JPS627337B2 - - Google Patents
Info
- Publication number
- JPS627337B2 JPS627337B2 JP6721379A JP6721379A JPS627337B2 JP S627337 B2 JPS627337 B2 JP S627337B2 JP 6721379 A JP6721379 A JP 6721379A JP 6721379 A JP6721379 A JP 6721379A JP S627337 B2 JPS627337 B2 JP S627337B2
- Authority
- JP
- Japan
- Prior art keywords
- elongation
- moisture
- synthetic resin
- bonding
- concrete
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000004745 nonwoven fabric Substances 0.000 claims description 50
- 239000000463 material Substances 0.000 claims description 45
- 238000009413 insulation Methods 0.000 claims description 23
- 229920003002 synthetic resin Polymers 0.000 claims description 22
- 239000000057 synthetic resin Substances 0.000 claims description 22
- 239000000835 fiber Substances 0.000 claims description 16
- 239000006260 foam Substances 0.000 claims description 14
- 229920002994 synthetic fiber Polymers 0.000 claims description 9
- 239000012209 synthetic fiber Substances 0.000 claims description 9
- 239000011230 binding agent Substances 0.000 claims description 8
- 238000005187 foaming Methods 0.000 claims description 5
- 229920001187 thermosetting polymer Polymers 0.000 claims description 4
- 239000005001 laminate film Substances 0.000 claims description 3
- 239000002985 plastic film Substances 0.000 claims description 2
- 229920006255 plastic film Polymers 0.000 claims description 2
- 229920005989 resin Polymers 0.000 claims description 2
- 239000011347 resin Substances 0.000 claims description 2
- 238000000034 method Methods 0.000 description 30
- 239000004567 concrete Substances 0.000 description 27
- 239000000853 adhesive Substances 0.000 description 7
- 230000001070 adhesive effect Effects 0.000 description 7
- 230000007423 decrease Effects 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 239000003513 alkali Substances 0.000 description 6
- 238000000465 moulding Methods 0.000 description 6
- 230000004888 barrier function Effects 0.000 description 5
- 238000010276 construction Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000009415 formwork Methods 0.000 description 4
- -1 polyethylene Polymers 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000004744 fabric Substances 0.000 description 3
- 239000003365 glass fiber Substances 0.000 description 3
- 239000012774 insulation material Substances 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 230000037303 wrinkles Effects 0.000 description 3
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229920002978 Vinylon Polymers 0.000 description 2
