JPS6276715A - Forming method for single crystal silicon thin film - Google Patents
Forming method for single crystal silicon thin filmInfo
- Publication number
- JPS6276715A JPS6276715A JP21675985A JP21675985A JPS6276715A JP S6276715 A JPS6276715 A JP S6276715A JP 21675985 A JP21675985 A JP 21675985A JP 21675985 A JP21675985 A JP 21675985A JP S6276715 A JPS6276715 A JP S6276715A
- Authority
- JP
- Japan
- Prior art keywords
- film
- silicon
- crystal
- grains
- single crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910021421 monocrystalline silicon Inorganic materials 0.000 title claims abstract description 33
- 239000010409 thin film Substances 0.000 title claims abstract description 19
- 238000000034 method Methods 0.000 title claims description 17
- 239000013078 crystal Substances 0.000 claims abstract description 57
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 43
- 239000000758 substrate Substances 0.000 claims abstract description 27
- 229910021417 amorphous silicon Inorganic materials 0.000 claims abstract description 23
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 21
- 238000010438 heat treatment Methods 0.000 claims abstract description 16
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 13
- 239000000956 alloy Substances 0.000 claims abstract description 13
- 239000010703 silicon Substances 0.000 claims description 41
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 38
- 239000002184 metal Substances 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000007787 solid Substances 0.000 claims description 4
- 239000010408 film Substances 0.000 abstract description 64
- 238000001953 recrystallisation Methods 0.000 abstract description 13
- 229910052782 aluminium Inorganic materials 0.000 abstract description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract 2
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 229910052906 cristobalite Inorganic materials 0.000 abstract 1
- 150000002500 ions Chemical class 0.000 abstract 1
- 239000000377 silicon dioxide Substances 0.000 abstract 1
- 235000012239 silicon dioxide Nutrition 0.000 abstract 1
- 239000006104 solid solution Substances 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 5
- -1 silicon ions Chemical class 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 229910021419 crystalline silicon Inorganic materials 0.000 description 2
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 101100342486 Oryza sativa subsp. japonica KSL10 gene Proteins 0.000 description 1
- 229910000676 Si alloy Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 229910021471 metal-silicon alloy Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 150000003376 silicon Chemical class 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
Landscapes
- Recrystallisation Techniques (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は例えば三次元集積回路素子を形成するに使用し
て好適な単結晶シリコン薄膜の形成方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of forming a single crystal silicon thin film suitable for use, for example, in forming three-dimensional integrated circuit devices.
本発明は、例えば三次元集積回路素子を形成するに使用
して好適な単結晶シリコン薄膜の形成方法において、絶
縁基板上にシリコンとこのシリコンと合金を形成する金
属とからなる層を形成した後、所定の温度で熱処理を行
いこの熱処理の温度での固溶限界V上のシリコンを析出
させ、次いでシリコンと金属との合金を除去し、絶縁基
板及びシリコンの析出結晶粒上に多結晶シリコン層ヌは
非晶質シリコン層を形成した後、熱処理を行って多結晶
シリコン層又は非晶質シリコン層を単結晶化することに
よシ、三次元素子をレイアウトする上でのパターン上の
制約全受けることがない結晶粒の大きい結晶性の良好な
単結晶シリコン薄膜を形成できるようにしたものである
。The present invention provides a method for forming a single crystal silicon thin film suitable for use in forming a three-dimensional integrated circuit element, for example, after forming a layer of silicon and a metal that forms an alloy with the silicon on an insulating substrate. , heat treatment is performed at a predetermined temperature to precipitate silicon above the solid solubility limit V at the temperature of this heat treatment, then the alloy of silicon and metal is removed, and a polycrystalline silicon layer is formed on the insulating substrate and the precipitated crystal grains of silicon. After forming an amorphous silicon layer, heat treatment is performed to convert the polycrystalline silicon layer or the amorphous silicon layer into a single crystal, thereby eliminating all pattern constraints when laying out tertiary elements. This makes it possible to form a monocrystalline silicon thin film with large crystal grains and good crystallinity that is free from damage.
