JPS6275249A - Ph electrode for high-temperature water - Google Patents
Ph electrode for high-temperature waterInfo
- Publication number
- JPS6275249A JPS6275249A JP60214502A JP21450285A JPS6275249A JP S6275249 A JPS6275249 A JP S6275249A JP 60214502 A JP60214502 A JP 60214502A JP 21450285 A JP21450285 A JP 21450285A JP S6275249 A JPS6275249 A JP S6275249A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor
- electrode
- temperature water
- terminals
- conductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は、沸騰水型原子炉等の高温高圧水の微小部分に
おけるpt−+を計測するための電極に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an electrode for measuring pt-+ in a minute portion of high-temperature, high-pressure water in a boiling water reactor or the like.
従来より高温水pHを測定するための電極としては、P
t水素電極、Pd水素化合物電極又は固体電解質隔膜型
電極が検討され、更にT i 02半導体センサも研究
されている。しかしながら、これらの電極には夫々■水
素吹込みが必要であること、■寿命が短いこと、■内部
インピーダンスが高く応答が遅いこと、■計測が面倒で
あること等の欠点があり、高温水の隙間部分などの微小
部分のpHを長期間に亙って正確に測定できる電極が禾
だ11■発されていない。Conventionally, P has been used as an electrode for measuring high temperature water pH.
T-hydrogen electrodes, Pd-hydrogen compound electrodes, or solid electrolyte diaphragm-type electrodes are being considered, and T i 02 semiconductor sensors are also being investigated. However, each of these electrodes has drawbacks, such as: Requires hydrogen injection, Short lifespan, High internal impedance and slow response, and Troublesome measurement. Unfortunately, no electrodes have been developed that can accurately measure pH in minute areas such as gaps over long periods of time.
本発明は、内部インピーダンスが低く、微小箇所の高温
水を簡単かつ迅速に測定できる電極を提供しようとする
ものである。The present invention aims to provide an electrode that has low internal impedance and can easily and quickly measure high-temperature water at minute locations.
本発明は、高温水中で安定な半導体と、この半導体に接
して配置された一定の電位に設定される第1の導体端子
と、前記半導体に接して配置された該半導体の抵抗変化
を検知する第2、第3の導体端子とを具備したことを特
徴とするものである。The present invention includes a semiconductor that is stable in high-temperature water, a first conductor terminal placed in contact with the semiconductor and set to a constant potential, and a resistance change of the semiconductor placed in contact with the semiconductor. It is characterized by comprising second and third conductor terminals.
かかる本発明によれば、既述の如く内部インピーダンス
が低く、微小箇所の高温水を簡単かつ迅速に測定できる
電極を得ることができる。According to the present invention, as described above, it is possible to obtain an electrode that has a low internal impedance and can easily and quickly measure high-temperature water at a minute location.
以下、本発明の実施例を第1図(A>、(B)を参照し
て詳細に説明する。Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS. 1(A> and 1B).
