD2の右端3画素に対
応、また、P4 e P 3+ Pgは、CCD3の左
端3画素に対応する。つまり、CCD2とCCD3の間
には、l<D≦2の大きさのアンダラツプが生じている
と仮定する。このため1回の走査撮影でCCD2とCC
D3の間にアンダラップが生じ、形状歪かつボケ補正を
行う場合、空間不変特性が保たれていないため内挿処理
が困難となる。このため、発明の概要で導出した、(1
1)式を用い、空間不変性が保たれていない画素の内挿
が可能な開口特性を考慮した不等間隔内挿関数Wを以下
のように求める。
Wrap fitD is defined as shown in FIG. P-1゜P
Pixels o and Pl correspond to the rightmost three pixels of CCD2 in FIG. 3, and P4 e P 3+ Pg correspond to the leftmost three pixels of CCD3. That is, it is assumed that there is an underlap between CCD2 and CCD3 with a magnitude of l<D≦2. Therefore, in one scan, CCD2 and CC
When underlap occurs during D3 and shape distortion and blur correction is performed, interpolation processing becomes difficult because spatial invariance characteristics are not maintained. For this reason, (1
Using equation 1), an unequal interval interpolation function W that takes into account the aperture characteristics that allows interpolation of pixels for which spatial invariance is not maintained is determined as follows.

まず、不等間隔サンプルデータPo=Ps150から等
間隔サンプルデータエ0〜I+、160を等間隔内挿関
数と不等間隔内挿関数より求める。
First, evenly spaced sample data E0 to I+, 160 are obtained from nonuniformly spaced sample data Po=Ps150 using a uniformly spaced interpolation function and an unevenly spaced interpolation function.

つまり区間1および区間3では等間隔内挿180区間2
では不等間隔内挿190を適用する。
In other words, in interval 1 and interval 3, evenly spaced interpolation 180 interval 2
Then, non-uniform interpolation 190 is applied.

Io= Po                 (1
2)Iz=P                 (1
3)I2=P                 (1
4)I3=すNEz(2)Po+WNEz(2)Pt 
+WNEa(2)P2+ IIINE番(2)Pa+W
NEδ(2)Pa中すNEo(2)Pas  (15)
Ia=WNEz(3)Po+WNE2(3)Pt+すN
Ea(3)P2−+4NEa(3)Pa−11NEg(
3)P4−41NEe(3)Pas (16)Ia=l
ilCCz(2−D)Pa+WCCz(2−D)Pa 
+WCCa(2−D)Ps十VCCa(2−D)Pg 
            (17)次にXの範囲を考慮
して等間隔サンプルデータエ270と開口特性補償内挿
関数により点x 290の強度値Qを算出する。
Io= Po (1
2) Iz=P (1
3) I2=P (1
4) I3=SUNEz(2)Po+WNEz(2)Pt
+WNEa (2) P2+ IIINE number (2) Pa+W
NEδ(2)Pa NEo(2)Pas (15)
Ia=WNEz(3)Po+WNE2(3)Pt+SN
Ea(3)P2-+4NEa(3)Pa-11NEg(
3) P4-41NEe (3) Pas (16) Ia=l
ilCCz(2-D)Pa+WCCz(2-D)Pa
+WCCa(2-D)Ps 10VCCa(2-D)Pg
(17) Next, considering the range of X, calculate the intensity value Q at point x 290 using the equally spaced sample data 270 and the aperture characteristic compensation interpolation function.

(i)O<x≦1 Q (x) =WAPt(x)Io+WAPz(x) 
I t+WAPa(x) I z+すAPa(x) I
 s          (18)(18)式に(12
)〜(17)式を代入して、内挿係数Wを求める。
(i) O<x≦1 Q (x) =WAPt(x)Io+WAPz(x)
I t+WAPa(x) I z+APa(x) I
s (18) In equation (18), (12
) to (17) to find the interpolation coefficient W.

=W @P               (19)(
ii)1<x≦2 同様に Q(x)=WAPt(x−2)L1+すAPZ(X−1
) I z+1ilAPi(x−]) I s+WAP
a(x−1)I 4                
              (20)より (in)2<x≦3 同様に Q (x) =WAPt(x−2)Iz+1jAPz(
x−2) I s+すAPa(x−2) I 4+WA
Pa (x−2) r 11(22)より ここで−一で示した項はpeの係数であるが、衛星画像
において隣接画素間は急激に変化しないことおよびP3
.Paの重み付けがPlの重み付けの10−2程度であ
ることを考慮してPa:Paと近似した。
=W @P (19)(
ii) 1<x≦2 Similarly, Q(x)=WAPt(x-2)L1+APZ(X-1
) I z+1ilAPi(x-]) I s+WAP
a(x-1)I 4
From (20), (in)2<x≦3 Similarly, Q (x) =WAPt(x-2)Iz+1jAPz(
x-2) I s+APa(x-2) I 4+WA
Pa (x-2) r From 11 (22), the term indicated by -1 here is the coefficient of pe, but it is clear that there is no sudden change between adjacent pixels in the satellite image, and that P3
.. Considering that the weighting of Pa is about 10-2 of the weighting of Pl, it is approximated as Pa:Pa.