近年、半導体集積回路素子を3次元的に集積し、信号が
3次元的に伝達され処理され得る様な立体的な半導体集
積回路素子、所iJ’J 3次元素子の研究が盛んに行
われている。斯る3次元素子においてけ、信号処理の高
速化と共に高度な首列信号処理も可能となるなど、2次
元的な集積化ではなし得ない多くの新機能の実現が期待
される。斯る3次元素子は、基本的釦はシリコン基板上
に2次元的に半導体素子領域全形成した後に、その上部
にsio□膜等の絶縁膜を介してシリコン薄膜を形成し
、このシリコン薄膜上に半導体素子領域を形成すること
によって構成される。従って、3次元素子の形成に際し
ては絶縁基板上に如何にして結晶粒の大きh結晶性の良
好な単結晶シリコン薄膜を形成するかが重要なテーマと
なる。In recent years, research has been actively conducted on three-dimensional semiconductor integrated circuit elements, which are three-dimensional integrated circuit elements that can transmit and process signals three-dimensionally. There is. It is expected that such three-dimensional elements will realize many new functions that cannot be achieved with two-dimensional integration, such as faster signal processing and advanced sequence signal processing. The basic button for such a 3D element is to form the entire semiconductor element region two-dimensionally on a silicon substrate, then form a silicon thin film on top of it with an insulating film such as a SIO It is constructed by forming a semiconductor element region in the semiconductor element region. Therefore, when forming tertiary elements, an important issue is how to form a single crystal silicon thin film with large crystal grains and good crystallinity on an insulating substrate.
ここに既に形成された半導体素子領域上に絶縁膜を介し
て結晶性シリコン薄膜を形成する方法としてレーザ光や
電子ビーム等のエネルギービーム全利用して絶縁膜上に
形成した非晶質シリコン薄膜を溶融させ、所鉗液相エピ
タキシャル成長によってこの非晶質シリコン7JEJ[
lil単結晶化させる方法が提案されている。しかしな
がら、この方法では再結晶化の核となる種結晶がないた
めに大きな結晶粒を成長させることはできず、所脂ラン
ダム核成長によって多結晶化するという不都合があった
。Here, as a method of forming a crystalline silicon thin film via an insulating film on an already formed semiconductor element region, an amorphous silicon thin film is formed on an insulating film by fully utilizing an energy beam such as a laser beam or an electron beam. This amorphous silicon 7JEJ[
A method for single crystallizing lil has been proposed. However, this method has the disadvantage that large crystal grains cannot be grown because there is no seed crystal that serves as a nucleus for recrystallization, and polycrystalization occurs due to random nucleation.
また絶R膜上に多結晶シリコン膜全形成し、この多結晶
シリコン膜にシリコンイオンを注入して非晶質化し、そ
の後所謂固相エピタキシャル成長によって単結晶化させ
る方法も提案されているが、この場合もまた再結晶化の
核となる種結晶がないために大きな結晶粒を成長させる
ことができないという不都合があった。A method has also been proposed in which a polycrystalline silicon film is entirely formed on the absolute R film, silicon ions are implanted into the polycrystalline silicon film to make it amorphous, and then the film is made into a single crystal by so-called solid-phase epitaxial growth. In this case, there was also the disadvantage that large crystal grains could not be grown because there was no seed crystal to serve as a nucleus for recrystallization.
そこで近時、絶縁膜上に単結晶シリコン膜を形成する方
法として第2図に示す如きものが提案されている。Therefore, recently, a method as shown in FIG. 2 has been proposed as a method of forming a single crystal silicon film on an insulating film.
この方法に依れば、先ず第2図Aに示す如く単結晶シリ
コン基板(1)を用意し、この単結晶シリコン基板(1
)上KS10□膜(2渣形成し、次いでこの5i02膜
(2)の所定の位置に開口(2&)を形成し、単結晶シ
リコン基板(1)の表面を一部露出させる。According to this method, first, a single crystal silicon substrate (1) is prepared as shown in FIG.
) A KS10□ film (2 residues) is formed on the 5i02 film (2), and then an opening (2&) is formed at a predetermined position in the 5i02 film (2) to partially expose the surface of the single crystal silicon substrate (1).