- 238000004026 adhesive bonding Methods 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 230000032798 delamination Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- BXKDSDJJOVIHMX-UHFFFAOYSA-N edrophonium chloride Chemical compound [Cl-].CC[N+](C)(C)C1=CC=CC(O)=C1 BXKDSDJJOVIHMX-UHFFFAOYSA-N 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 239000002655 kraft paper Substances 0.000 description 2
- 239000000123 paper Substances 0.000 description 2
- 238000009987 spinning Methods 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229920005830 Polyurethane Foam Polymers 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- USDJGQLNFPZEON-UHFFFAOYSA-N [[4,6-bis(hydroxymethylamino)-1,3,5-triazin-2-yl]amino]methanol Chemical compound OCNC1=NC(NCO)=NC(NCO)=N1 USDJGQLNFPZEON-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- 206010061592 cardiac fibrillation Diseases 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000002600 fibrillogenic effect Effects 0.000 description 1
- 239000011381 foam concrete Substances 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 239000011120 plywood Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000011496 polyurethane foam Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
Landscapes
- Building Environments (AREA)
- Laminated Bodies (AREA)
Description
本発明は建築物に接着一体化して使用される建
築用断熱ボードに関する。
従来、建築物の断熱工事として、板状の断熱材
を仮設した型枠パネル中にコンクリートと断熱材
とを接合一体化したのち、該型枠パネルを取外す
ようにした施工法が行なわれているが、このよう
な施工法において、断熱材として合成樹脂発泡体
を用いた場合該発泡体とコンクリートとの接合強
度が弱いという問題があつた。この接合強度を向
上させるために、比較的接合性の良いガラス繊維
を主体とする不織布を断熱材の表面に接合層とし
て設けたものが提案されていたが、このものは接
合性は向上したが、コンクリートのアルカリに対
して抵抗力が少なく、長時間に亘つて使用した場
合に接合力が低下するという欠点があつた。これ
に対して、耐アルカリ性の良好な合成繊維からな
る不織布を使用することが行なわれた。これは実
公昭54−2969号においても提案されている。しか
しながら、このような従来の合成繊維不織布はア
ルカリに対するの抵抗力は強いもののコンクリー
トとの接着接合力が不足し、実用に供し得るもの
ではなかつた。更にこのような従来の通常の合成
繊維不織布では引張強度が小さく、伸びが比較的
大きいので、これを引張りながら移動させ、この
ものの上に発泡性合成樹脂を付着させ、該合成樹
脂を発泡させて不織布と合成樹脂発泡体とを一体
形成した断熱ボードを得る場合には、製造時に不
織布が伸びてしまうために反りの大きい状態で製
造されたり、得られた断熱ボードが時間がたつに
つれて不織布の復元力によつて反りや変形が生じ
てしまい。実用に供せるものは得られないという
大きな欠点があつた。この欠点を補なうために
は、不織布と防湿層の間にクラフト紙などの伸び
が小さく引張り強度に富む基材を設ければ簡単に
解決するものであるが、このようにした場合はコ
ンクリート打設時の水分により、クラフト紙など
が弱くなり型枠を取外す際の外力によつて紙が層
間剥離を起すようなことさえ起る。
このように接合層を有する建築用断熱ボードを
連続的に得るものにおいては、製造工程中におけ
る断熱ボードの構造に起因する品質上の欠点と、
断熱ボードの使用上の欠点とが絡み合つて、すぐ
れた接合性を有する断熱ボードを連続的に得るこ
とはできなかつた。本発明はこのような問題点を
解決して連続的に成形した断熱ボードにてすぐれ
た接合性を有する建築用断熱ボードを提供するこ
とを目的とするものである。
すなわち、本発明の建築用断熱ボードは、表面
材及び裏面材を連続的に移動させつつ、該表面材
若しくは裏面材上に発泡性合成樹脂を付着させ、
該合成樹脂を発泡させて得られる表面材及び裏面
材を一体形成した断熱ボードにおいて、裏面材が
合成樹脂発泡体に面して低透湿性プラスチツクフ
イルムまたはラミネートフイルムからなる防湿層
と該防湿層をはさんで不織布からなる接合層とか
らなり、かつ該接合層の不織布が2デニール以上
の太さで1インチ以上の繊維長を有する合成繊維
と熱硬化型樹脂バインダーを使用したものからな
り、3.0Kg/15mmのテンシヨン時に縦方向におい
て6.0%以下の伸びであり、横方向において12%
以下の伸びであることを特徴とするものである。
本発明者らは前記従来品の欠点を解消するため
に断熱ボードが具備すべき条件を検討したが、次
のような条件が必要であることを見いだした。
断熱ボードの接合層とコンクリートの接着力
は、耐震性も考慮すると面剥離強度で1.5Kg/
cm2以上望ましくは2.0Kg/cm2以上あること。
コンクリート打設後型枠を取り外す際にコン