まず、TiO2単結晶(ルチル型構造、C軸長さ方向)
から半径25M1長さ2mの素材を切出し、該素材を0
.05μmのアルミナ粒でパフ研磨した後、アルコール
中で超音波洗浄した。つづいて、真空度10− ’ t
orr、 温度12O0℃ノ雰囲気中で5時間加熱ドー
ピングを行なってn型半導体1を作製した。この半導体
1を150°Cの濃硫酸中で1時間エツチングした後、
3側面の一部に図示しないマスキング材を用いてアルミ
ニウムアセテートを蒸着源としたCVD法によりオーミ
ック接合用へβ膜を夫々等距離をあけてを蒸着した。ひ
きつづき、各Aλ製膜上AQペーストを塗布して第1〜
第3の導体端子21〜23を形成した後、各導体端子2
1〜23にPtリード線3を接続した。次いで、導体端
子21〜23を除く半導体1表面を図示しないマスキン
グ材で覆い、CVD法によりFiさ500A(7)AQ
2O3薄膜4を各導体端子21〜23上に形成した。な
お、6説の厚さはエブソメータにより測定することによ
り、それらの膜厚を決定した。AQ2Q31pi44の
形成後、該Al22O3薄PIA4を含む半導体1全面
に厚さ1000人のPd膜を真空蒸着して水素感応層5
を形成して電極のセンサ部を作製した。First, TiO2 single crystal (rutile structure, C-axis length direction)
Cut a material with a radius of 25M and a length of 2m from
.. After puff polishing with alumina particles of 0.05 μm, ultrasonic cleaning was performed in alcohol. Next, the degree of vacuum is 10-'t
The n-type semiconductor 1 was fabricated by performing thermal doping for 5 hours in an atmosphere at a temperature of 1200°C. After etching this semiconductor 1 in concentrated sulfuric acid at 150°C for 1 hour,
Using a masking material (not shown) on part of the three side surfaces, β films were deposited at equal distances from each other for ohmic junction by CVD using aluminum acetate as a deposition source. Continuing, AQ paste was applied on each Aλ film, and the first to
After forming the third conductor terminals 21 to 23, each conductor terminal 2
Pt lead wires 3 were connected to terminals 1 to 23. Next, the surface of the semiconductor 1 except for the conductor terminals 21 to 23 is covered with a masking material (not shown), and the surface of the semiconductor 1 is coated with a Fi 500A (7) AQ by CVD method.
A 2O3 thin film 4 was formed on each conductor terminal 21-23. Note that the thicknesses of the six theories were determined by measuring them with an ebsometer. After the formation of AQ2Q31pi44, a Pd film with a thickness of 1000 nm is vacuum-deposited on the entire surface of the semiconductor 1 including the Al22O3 thin PIA4 to form a hydrogen sensitive layer 5.
The sensor part of the electrode was prepared by forming the following.
最後に、前記センサ部の半導体1の下部をフッ素樹脂製
バッキング6a、6b及びルーロンバッキング7を介し
てフッ素樹脂製管8端面の段差部に配置し、フッ素樹脂
製キャップ9を該管8の外周面に螺合することによって
前記管8及びキャップ9で固定された高温水pH電極1
0を製造したく第1図(A>、(B)図示)。Finally, the lower part of the semiconductor 1 of the sensor section is placed on the stepped part of the end face of the fluororesin tube 8 via the fluororesin backings 6a, 6b and the Rulon backing 7, and the fluororesin cap 9 is placed on the outer circumference of the tube 8. high temperature water pH electrode 1 fixed with said tube 8 and cap 9 by screwing onto the surface;
0. Figure 1 (A>, (B) shown).
本発明の高温水pH電極10は、同図(A)、(B)に
示′!jODくTiO2からなるn型半導体1と、この
半導体1に接して配置された一定の電位に設定される第
1の導体端子21と、前記半導体1に接して配置された
該半導体の抵抗変化を検知する第2、第3の導体端子2
2.23と、前記半導体1の表面に接し、各導体端子2
1〜23に対してA22OiillL$を介して絶縁さ
れたPdからなる水素感応層5とを備えた構造になって
いる。The high temperature water pH electrode 10 of the present invention is shown in FIGS. An n-type semiconductor 1 made of TiO2, a first conductor terminal 21 placed in contact with the semiconductor 1 and set to a constant potential, and a resistance change of the semiconductor placed in contact with the semiconductor 1. Second and third conductor terminals 2 to be detected
2.23 and each conductor terminal 2 in contact with the surface of the semiconductor 1
The hydrogen sensitive layer 5 made of Pd is insulated from the hydrogen sensitive layer 1 to 23 via A22OiillL$.