次に第2図Bに示す如く全面にレーザプラズマCVDに
よって多結晶シリコン膜(3)膜形成し、次いで第2図
Cに示す如く多結晶シリコン膜(3)にシリコンイオン
を注入してこの多結晶シリコン膜(3)ヲ非晶質化し非
晶質シリコン膜(4)を形成する。Next, as shown in FIG. 2B, a polycrystalline silicon film (3) is formed on the entire surface by laser plasma CVD, and then silicon ions are implanted into the polycrystalline silicon film (3) as shown in FIG. 2C. The crystalline silicon film (3) is made amorphous to form an amorphous silicon film (4).
次に非晶質シリコン膜(4)に熱処理を施し、単結晶シ
リコン基板(1)の露出部(la) i種結晶としてこ
の非晶質シリコン膜(4)ヲ単結晶化し第2図りに示す
如く単結晶シリコン膜(5)ヲ得ることができる。Next, the amorphous silicon film (4) is subjected to heat treatment, and the exposed part (la) of the single crystal silicon substrate (1) is used as a seed crystal to form a single crystal of this amorphous silicon film (4), as shown in Figure 2. Thus, a single crystal silicon film (5) can be obtained.
斯る従来の単結晶シリコン膜形成方法においては、再結
晶化の種結晶として単結晶シリコン基板(1)の露出部
(1a)を利用しているので、前述した種結晶のない場
合に比し良好な単結晶シリコン膜(5)を得ることがで
きる。In such a conventional method for forming a single crystal silicon film, since the exposed portion (1a) of the single crystal silicon substrate (1) is used as a seed crystal for recrystallization, the process is faster than in the case without the seed crystal described above. A good single crystal silicon film (5) can be obtained.
しかしながら、斯る従来の単結晶シリコン膜の形成方法
においては、単結晶シリコン基板(1)の一部を再結晶
化の種結晶としているため、3次元素子をレイアウトす
る上でのパターン上の制約を受けるという不都合があっ
た。However, in the conventional method of forming a single crystal silicon film, a part of the single crystal silicon substrate (1) is used as a seed crystal for recrystallization, so there are restrictions on the pattern when laying out tertiary elements. There was the inconvenience of receiving
また単結晶シリコン基板(1)の露出部(1a)から離
れるに従って良好な結晶成長が得られなくなるという不
都合もあった。There is also the disadvantage that good crystal growth becomes difficult to obtain as the distance from the exposed portion (1a) of the single-crystal silicon substrate (1) increases.
本発明は、斯る点に鑑み、単結晶シリコン基板の一部を
再結晶化の種結晶とせず絶縁基板上に三次元素子全レイ
アウトする上でのツリー/上の制約を受けることがない
結晶粒の大きい結晶性の良好な単結晶シリコン薄膜の形
成方法を提供することを目的とする。In view of this, the present invention provides a crystal structure that does not use a part of a single crystal silicon substrate as a seed crystal for recrystallization and is free from tree/top constraints when all tertiary elements are laid out on an insulating substrate. An object of the present invention is to provide a method for forming a single crystal silicon thin film with large grains and good crystallinity.
本発明に依る単結晶シリコン薄膜の形成方法は、第1図
に示す如く、絶縁基板(2)上にシリコンとこのシリコ
ンと合金を形成する金属とからなる層(6)を形成した
後、所定の温度で熱処理を行いこの熱処理の温度での固
溶限界シ上のシリコン(7)全析出させ、次いでシリコ
ンと金属との合金(8)全除去し、絶縁基板(2)及び
シリコンの析出結晶粒(7)上に多結晶シリコン膜(3
)又は非晶質シリコン膜を形成した後、熱処理を行って
多結晶シリコン膜(3)又は非晶質シリコン膜を単結晶
化するものである。As shown in FIG. 1, the method for forming a single crystal silicon thin film according to the present invention involves forming a layer (6) of silicon and a metal forming an alloy with silicon on an insulating substrate (2), and then The silicon (7) is completely precipitated on the solid solubility limit at the temperature of this heat treatment, and then the silicon-metal alloy (8) is completely removed, and the insulating substrate (2) and the precipitated silicon crystals are removed. A polycrystalline silicon film (3) is formed on the grain (7).
) or after forming an amorphous silicon film, heat treatment is performed to convert the polycrystalline silicon film (3) or the amorphous silicon film into a single crystal.