クリートは完全には乾燥していず、これに接し
ている接合層も水分が含浸しているので、接合
層の湿潤強度が弱い場合は接合層の層間剥離が
起き易い。従つて接合層の湿潤強度が引張強度
において乾燥時の1/2以上の強度が必要である
こと。
防湿層は水分を透過させないフイルム状物で
なければならないこと。
連続成形上接合層を含む裏面材を引張移動す
るため裏面材に引張力がかかるので、引張強度
が弱いものだとこの引張力に抗しきれずに切断
したり、引張強度が充分でも伸びがあるもので
は断熱ボード成形後にボードが反つたり、変形
したり、あるいは裏面側に波状のしわが発生し
たりする。従がつて引張強度が大でありかつ伸
びの小さいことが必要である。
接合層は防湿層と一体となり断熱ボードの裏
面材を形成するものであり、連続成形の場合ロ
ール捲きなどの形状にて使用するものであり、
又機能上、経済上から薄いもので充分であるか
ら、薄くて柔軟性のあるものであること。
これらの条件を満たす布帛状物として不織布が
考えられ、特に接合強度および引張強度と伸びの
関係の点からみるとガラス繊維を主体とする不織
布のみであるが、これはコンクリートの耐アルカ
リ性に弱いので不適であり、耐アルカリ性の強い
ものとして合成繊維の不織布があるが従来用いら
れているものは一般に布の風合に近く、低荷重
(たとえば3Kg/15mm程度)時の伸びが20%前後
と大きく、一定の張力下で使用される用途には不
適であり、伸びをきらう用途に適合するものとし
ては繊度を小さくしたり、バインダー量を増やし
てペーパーライクに仕上げたものもあるがこれら
は緻密すぎて表面が平滑になりコンクリートとの
接合力に欠ける。
ここで本発明で説明している不織布は通常繊維
業界において用いられている内容を示すものであ
る。この不織布としては、乾式不織布及び湿式不
織布があり、更に乾式不織布は接着剤型、機械的
結合型、紡糸型に分類され、接着剤型には浸漬
法、プリント法、粉末法、接着繊維法があり、機
械結合型にはフエルト法、ニードルパンチ法、ス
テイツチ法があり、紡糸型には短繊維法、フイラ
メント法がある。湿式不織布は抄紙型であり、フ
イブリル化法、接着繊維法、熱圧着法、溶剤法、
接着剤法がある。
このような不織布から前記条件を満たすものと
して次の要素がある。
○イ 繊維と繊維長は不織布の引張強度と伸びの関
係及びコンクリートとの接合力に大きな影響を
与えるものであり、2デニール以上の太さで1
インチ以上の長さを有する繊維が良い。繊度が
2デニール未満のものでは不織布が緻密にな
り、コンクリートとの接合力が低下し、繊維長
さが1インチ未満の不織布では伸び易い欠点が
あり、伸びを防止すれば不織布が緻密になりコ
ンクリートとの接合強度が不足する。
○ロ バインダーとしては、コンクリート打設時の
耐水性を向上させるためにアクリル系、メラミ
ン系合成樹脂などの熱硬化型合成樹脂が必要不
可欠である。また熱硬化型バインダーを使用す
ると断熱ボードの連続成形に際して加熱状態に
おいても耐熱性がすぐれているため加熱による
影響によつて物性低下や変形などの不都合を生
じないという効果も合せ奏するものであり適材
である。
○ハ バインダーの使用量は不織布総重量の60%以
下が好ましい。60%を越すと空隙率が低下し、
コンクリートとの接合強度が低下する。
○ニ 不織布の目付量は40g/m2以上200g/m2以下
が良い。40g/m2未満であると引張強度が不足
し、コンクリートとの接合力も低下してしま
う。200g/m2を越えると繊維が緻密になりす
ぎ、不織布の表面が平滑になりコンクリートと
の接合強度が低下してくる。
○ホ 耐アルカリ性がすぐれていなくてはならない
ので合成繊維の不織布が適する。
○ヘ 不織布の引張強度と伸びの関係は断熱ボード
を連続的に製造するのに重大な影響を与える。
すなわち、断熱材の素材が硬質ウレタンフオー
ムやフエノールフオームのように化学反応によつ
て発泡硬化するものの場合は不織布の如き面材を
熱板に密着させ、その上に散布された原料液材を
加熱し発泡硬化させるが、この熱板への密着を良
くするために通常熱板の中に数多くのスリツトを
設け、反対側より真空で引く事によりその効果を
倍加させているがこれらによる抵抗によつて大き
な引張力が不織布などの面材にかかる。この引張
力は上面材と下面材では異なる。従つて引張力に
よつて伸び易い面材は上下面材の引張力を全く同
一に調整する事が不可能であるため、得られる断
熱ボードが一方に大きく反つてしまう欠点が出
る。通常この引張力は3Kg/15mm程度であり、こ
のときの縦方向の伸びが6%以上あるものは機械
的調整において反りの発生を防止することは不可
能であり好ましくは4.0%以下の伸びを持つもの
が良い。又横方向の伸びは3Kg/15mm荷重時12%
以下の伸びのものが良く、それ以下の荷重時にお
いて、同荷重の縦方向の伸びの3倍以下、好まし
くは2.5倍以下のものが好ましく、3倍以上の伸
びを有するものは縦の引張力の影響で縦方向に波
状のしわが発生し、横方向への反りも発生する。
この引張強度と伸びの関係は断熱ボードの連続成
形の際に得られる断熱ボードに反りや変形、およ
び表面のしわなどを発生することを防ぐ大きな要
因となる。この縦方向と横方向の引張強度と伸び
の関係は本発明に適用する不織布に使用する繊維
の配列を調整することによつて任意に得られる。
使用する繊維の種類や太さ、長さだけでなく、ウ
エブの形成法やそのウエブを固着させる方法の差
により、今目実に多くの品種や異なつた物性を有
する不織布が製造されているが、本目的に適合で
きる不織布の基本特性として前述した如く引張特
性とコンクリート接着性にすぐれるものでなくて
はならない。
引張特性上から不織布の製法の適否を考察すれ
ば一般に湿式法、乾式接着剤含浸法、スパンボン
ド法によつて作られるものが好ましく、特に縦、
横の引張特性が近い製法のもの、たとえば乾式法
でいえばエアーレイ法やカード交叉型法が特に好
ましい。ニードルパンチ法やステツチボンド法で
は100g/m2以下の薄物ができ難く、得られるも
のも綿状、布状で伸びの大きなものが多いためあ
まり好ましいものではない。
しかしこのことは、不織布の製法を限定するも