このような構成の高温水pH電極10のセンサ部を高温
水に浸漬し、第1の導体端子21を一定の電位に設定す
ると、半導体1が水素感応層5から取込まれた水素イオ
ンにより抵抗値が変化し、こ札を第2、第3の導体端子
22.23間で計測することによりpH1llIに相関
する抵抗値を求めることができる。これを第2図のエネ
ルギバンド図を参照して説明する。第2図において、電
極10の水素感応層5を含むセンサ部が溶液に浸漬され
、一定の電圧が印加されている系を縦軸にエネルギ(E
)として示している。図中のΔΦHはへルムホルツ層の
電位差、ΔΦSCは空間電荷層における電位差である。When the sensor part of the high-temperature water pH electrode 10 having such a configuration is immersed in high-temperature water and the first conductor terminal 21 is set to a constant potential, the semiconductor 1 becomes resistant due to the hydrogen ions taken in from the hydrogen-sensitive layer 5. The value changes, and by measuring this tag between the second and third conductor terminals 22, 23, it is possible to determine the resistance value that correlates to pH1llI. This will be explained with reference to the energy band diagram of FIG. In FIG. 2, the sensor section including the hydrogen-sensitive layer 5 of the electrode 10 is immersed in a solution, and a system in which a constant voltage is applied is expressed as energy (E
). In the figure, ΔΦH is the potential difference in the Helmholtz layer, and ΔΦSC is the potential difference in the space charge layer.
今、半導体1に印加される第1の導体端子21からの電
位を参照電極を基準に一定に制御すれば以下の式が成立
つ。Now, if the potential from the first conductor terminal 21 applied to the semiconductor 1 is controlled to be constant with respect to the reference electrode, the following equation holds true.
E Erc(=ΔΦ8c−ΔΦ、(= consta
nt仮に、溶液の水素イオン濃度が増加すると、それに
伴ってΔΦHが大きくなり、上式を満たすようにΔΦs
cも増加する。これは現A的には空間電荷層の厚さを増
し、1カ理的にはキャリア濃度を減少させることになる
ので、半導体1自身の抵抗が大きくなることに相当する
。従って、この抵抗の変化を半導体1に接して配置され
た第2、第3の導体端子22.23の間で計測すること
によって、既述の如<l)Hを決定する抵抗1直を求め
ることができる。かかる抵抗測定においては、pH変化
に対応してΔΦ)運が敏感に変化することが重要であり
、そのために本実施例では半導体1の表面に水素感応層
5が設けられている。E Erc(=ΔΦ8c−ΔΦ, (= consta
nt If the hydrogen ion concentration of the solution increases, ΔΦH increases accordingly, and ΔΦs satisfies the above equation.
c also increases. In terms of current A, this increases the thickness of the space charge layer and theoretically decreases the carrier concentration, which corresponds to an increase in the resistance of the semiconductor 1 itself. Therefore, by measuring this change in resistance between the second and third conductor terminals 22 and 23 placed in contact with the semiconductor 1, the resistance 1 that determines <l)H is determined as described above. be able to. In such resistance measurement, it is important that ΔΦ) changes sensitively in response to pH changes, and for this reason, in this embodiment, a hydrogen sensitive layer 5 is provided on the surface of the semiconductor 1.
次に、本発明のI)H電極を用いて高温水のpHを測定
する例を第3図のpH測定装置を参照して説明する。Next, an example of measuring the pH of high-temperature water using the I)H electrode of the present invention will be described with reference to the pH measuring device shown in FIG.
第3図中の11は、図示しないオートクレーブ中に収納
されたAu製ご一カであり、このど−カ11内ニハ例え
ばNa2SO4+H23O+混合溶液12が収容されて
いる。前記ビー力11の口部には絶縁支持体13が挿着
されている。この支持体13には、本発明のpH電極1
0及びAQ/AQCff/ (0,1mol /n)の
K CR71)1らなる参照電極14がそれらの下部付
近を前記混合溶液12に浸漬するように挿着されている
。前記pH電極10の第1の導体端子21と接続するP
t線3は、接地されて一定の電位に設定されている。Reference numeral 11 in FIG. 3 is an Au container housed in an autoclave (not shown), and a mixed solution 12 of, for example, Na2SO4+H23O+ is accommodated in the container 11. An insulating support 13 is inserted into the opening of the bead 11. This support 13 has a pH electrode 1 of the present invention.