斯る本発明に依れば、絶縁基板(2)上にシリコンとこ
のシリコンと合金を形成する金属とからなる層(6)全
形成した後、所定の温度で熱処理を行っているので絶縁
基板(2)上にシリコン結晶粒(7)が点在し、このシ
リコン結晶粒(7)を再結晶化の種結晶として多結晶シ
リコン膜(3)又は非晶質シリコン膜の単結晶化が行わ
れるので、単結晶シリコン基板(1)の一部が再結晶化
の種結晶とされる場合に比し種結晶の数が多く、良好な
結晶成長が行われ、また三次元素子全レイアウトする上
でのA’ターン上の制約を受けることがない結晶粒の大
きい結晶性の良好な単結晶シリコン薄膜(5)が形成さ
れる。According to the present invention, after the layer (6) consisting of silicon and a metal forming an alloy with silicon is completely formed on the insulating substrate (2), heat treatment is performed at a predetermined temperature, so that the insulating substrate (2) Silicon crystal grains (7) are scattered on the top, and the polycrystalline silicon film (3) or amorphous silicon film is single-crystallized using the silicon crystal grains (7) as seed crystals for recrystallization. As a result, the number of seed crystals is larger than when a part of the single crystal silicon substrate (1) is used as a seed crystal for recrystallization, and good crystal growth is achieved. A monocrystalline silicon thin film (5) with large crystal grains and good crystallinity is formed without being subject to any restrictions on the A' turn.
以下、第1図を参照して本発明の単結晶・ンリコン薄膜
の形成方法の一実施例につき説明しよう。Hereinafter, an embodiment of the method for forming a single-crystal silicon thin film according to the present invention will be described with reference to FIG.
この第1図において第2図に対応する部分には同一符号
を付しその詳細説明は省略する。In FIG. 1, parts corresponding to those in FIG. 2 are given the same reference numerals, and detailed explanation thereof will be omitted.
先ず第1図Aに示す如くシリコン基板(1)を用意し、
このシリコン基板(1)全熱酸化してSiO□膜(2)
を形成し、次いで第1図Bに示す如くこのS10□膜(
2)上に99重#パーセントのAtと1重−iノ々−セ
ントのStとからなる合金を蒸着した膚(6)を形成す
る。First, as shown in FIG. 1A, a silicon substrate (1) is prepared,
This silicon substrate (1) is completely thermally oxidized to form a SiO□ film (2)
Then, as shown in FIG. 1B, this S10□ film (
2) Form a skin (6) on which an alloy consisting of 99% At and 1% St is deposited.
次に400℃で30分〜60分間熱処理を施こし、i1
図Cに示す如く400℃での固溶限界以上のシリコン(
7)を絶縁膜(2)上に偏析させ、次いで第1図りに示
す如くシリコン結晶粒(7)を偏析させた残シのAtと
Slとの合金層(8)ヲ例えばリン酸でエツチングして
除去する。Next, heat treatment was performed at 400°C for 30 to 60 minutes, and i1
As shown in Figure C, silicon (
7) on the insulating film (2), and then, as shown in Figure 1, the At and Sl alloy layer (8) remaining after the silicon crystal grains (7) have been segregated is etched with, for example, phosphoric acid. and remove it.
次に第1図Eに示す如くシリコン結晶粒(7)ヲ覆うよ
うに絶縁膜(2)上に多結晶シリコン膜(3)を例えは
レーデプラズマCVDによシ形成し、次いでこの多結晶
シリコン膜(3)にシリコンイオンを注入し非晶質化さ
せ非晶質シリコン&(4)’を形成する。この場合にシ
リコンイオン注入量と注入エネルギーと全多結晶シリコ
ン膜(3)のみを非晶質化させる条件に選定することが
でき、このようにすることによってシリコン結晶粒(7
)に何ら影響を与えないようにすることができる。Next, as shown in FIG. 1E, a polycrystalline silicon film (3) is formed on the insulating film (2) by, for example, Lede plasma CVD so as to cover the silicon crystal grains (7), and then this polycrystalline silicon film is Silicon ions are implanted into (3) to make it amorphous, forming amorphous silicon &(4)'. In this case, the silicon ion implantation amount, implantation energy, and conditions for making only the entire polycrystalline silicon film (3) amorphous can be selected, and by doing this, the silicon crystal grains (7
) can be avoided in any way.