(fv)3<x≦2−D 同様に Q (x)=WAPt(x−3)Ia+1IAP2(X
−3)I 4+WAPa(x−3)I R+WAPa(
x−3) I e            (24)次
に未補正画像6上に生ずる形状歪量を衛星システムパラ
メータ(例えば軌道、姿勢データ)を用い事前に形状歪
量算出処理13で算出し形状重置情報ファイル12に格
納しておく。
(fv)3<x≦2−D Similarly, Q (x)=WAPt(x−3)Ia+1IAP2(X
-3)I 4+WAPa(x-3)I R+WAPa(
x-3) I e (24) Next, the amount of shape distortion occurring on the uncorrected image 6 is calculated in advance by the shape distortion amount calculation process 13 using satellite system parameters (e.g. orbit, attitude data), and the shape superposition information file is created. Store it in 12.

この形状歪量を用い、未補正画像6を内挿処理9で補間
により正しい位置の画素強度を求め補正画像11を得る
Using this amount of shape distortion, the uncorrected image 6 is interpolated in an interpolation process 9 to determine the pixel intensity at the correct position and obtain a corrected image 11.

ここで、不等間隔量が生じている部分は、形状歪量情報
ファイル12の形状歪量を用い、不等間隔量算出処理で
求め、この不等間隔量に対応する開口特性を考慮した不
等間隔内挿係数を内挿係数選択処理8で求め、内挿処理
9で不等間隔の生じた画素位置の内挿を行い補正画像1
1を得る。
Here, the portion where the uneven amount occurs is calculated by the uneven amount calculation process using the amount of shape distortion in the shape distortion amount information file 12, and the portion where the uneven amount is generated is calculated by using the amount of shape distortion in the shape distortion amount information file 12, and the portion where the amount of uneven space is generated is Equally spaced interpolation coefficients are obtained in interpolation coefficient selection process 8, and pixel positions with uneven intervals are interpolated in interpolation process 9, and corrected image 1 is obtained.
Get 1.

内挿処理9は、(18)式に示すような内挿関数(係数
)と周囲の画素強度との積和演算を行う6結局す点の観
測サンプルデータP260と不等間隔jtDとりサンプ
ル(内挿)位置Xに対応した内挿関数Wを用いることで
着目する点の推定サンプルデータ290を得ることがで
きる。
Interpolation processing 9 involves performing a sum-of-products calculation of the interpolation function (coefficient) as shown in equation (18) and surrounding pixel intensities, using observation sample data P260 at 6 points and nonuniformly spaced samples jtD (internal). Interpolation) By using the interpolation function W corresponding to the position X, estimated sample data 290 of the point of interest can be obtained.

本発明方式についての内挿精度を次式のパターンを用い
て評価したところアンダラップ2.0画素〜オーバラッ
プ1.5画素の範囲で0.5 量子化レベル以下という
高精度値が得られた。
When the interpolation accuracy of the method of the present invention was evaluated using the pattern of the following formula, a high accuracy value of 0.5 quantization level or less was obtained in the range of underlap 2.0 pixels to overlap 1.5 pixels. .

5(x)=127.5(cos(2πx−f)+1) 
  (26)f:パターンの周波数成分 X:サンプル位置 第9図に示すX@CT装置による投影画像340に対し
ても以上の方法により開口補正および不等間隔歪補正を
行い、投影画像を修復すれば、つなぎリングアーチファ
クトのない高画質の再構成画像が得られる。
5(x)=127.5(cos(2πx-f)+1)
(26) f: Frequency component of pattern For example, high-quality reconstructed images without linking ring artifacts can be obtained.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、以下の効果が得られる。 According to the present invention, the following effects can be obtained.

■ 空間不変性に基づき求めた開口特性補償フィルタを
空間不変性が保存されない不等間隔量をもつ画像への適
用が可能になる。
■ It becomes possible to apply an aperture characteristic compensation filter determined based on spatial invariance to images with irregularly spaced quantities in which spatial invariance is not preserved.

■ 3ステツプの処理を1ステツプにすることができ内
挿関数テーブル容量を全内挿係数の14%削減、計算速
度の10倍の向上化が図れる。
(3) Three-step processing can be reduced to one step, reducing the interpolation function table capacity by 14% of all interpolation coefficients and improving calculation speed by ten times.