Reference electrodes 14 made of KCR71)1 of 0 and AQ/AQCff/(0,1 mol/n) are inserted so that their lower portions are immersed in the mixed solution 12. P connected to the first conductor terminal 21 of the pH electrode 10
The t-line 3 is grounded and set at a constant potential.
前記DH電極10の第2、第3の導体端子22.23に
接続するPt線3.3の間には電圧計15及び電流計1
6が介装されている。また、前記参照電極14は可変直
流電源17を介して接地されている。A voltmeter 15 and an ammeter 1 are connected between the Pt wire 3.3 connected to the second and third conductor terminals 22.23 of the DH electrode 10.
6 is interposed. Further, the reference electrode 14 is grounded via a variable DC power supply 17.
このような構成の装置において、可変直流電源17の電
圧を可変して参照電極14によりl)H電極10を分極
(バイアス電圧印加)し、オートクレーブによりビー力
11内の混合溶液12を290℃に設定すると共にその
p Hlaを変えながら、第2、第3の導体端子22.
23に接続されたpt線3.3に現われる抵抗値変化を
電圧計15及び電流計16により測定した。また、同様
な混合溶液(290℃に設定)についてl) H値を実
測した。しかして、pH1lflの異なる混合溶液につ
いてpHの実測値を横軸、前記測定装置による抵抗値を
縦軸にプロットしたところ、第4図に示す特性図を得た
。なお、縦軸に示したRaはDH=14の時の抵抗値で
ある。この第4図に示す特性図より明らかなように、バ
イアス電位(可変直流電gi17)が小さい時(Ve=
○の時)はl)Hが低い側で測定点が直線から外れ、バ
イアス電位が大きい時(Vs=0.4Vの時)はpHが
高い側で測定点が直線から外れるが、それ以外のpH領
域で直線として描かれる。このため、第4図図示の特性
図を検量線として利用し、前記第3図図示のl)H測定
装置で求めた抵抗値を第4図に照合することによって、
簡単に高温水のI)Hlaを測定できる。また、バイア
ス電位を選択することによって、pHに相関する抵抗値
変化が小さい溶液に対しても良好なpH測定が可能とな
る。In an apparatus having such a configuration, the voltage of the variable DC power supply 17 is varied to polarize (bias voltage applied) the H electrode 10 using the reference electrode 14, and the mixed solution 12 in the beer force 11 is heated to 290°C by an autoclave. setting and changing the pH Hla of the second and third conductor terminals 22.
The change in resistance value appearing on the PT wire 3.3 connected to 23 was measured using a voltmeter 15 and an ammeter 16. In addition, the H value was actually measured for a similar mixed solution (set at 290°C). When the measured pH values of mixed solutions having different pHs of 11fl were plotted on the horizontal axis and the resistance values measured by the measuring device were plotted on the vertical axis, the characteristic diagram shown in FIG. 4 was obtained. Note that Ra shown on the vertical axis is the resistance value when DH=14. As is clear from the characteristic diagram shown in FIG. 4, when the bias potential (variable DC current gi17) is small (Ve=
○) is l) When the H is low, the measurement point deviates from the straight line, and when the bias potential is large (Vs = 0.4V), the measurement point deviates from the straight line on the high pH side, but for other cases. It is drawn as a straight line in the pH range. Therefore, by using the characteristic diagram shown in FIG. 4 as a calibration curve and comparing the resistance value determined by the H measuring device shown in FIG. 3 with FIG. 4,
I) Hla of high temperature water can be easily measured. Furthermore, by selecting the bias potential, it is possible to perform good pH measurement even for solutions with small changes in resistance that correlate with pH.
なお、上記実施例では半導体としてTiO2を用いたが
、これに限定されない。例えば、Fe2O+、Cr2O
3、Ni○、5rTi○3、Zn−0,FeTiO3、
CLI○、C’dO,WO3、CdS、MO82、I
nP、Ge、S i、GaAs、MO8e、Se、S
i C。Note that although TiO2 was used as the semiconductor in the above embodiment, the present invention is not limited to this. For example, Fe2O+, Cr2O
3, Ni○, 5rTi○3, Zn-0, FeTiO3,
CLI○, C'dO, WO3, CdS, MO82, I
nP, Ge, Si, GaAs, MO8e, Se, S
iC.