次に熱処理を施すことによシリコンイオン(7)を再結
晶化の種結晶として非晶質シリコン膜(4)を単結晶化
させる如くする。この場合、熱処理を初めると絶縁膜(
2)上に点在していたシリコン結晶粒(7)は第1図G
K示す如り匹〈つかが互いに結合し合うようになシ粒径
を太きくシ、第1図Hに示す如く非晶質シリコン膜(4
)全単結晶化する如くなる。Next, by performing heat treatment, the amorphous silicon film (4) is made into a single crystal by using the silicon ions (7) as seed crystals for recrystallization. In this case, when heat treatment begins, the insulating film (
2) The silicon crystal grains (7) scattered on the top are shown in Figure 1G.
As shown in Figure 1H, the grain size was increased so that the grains bonded with each other, and the amorphous silicon film (4
) It becomes like a complete single crystal.
次に第1図工に示す如く全面にフォトレジスト(9ノヲ
形成し、次いで反応性イオンエツチング(RIE)を施
すことによって第1図Jに示す如き単結晶シリコン薄膜
(5)を得ることができる。Next, as shown in Fig. 1, a photoresist (9 layers) is formed on the entire surface, and then reactive ion etching (RIE) is performed to obtain a single crystal silicon thin film (5) as shown in Fig. 1J.
着し、400℃で熱処理ヲ行い、この400℃での固溶
限界以上のシリコン結晶粒(7)全析出させ、残シの合
金(8)全除去した後、このシリコン結晶粒(7)ヲ再
結晶化の種結晶として非晶質シリコン膜(4)全単結晶
化させるようにしているので、単結晶シリコン基@(1
)の一部を再結晶化の種結晶とする場合に比し種結晶の
截が多く、良好な結晶成長を行わせることかできる。The silicon crystal grains (7) exceeding the solid solubility limit at 400 °C are completely precipitated, and the remaining alloy (8) is completely removed. The amorphous silicon film (4) is used as a seed crystal for recrystallization, so that the entire amorphous silicon film (4) is made into a single crystal.
) is used as a seed crystal for recrystallization, the seed crystal is cut more often and good crystal growth can be achieved.
また、本実施例に依れば、下地シリコン基板(1)の一
部を露出させることがないので、三次元素子をレイアウ
トする上でのパターン上の制約を受けることのない結晶
粒の大きい結晶性の良好な単結晶シリコン薄膜(5)全
形成することができるという利益がある。Further, according to this embodiment, since a part of the base silicon substrate (1) is not exposed, large crystal grains are not subject to pattern restrictions when laying out tertiary elements. There is an advantage that the entire single crystal silicon thin film (5) with good properties can be formed.
尚、本実施例においてはStO□膜(2)上に993i
iパーセントのA7とIFtJtz”−セントのSlと
の合金を蒸着させ400℃で熱処理を施こしシリコン結
晶粒(7)全析出させる場合について述べたが、このA
tとSlとの混合比及び熱処理温度等の条件は之等の場
合に限らず、51o2&(2)上にシリコン結晶粒(7
)t−析出させ得るその他種々の条件を取シ得ることが
でき、この場合にも上述同様の作用効果を得ることがで
きることは勿論である。In this example, 993i was applied on the StO□ film (2).
We have described the case where an alloy of i percent of A7 and IFtJtz''-cent of Sl is deposited and heat-treated at 400°C to completely precipitate silicon crystal grains (7).
The conditions such as the mixing ratio of t and Sl and the heat treatment temperature are not limited to these cases.
) Various other conditions for t-precipitation can be obtained, and it goes without saying that the same effects as described above can also be obtained in this case.
また本実施例ではシリコンと合金金形成する金属として
アルミニウム全使用した場合について述べたが、この代
シにその他種々の金属を使用することができ、この場合
にも上述同様の作用効果を得ることができることは勿論
である。Furthermore, in this example, a case has been described in which all aluminum is used as the metal to form an alloy with silicon, but various other metals can be used instead, and the same effects and effects as described above can be obtained in this case as well. Of course, this can be done.
また本実施例では絶縁膜としてSlO□股(2)を形成
した場合について述べたが、この代シにその他種釉の絶
縁膜を取シ得ることができ、この場合にも上述同様の作
用効果を得ることができる。Furthermore, in this embodiment, the case was described in which SlO□cross (2) was formed as the insulating film, but it is also possible to use an insulating film of other types of glaze in place of this. can be obtained.