■ (テスト観測パターンをダイナミックレンジ255
量子レベルで変化する三角関数を用い評価したところ)
不等間隔量(±2画素)で0.5斌子化レヘルの内挿精
度を得ることができる。
■ (The test observation pattern is set to a dynamic range of 255
(Evaluation using trigonometric functions that change at the quantum level)
Interpolation accuracy of 0.5 indentation level can be obtained with non-uniform spacing (±2 pixels).

【図面の簡単な説明】[Brief explanation of drawings]

第1図はHRV画像、不等間隔歪補正システム概要図、
第2図はHRVセンサにおけるCCD配置図、第3図は
、索”?配列図、第4図は撮影系の劣化および復元過程
図、第5図は理想撮影系と実際の撮影系の開口特性概要
図、第6図は内挿法の説明図、第7図は開口特性を考!
ゼした不等間隔内挿法の説明図、第8図は内挿係数算出
例の説明図、第9図はx Pl;Ac ’r装v1概要
図である。 代理人 弁理士 小川HIyl。 竿 1旧 第 2 口 箒 3r:3 箒−+図 竿 S 図 亭4 口 し−一一一エ 第 7 (2) 竿 B 口
Figure 1 is an HRV image, a schematic diagram of the uneven interval distortion correction system,
Figure 2 is a CCD arrangement diagram in the HRV sensor, Figure 3 is a cable arrangement diagram, Figure 4 is a diagram of the deterioration and restoration process of the imaging system, and Figure 5 is the aperture characteristics of the ideal imaging system and the actual imaging system. An overview diagram, Figure 6 is an explanatory diagram of the interpolation method, and Figure 7 considers the aperture characteristics!
FIG. 8 is an explanatory diagram of an example of interpolation coefficient calculation, and FIG. 9 is a schematic diagram of x Pl; Ac'r system v1. Agent: Patent attorney HIyl Ogawa. Rod 1 Old No. 2 Mouth Broom 3r: 3 Houki-+ Zuo S Zutei 4 Kusashi-111E No. 7 (2) Rod B Mouth

Claims (1)

【特許請求の範囲】[Claims] 形状歪量テーブルと内挿係数テーブルと、これらのテー
ブル値により、形状補正量を求め、着目する点を観測画
像データと内挿係数値との積和演算処理により算出する
画像歪補正処理方式において、開口特性と不等間隔画像
歪を同時に補正する内挿係数算出処理と不等間隔発生領
域と不等間隔量に合わせ最適補間を行う内挿処理とから
なることを特徴とする開口特性を考慮した不等間隔画像
歪の内挿方式。
In an image distortion correction processing method that calculates the shape correction amount using a shape distortion amount table, an interpolation coefficient table, and these table values, and calculates the point of interest by multiplying and calculating the observed image data and the interpolation coefficient value. , considering the aperture characteristics, which is characterized by comprising an interpolation coefficient calculation process that simultaneously corrects the aperture characteristics and non-uniform interval image distortion, and an interpolation process that performs optimal interpolation according to the non-uniform interval occurrence area and the non-uniform interval amount. An interpolation method for unevenly spaced image distortion.
JP60220067A 1985-10-04 1985-10-04 Internal distortion method for unevenly spaced image distortion considering aperture characteristics Pending JPS6280769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60220067A JPS6280769A (en) 1985-10-04 1985-10-04 Internal distortion method for unevenly spaced image distortion considering aperture characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60220067A JPS6280769A (en) 1985-10-04 1985-10-04 Internal distortion method for unevenly spaced image distortion considering aperture characteristics

Publications (1)

Publication Number Publication Date
JPS6280769A true JPS6280769A (en) 1987-04-14

Family

ID=16745421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60220067A Pending JPS6280769A (en) 1985-10-04 1985-10-04 Internal distortion method for unevenly spaced image distortion considering aperture characteristics

Country Status (1)

Country Link
JP (1) JPS6280769A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5972563A (en) * 1982-10-19 1984-04-24 Nec Corp Real-time picture processing system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5972563A (en) * 1982-10-19 1984-04-24 Nec Corp Real-time picture processing system

Similar Documents

Publication Publication Date Title
US11457149B2 (en) Method and apparatus for capturing digital video
US9747672B2 (en) Image processing apparatus, image pickup apparatus, image processing method, and non-transitory computer-readable storage medium
US8416335B2 (en) Image processing apparatus that corrects deterioration of image, image pickup apparatus, image processing method, and program
JP5374217B2 (en) Image processing apparatus and method
US5504523A (en) Electronic image unsteadiness compensation
JPS6280769A (en) Internal distortion method for unevenly spaced image distortion considering aperture characteristics
JP2590095B2 (en) Satellite image capturing device and satellite image correcting method
JPS60171569A (en) Interpolation system for picture