のではない。また繊度が2デニール未満の合成繊
維及び繊維長が1インチ未満の合成繊維及びガラ
ス繊維は、前述の基本物性に影響を与えない範囲
即ち20%以下であれば含有されていても差しつか
えがない。
本発明ではこのような特殊な不織布を断熱ボー
ドの接合層として使用することが必須不可欠であ
る。
本発明の断熱ボードを図面に従つて説明をす
る。第1図は本発明の建築用断熱ボードの断面図
である。防湿層2をはさんで接合層1および断熱
層3が一体形成されており、断熱層3の他面には
適宜表面材4が一体形成されている。接合層1は
前記の特殊不織布である。防湿層2は透湿性の小
さな合成樹脂フイルムたとえばポリ塩化ビニール
やポリエチレン、ポリプロピレンなどが用いられ
る。あるいは紙を基材としてこれに合成樹脂フイ
ルムをラミネートしたラミネートフイルムなど又
はアスフアルトなどの防湿材を含浸若しくはコー
テイングしたものが用いられる。引張力が小さ
く、伸びが大きいものでも差しつかえがなく使用
できる。断熱層3は合成樹脂発泡体が好ましく、
硬質ポリウレタンフオーム、フエノール樹脂フオ
ーム、エポキシ樹脂フオーム、ユリア樹脂フオー
ムなどが好適である。表面材4は裏面材5と同一
のものでも何ら差しつかえがない。建築物の用途
に応じて化粧ベニヤ板、石膏ボード、木毛板、鉄
板など適宜選択することができる。
第2図は本発明の建築用断熱ボードを連続成形
する装置の一実施態様を説明するものであるが、
本発明を何ら制限するものではない。
第2図において裏面材5は一定の速度で矢印の
方向に移動し、その片面上に発泡性合成樹脂を付
着させる手段6により発泡性合成樹脂が付着され
る。この付着手段6はスプレー、ロールコータ
ー、バーコーター、ナイフコーターなどの通常の
付着手段で良く、一定速度で発泡性合成樹脂を付
着し得る性能を有するものであればいかなる手段
でもよいが、最も簡便なものはスプレーである。
裏面材上に付着された発泡性合成樹脂は、それ自
身が有する粘着性により裏面材の片面に付着し、
通常の方法により発泡しながら送られ、その発泡
中あるいは発泡後の未硬化の状態にある間に矢印
の方向に同一速度で移動する表面材4と接触押圧
される。次いで上下のベルトコンベアなどの移送
手段7,8によつてこの構成体は一定の厚さに調
整されながら移送され、その間に発泡性合成樹脂
は十分に発泡し、そして硬化する。こうして裏面
材、発泡合成樹脂層、表面材が一体化した断熱ボ
ード9が得られる。
裏面材5は接合層1のシート材及び防湿層2の
フイルム材をあらかじめ接着一体化させたものを
使用し、発泡性合成樹脂は防湿層2側に付着させ
る。裏面材5及び表面材4を移動させるには、移
動させる方向から引張力を加えて移動させること
が通常である。
本発明による建築用断熱ボードはこのようにし
て、連続成形によつて得られるものであるが、特
殊な不織布を適用した裏面材を使用しているので
連続成形中裏面材に強い引張力が掛かるのにもか
かわらず、得られた断熱ボードは反りや変形を起
こすこともなく、かつコンクリートと接合一体化
させた場合にも強力な接合力を発揮し、防水性も
良好なすぐれた建築用断熱ボードが得られるもの
である。
次に本発明に使用する不織布を構成する各要素
がコンクリートとの接合力に及ぼす効果が各要素
の変量によつて変化する状態を第3図〜第5図に
示した。第3図、第4図においては繊度は3デニ
ールと7デニールの2種類について例示し、第5
図においては目付量40g/m2と60g/m2について
例示した。第3図におけるバインダーの含有率、
第4図における目付量、第5図における繊度の各
要素の変量に伴ない、コンクリートとの接合力は
上昇してからやがて下降してゆく状態が明瞭であ
り、各要素の量的有効限界があることを示してい
る。
以下実施例、従来例、比較例について説明をす
る。
(実施例 1)
3デニールと7デニールの繊度を有し、2イン
チの繊維長を有するビニロン繊維を用いて乾式カ
ードランダム法にてウエブを形成し、トリメチロ
ールメラミン20部を含有するHA−16(日本アク
リル(株)製)をバインダーとして浸漬処理し、目付
量62g/m2の不織布を得た。このものに厚さ40μ
mにポリエチレンを押出ラミネートし防湿層を一
体化した裏面材シートとした。この裏面材の使用
して第2図に示す装置、工程によつて、裏面材5
のポリエチレン防湿層面上に硬質ウレタンフオー
ム原液10を吐出し発泡させ、両面に不織布をラ
ミネートした断熱ボード9を得た。
不織布の引張特性(TSB、EB、3Kg/15mm荷
重時の伸び)の測定は15mm巾の試料をテンシロン
100mm/分の速度で引張ることにより行なつた。
又コンクリートとの接合力は防湿層付不織布の防
湿層のない面に50mm角のセキ板を設け、その中に
コンクリートを流し込み2週間の養生の後にコン
クリート面と防湿層面にT型金具を接着し、これ
をテンシロンのチヤツクに固定して100mm/分の
速度で引張り、面剥離強度を測定した。
結果を表−1に示す。
(従来例 1〜6)
接合層となる不織布を一般に市販されているも
ののなかから引張時の伸びが比較的少ないものを
選定し、実施例−1と同様の試験を行なつた。
結果を表−1に示す。
(比較例1〜13、実施例2〜16)
ビニロン繊維を用いて乾式エアーレイ接着剤含
浸法で不織布を製造し、その引張特性、コンクリ
ートとの接合強度、断熱ボード製造条件への適合
性を実施例−1と同様方法にて測定した。結果を
表−2に示す。
これらの実施例、比較例より、コンクリート打
設時にコンクリートと一体接合させる断熱ボード
として、従来にない厳しい条件を課して製造した
新規な不織布を適用する事が必須である事が明ら
かである。