また本実施例では5lO2朕(2)及びシリコン結晶粒
(7)上に多結晶シリコン膜(3)全形成し、この多結
晶シリコン族(3)にシリコンイオンを注入して非晶質
シリコン膜(4)を形成する場合について述べたが、多
結晶シリコンU(3)e形成することなく非晶質シリコ
ン膜(4)をSiO□膜(2)及びシリコン結晶粒(7
)上に形成しても良く、この場合にも上述同様の作用効
果を得ることができることは勿論である。In addition, in this example, a polycrystalline silicon film (3) is entirely formed on the 5lO2 layer (2) and silicon crystal grains (7), and silicon ions are implanted into this polycrystalline silicon group (3) to form an amorphous silicon film. (4), the amorphous silicon film (4) is formed with the SiO□ film (2) and silicon crystal grains (7) without forming polycrystalline silicon U(3)e.
), and it goes without saying that the same effects as described above can be obtained in this case as well.
更に本発明は上述実施例に限らず、本発明の要旨を逸脱
することなくその他種々の構成が取り得ることは勿論で
ある。Furthermore, it goes without saying that the present invention is not limited to the above-described embodiments, and can take various other configurations without departing from the gist of the present invention.
本発明に依れば、絶縁基板上にシリコン結晶粒全点在さ
せ、このシリコン結晶粒を再結晶化の種結晶として多結
晶シリコン膜又は非晶質シリコン膜を単結晶化させるよ
うにしているので、単結晶シリコン基板の一部全再結晶
化の種結晶とする場合に比し種結晶の数が多く、良好な
結晶成長を行わせることができ、また三次元素子をレイ
アウトする上でのパターン上の制約を受けることがない
結晶粒の大きい結晶性の良好な単結晶シリコン薄膜全形
成することができる。According to the present invention, all silicon crystal grains are scattered on an insulating substrate, and the silicon crystal grains are used as seed crystals for recrystallization to monocrystallize a polycrystalline silicon film or an amorphous silicon film. Therefore, the number of seed crystals is larger than when using a single crystal silicon substrate as a seed crystal for partial total recrystallization, and good crystal growth can be achieved. It is possible to form a single-crystal silicon thin film with large grains and good crystallinity without being subject to pattern restrictions.
if図は本発明単結晶シリコン薄膜の形成方法の一実施
例を示す線図、第2図は従来の単結晶シリコン薄膜の形
成方法の一例を示す線図である。
(1)は単結晶シリコン基板、(2)は絶縁膜、(3)
は多結晶シリコン膜、(4)は非晶質シリコン膜、(5
)は単結晶シリコン膜、(6)は99重量パーセントの
Atと1重tパーセントのSiとからなる合金層、(7
)はシリコン結晶粒である。The if diagram is a diagram showing an example of the method for forming a single crystal silicon thin film of the present invention, and FIG. 2 is a diagram showing an example of the conventional method for forming a single crystal silicon thin film. (1) is a single crystal silicon substrate, (2) is an insulating film, (3)
is a polycrystalline silicon film, (4) is an amorphous silicon film, (5
) is a single crystal silicon film, (6) is an alloy layer consisting of 99 weight percent At and 1 weight percent Si, (7
) are silicon crystal grains.