LaRhO2、V2OS 、CdFe2O4等から半導
体を形成してもよい。The semiconductor may be formed from LaRhO2, V2OS, CdFe2O4, or the like.
上記実施例では、水素感応層としてPdからなるものを
用イタが、Ta2O5 、Affi2OB が6水素感
応層を形成してもよい。In the above embodiment, the hydrogen-sensitive layer is made of Pd, but the hydrogen-sensitive layer may be made of Ta2O5 or Affi2OB.
上記実施例では、半導体の表面に接して水素感応層を配
置したが、TiO2やFe2oヨ等の半導体自体が水素
イオンに感応して前述した式のへルムホルッ層の電位差
(ΔΦH)が変化するものを選択すれば、該水素感応層
を省略できる。In the above embodiment, the hydrogen-sensitive layer was arranged in contact with the surface of the semiconductor, but the semiconductor such as TiO2 or Fe2O itself is sensitive to hydrogen ions and the potential difference (ΔΦH) of the Helmholt layer according to the above formula changes. If , the hydrogen sensitive layer can be omitted.
以上詳述した如く、本発明によれば内部インピーダンス
が低く、微小箇所の高温水を簡単かつ迅速に測定し得る
高温水DHIi極を提供できる。As described in detail above, according to the present invention, it is possible to provide a high-temperature water DHIi electrode that has low internal impedance and can easily and quickly measure high-temperature water at minute locations.
第1図(A)は本発明の一実施例を示す1)−H電極の
正面図、同図(B)は同図(A>の要部断面図、第2図
は本発明のpH電1iの作用を説明づるためのエネルギ
バンド図、第3図は本発明のl)H電極を組込んだpH
31,11定装置を示す概略図、第4図は実測したI)
Hlliとl) H電極を有する装置により測定した抵
抗値との関係を示す特性図である。
1・・・TiO2からなる半導体、21〜23・・・導
体端子、3・・・pt線、5・・・Pdからなる水素感
応層、8・・・フッ素樹脂製管、9・・・フッ素樹脂製
キャップ、10・・・l)H電極、11・・・ビー力、
12・・・混合溶液、14・・・参照電極、15・・・
電圧計、16・・・電流計、17・・・可変直流電源。
出願人代理人 弁理士 鈴江武彦
(A)
第1図
第2図
抵挑 ΔR(=R−RO)にユFIG. 1(A) is a front view of a 1)-H electrode showing an embodiment of the present invention, FIG. An energy band diagram for explaining the action of 1i, Figure 3 is a pH diagram incorporating the l)H electrode of the present invention.
31,11 Schematic diagram showing the determination device, Figure 4 is the actual measured I)
FIG. 2 is a characteristic diagram showing the relationship between Hlli and the resistance value measured by a device having an H electrode. DESCRIPTION OF SYMBOLS 1... Semiconductor made of TiO2, 21-23... Conductor terminal, 3... PT wire, 5... Hydrogen sensitive layer made of Pd, 8... Fluororesin tube, 9... Fluorine Resin cap, 10...l) H electrode, 11...Be force,
12... Mixed solution, 14... Reference electrode, 15...
Voltmeter, 16... Ammeter, 17... Variable DC power supply. Applicant's representative Patent attorney Takehiko Suzue (A) Figure 1 Figure 2 Objection
Claims (5)
て配置された一定の電位に設定される第1の導体端子と
、前記半導体に接して配置された該半導体の抵抗変化を
検知する第2、第3の導体端子とを具備したことを特徴
とする高温水pH電極。(1) A semiconductor that is stable in high-temperature water, a first conductor terminal placed in contact with the semiconductor and set to a constant potential, and a change in resistance of the semiconductor placed in contact with the semiconductor is detected. A high temperature water pH electrode comprising second and third conductor terminals.