TECHNICAL FIELD The present invention relates to a building insulation board that is used by being adhesively integrated into a building. Conventionally, in insulation work for buildings, a construction method has been used in which concrete and insulation material are joined and integrated into a formwork panel in which a plate-shaped insulation material is temporarily installed, and then the formwork panel is removed. However, in such a construction method, when a synthetic resin foam is used as a heat insulating material, there is a problem in that the bonding strength between the foam and concrete is weak. In order to improve this bonding strength, it has been proposed to provide a bonding layer on the surface of the heat insulating material with a nonwoven fabric mainly made of glass fiber, which has relatively good bonding properties. However, it has the disadvantage that it has little resistance to the alkali of concrete, and its bonding strength decreases when used for a long period of time. In contrast, nonwoven fabrics made of synthetic fibers with good alkali resistance have been used. This was also proposed in Utility Model Publication No. 54-2969. However, although such conventional synthetic fiber nonwoven fabrics have strong resistance to alkali, they lack adhesive bonding strength with concrete, and cannot be put to practical use. Furthermore, since such conventional synthetic fiber non-woven fabrics have low tensile strength and relatively high elongation, they are moved while being pulled, and a foamable synthetic resin is attached on top of the fabric, causing the synthetic resin to foam. When obtaining a heat insulating board made by integrally forming a non-woven fabric and a synthetic resin foam, the non-woven fabric stretches during manufacturing and is therefore manufactured with a large degree of warpage, and the resulting insulating board may not recover as the non-woven fabric recovers over time. Warping and deformation may occur due to force. The major drawback was that nothing that could be put to practical use could be obtained. In order to compensate for this drawback, it is easy to solve this problem by installing a base material with low elongation and high tensile strength, such as kraft paper, between the nonwoven fabric and the moisture barrier layer, but in this case, concrete Moisture during pouring weakens kraft paper, etc., and may even cause delamination of the paper due to external force when removing the formwork. In the case of continuously obtaining architectural insulation boards having bonding layers in this way, there are quality defects due to the structure of the insulation board during the manufacturing process,