Claims (1)
属とからなる層を形成した後、所定の温度で熱処理を行
い該熱処理の温度での固溶限界以上の上記シリコンを析
出させ、次いで上記シリコンと上記金属との合金を除去
し、上記絶縁基板及び上記シリコンの析出結晶粒上に多
結晶シリコン層又は非晶質シリコン層を形成した後、熱
処理を行つて上記多結晶シリコン層又は非晶質シリコン
層を単結晶化することを特徴とする単結晶シリコン薄膜
の形成方法。After forming a layer consisting of silicon and a metal forming an alloy with the silicon on an insulating substrate, heat treatment is performed at a predetermined temperature to precipitate the silicon in an amount equal to or higher than the solid solubility limit at the temperature of the heat treatment. After removing the alloy of and the above-mentioned metal and forming a polycrystalline silicon layer or an amorphous silicon layer on the above-mentioned insulating substrate and the precipitated crystal grains of silicon, heat treatment is performed to form the above-mentioned polycrystalline silicon layer or amorphous silicon layer. A method for forming a single-crystal silicon thin film, characterized by monocrystalizing a silicon layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21675985A JPS6276715A (en) | 1985-09-30 | 1985-09-30 | Forming method for single crystal silicon thin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21675985A JPS6276715A (en) | 1985-09-30 | 1985-09-30 | Forming method for single crystal silicon thin film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6276715A true JPS6276715A (en) | 1987-04-08 |
Family
ID=16693463
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21675985A Pending JPS6276715A (en) | 1985-09-30 | 1985-09-30 | Forming method for single crystal silicon thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6276715A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01248511A (en) * | 1988-03-30 | 1989-10-04 | Nissan Motor Co Ltd | Formation of polycrystal film |
JPH01289240A (en) * | 1988-05-17 | 1989-11-21 | Seiko Epson Corp | Formation of soi |
JPH038798A (en) * | 1989-06-06 | 1991-01-16 | Sanyo Electric Co Ltd | Production of polycrystal silicon film |
JPH0311618A (en) * | 1989-06-08 | 1991-01-18 | Canon Inc | Crystalline semiconductor film and forming method thereof |
JPH0360017A (en) * | 1989-07-27 | 1991-03-15 | Sanyo Electric Co Ltd | Manufacture of polycrystalline silicon film |
JPH0370123A (en) * | 1989-08-10 | 1991-03-26 | Canon Inc | Formation of crystalline semiconductor film |
US8048773B2 (en) | 2009-03-24 | 2011-11-01 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing SOI substrate |
-
1985
- 1985-09-30 JP JP21675985A patent/JPS6276715A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01248511A (en) * | 1988-03-30 | 1989-10-04 | Nissan Motor Co Ltd | Formation of polycrystal film |
JPH01289240A (en) * | 1988-05-17 | 1989-11-21 | Seiko Epson Corp | Formation of soi |
JPH038798A (en) * | 1989-06-06 | 1991-01-16 | Sanyo Electric Co Ltd | Production of polycrystal silicon film |
JPH0311618A (en) * | 1989-06-08 | 1991-01-18 | Canon Inc | Crystalline semiconductor film and forming method thereof |
JPH0360017A (en) * | 1989-07-27 | 1991-03-15 | Sanyo Electric Co Ltd | Manufacture of polycrystalline silicon film |
JPH0370123A (en) * | 1989-08-10 | 1991-03-26 | Canon Inc | Formation of crystalline semiconductor film |
US8048773B2 (en) | 2009-03-24 | 2011-11-01 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing SOI substrate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4874718A (en) | Method for forming SOI film | |
JPS6276715A (en) | Forming method for single crystal silicon thin film | |
JPH02191320A (en) | Crystal product and its manufacture | |
JPS59155121A (en) | Manufacture of semiconductor thin film | |
JPS5893220A (en) | Preparation of semiconductor single crystal film | |
JP2687393B2 (en) | Method for manufacturing semiconductor device | |
JP2638868B2 (en) | Method for manufacturing semiconductor device | |
JP2766315B2 (en) | Semiconductor manufacturing method | |
JP2603342B2 (en) | Crystal article and method for forming the same | |
JP2755653B2 (en) | Method of forming SOI structure | |
JP2550968B2 (en) | Crystallization method of semiconductor thin film | |
JP2793241B2 (en) | SOI formation method | |
JPH01216519A (en) | Manufacture of semiconductor device | |
JPS6248015A (en) | Solid phase growth of semiconductor layer | |
JP2981777B2 (en) | Semiconductor substrate manufacturing method | |
JPS59128292A (en) | Method for crystallizing thin film | |
JPH02188499A (en) | Production of polycrystal silicon film having large crystal grain diameter | |
JPS62120014A (en) | Manufacture of substrate for semiconductor device | |
JPS59224114A (en) | Manufacture of single crystal semiconductor thin-film | |
JPS60164316A (en) | Formation of semiconductor thin film | |
JPH0580438B2 (en) | ||
JPS6248014A (en) | Solid phase growth of semiconductor layer | |
JPH1062447A (en) | Semiconductor acceleration sensor and method of manufacturing the same | |
JPS61244018A (en) | Manufacture of semiconductor device | |
JPS5810816A (en) | Semiconductor device |