とを特徴とする特許請求の範囲第1項記載の高温水pH
電極。(2) High temperature water pH according to claim 1, characterized in that the semiconductor is TiO_2, Fe_2O_3
electrode.
なくとも一方の金属を介して半導体にオーミックコンタ
クトされていることを特徴とする特許請求の範囲第1項
記載の高温水pH電極。(3) The high-temperature water pH according to claim 1, wherein the first to third conductor terminals are in ohmic contact with the semiconductor through at least one metal of In and Al. electrode.
とする特許請求の範囲第1項記載の高温水pH電極。(4) The high temperature water pH electrode according to claim 1, characterized in that a hydrogen sensitive layer is provided on the surface of the semiconductor.
2O_3からなることを特徴とする特許請求の範囲第4
項記載の高温水pH電極。(5), the hydrogen sensitive layer is Pd, Ta_2O_5 or Al_
Claim 4, characterized in that it consists of 2O_3.
High-temperature water pH electrode as described in section.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60214502A JPS6275249A (en) | 1985-09-30 | 1985-09-30 | Ph electrode for high-temperature water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60214502A JPS6275249A (en) | 1985-09-30 | 1985-09-30 | Ph electrode for high-temperature water |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6275249A true JPS6275249A (en) | 1987-04-07 |
Family
ID=16656773
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60214502A Pending JPS6275249A (en) | 1985-09-30 | 1985-09-30 | Ph electrode for high-temperature water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6275249A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01244355A (en) * | 1988-03-25 | 1989-09-28 | Nippon Atom Ind Group Co Ltd | Monitoring cell for high temperature water quality |
JP2009505045A (en) * | 2005-08-08 | 2009-02-05 | ミクロガン ゲーエムベーハー | Semiconductor sensor |
-
1985
- 1985-09-30 JP JP60214502A patent/JPS6275249A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01244355A (en) * | 1988-03-25 | 1989-09-28 | Nippon Atom Ind Group Co Ltd | Monitoring cell for high temperature water quality |
JP2009505045A (en) * | 2005-08-08 | 2009-02-05 | ミクロガン ゲーエムベーハー | Semiconductor sensor |
JP2012198250A (en) * | 2005-08-08 | 2012-10-18 | Mikrogen Gmbh | Semiconductor sensor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5573798A (en) | Method of manufacturing an electrode for measuring pH | |
EP0472398A1 (en) | Electrode for measuring pH and method for manufacturing the same | |
JPS6275249A (en) | Ph electrode for high-temperature water | |
CN108507717A (en) | A kind of micro vacuum sensor | |
US4198850A (en) | Gas sensors | |
Hopper et al. | Anodic oxidation of Zirconium: Evidence of typical valve metal behavior | |
USRE38344E1 (en) | Hydrogen sensor using a solid hydrogen ion conducting electrolyte | |
JPS6154439A (en) | Manufacture of fluoride sensitive film | |
JPH04276544A (en) | Bonding type chemical sensor | |
JPS63193053A (en) | Ph measuring apparatus for high temperature | |
JP3175022B2 (en) | pH measuring device and its calibration method | |
JPS58100472A (en) | Temperature sensor and manufacture thereof | |
JPS6073448A (en) | Atmosphere sensor | |
SU989422A1 (en) | Humidity and temperature pickup | |
JPH055717A (en) | pH measuring electrode and manufacturing method thereof | |
JPS6130039A (en) | Etching method | |
JP2748523B2 (en) | Hydrogen ion electrode | |
JPS59136651A (en) | Air-fuel ratio meter for automobile | |
JPH01272165A (en) | Semiconductor pressure sensor | |
JPH0711496B2 (en) | Gas detection method | |
JPH0550702B2 (en) | ||
JP2743039B2 (en) | Electrode for pH measurement and method for producing the same | |
JPH0610099B2 (en) | Thin film gas detector | |
JPS5857702A (en) | Moisture sensor | |
JPH0340959B2 (en) |