Due to the disadvantages of using heat insulating boards, it has not been possible to continuously obtain heat insulating boards with excellent bonding properties. It is an object of the present invention to solve these problems and provide a continuously molded thermal insulation board for construction that has excellent bonding properties. That is, in the construction insulation board of the present invention, the foamable synthetic resin is adhered to the front surface material or the back surface material while continuously moving the front surface material and the back surface material,
In a heat insulating board integrally formed with a surface material and a back material obtained by foaming the synthetic resin, the back material has a moisture-proof layer made of a low-moisture-permeable plastic film or a laminate film facing the synthetic resin foam, and the moisture-proof layer. 3.0, consisting of a bonding layer made of a non-woven fabric sandwiched between them, and the non-woven fabric of the bonding layer is made of a synthetic fiber having a thickness of 2 deniers or more and a fiber length of 1 inch or more, and a thermosetting resin binder; When tensioned at Kg/15mm, the elongation is less than 6.0% in the longitudinal direction and 12% in the transverse direction.
It is characterized by the following elongation. The present inventors have studied the conditions that a heat insulating board should have in order to eliminate the drawbacks of the conventional products, and have found that the following conditions are necessary. The adhesive force between the bonding layer of the insulation board and the concrete is 1.5 kg/1.5 kg in surface peel strength, considering earthquake resistance.
cm2 or more, preferably 2.0Kg/ cm2 or more. When removing the formwork after pouring concrete, the concrete is not completely dry and the bonding layer in contact with it is also impregnated with moisture, so if the wet strength of the bonding layer is weak, delamination of the bonding layer may occur. is likely to occur. Therefore, the wet strength of the bonding layer must be at least half the tensile strength of the dry strength. The moisture barrier layer must be a film-like material that does not allow moisture to pass through. During continuous molding, tensile force is applied to the backing material, including the bonding layer, as it is moved by tension, so if the tensile strength is weak, it may not be able to withstand this tensile force and break, or even if the tensile strength is sufficient, it may stretch. After forming an insulation board, the board warps or deforms, or wavy wrinkles appear on the back side. Therefore, it is necessary to have high tensile strength and low elongation. The bonding layer is integrated with the moisture-proof layer to form the backing material of the insulation board, and in the case of continuous molding, it is used in a shape such as rolled up.
Also, from a functional and economic point of view, it is sufficient to be thin, so it should be thin and flexible. Non-woven fabrics can be considered as fabric-like materials that meet these conditions.In particular, from the point of view of the relationship between bonding strength, tensile strength, and elongation, only non-woven fabrics that are mainly made of glass fibers are weak in the alkali resistance of concrete. Synthetic fiber non-woven fabrics are unsuitable and have strong alkali resistance, but the fabrics conventionally used generally have a texture similar to that of cloth and have a high elongation of around 20% under low loads (for example, about 3 kg/15 mm). It is unsuitable for applications where it is used under constant tension, and there are products that are suitable for applications where elongation is a concern, such as those with a paper-like finish by reducing the fineness or increasing the amount of binder, but these are too dense. The surface becomes smooth and lacks bonding strength with concrete. The nonwoven fabric described in the present invention is one commonly used in the textile industry. There are two types of nonwoven fabrics: dry nonwoven fabrics and wet nonwoven fabrics. Dry nonwoven fabrics are further classified into adhesive type, mechanical bonding type, and spinning type. Adhesive type includes dipping method, printing method, powder method, and bonded fiber method. Mechanically bonded methods include the felt method, needle punch method, and stitch method, and spinning methods include the short fiber method and filament method. Wet-processed nonwoven fabrics are paper-making methods, and include fibrillation method, adhesive fiber method, thermocompression bonding method, solvent method,
There is an adhesive method. Among such nonwoven fabrics, there are the following elements that satisfy the above conditions. ○B Fibers and fiber length have a large influence on the relationship between the tensile strength and elongation of nonwoven fabrics and on the bonding strength with concrete.
Fibers with lengths of inches or more are preferred. If the fineness is less than 2 deniers, the nonwoven fabric becomes dense and the bonding strength with concrete decreases, and nonwoven fabrics with fiber lengths of less than 1 inch have the disadvantage of being easy to stretch. There is insufficient bonding strength. ○B As a binder, thermosetting synthetic resins such as acrylic and melamine synthetic resins are essential to improve water resistance during concrete placement. In addition, when using a thermosetting binder, it has excellent heat resistance even when heated during continuous molding of insulation boards, so it is suitable for use as it does not cause problems such as deterioration of physical properties or deformation due to the effects of heating. It is. ○C The amount of binder used is preferably 60% or less of the total weight of the nonwoven fabric. When it exceeds 60%, the porosity decreases,
The strength of the bond with concrete decreases. ○D The basis weight of the nonwoven fabric is preferably 40g/ m2 or more and 200g/ m2 or less. If it is less than 40g/m 2 , the tensile strength will be insufficient and the bonding strength with concrete will also decrease. If it exceeds 200 g/m 2 , the fibers become too dense, the surface of the nonwoven fabric becomes smooth, and the bonding strength with concrete decreases. ○E Since it must have excellent alkali resistance, nonwoven fabrics made of synthetic fibers are suitable. ○F The relationship between the tensile strength and elongation of nonwoven fabrics has a significant impact on the continuous production of insulation boards. In other words, if the insulation material is made of hard urethane foam or phenol foam, which foams and hardens through a chemical reaction, a face material such as non-woven fabric is placed in close contact with a hot plate, and the raw material liquid sprinkled on it is heated. The foam is cured by foaming, but in order to improve the adhesion to the hot plate, usually many slits are provided in the hot plate, and the effect is doubled by drawing a vacuum from the opposite side, but due to the resistance caused by these. A large tensile force is applied to the surface material such as non-woven fabric. This tensile force is different between the upper and lower materials. Therefore, it is impossible to adjust the tensile force of the upper and lower panels to be exactly the same for a panel material that is easily stretched by tensile force, resulting in the disadvantage that the obtained insulation board will warp significantly in one direction. Normally, this tensile force is about 3 kg/15 mm, and if the longitudinal elongation is 6% or more, it is impossible to prevent warping by mechanical adjustment, so it is preferable to keep the elongation to 4.0% or less. What you have is good. Also, the lateral elongation is 12% when loaded with 3Kg/15mm.
It is better to have an elongation of 3 times or less, preferably 2.5 times or less, than the elongation in the longitudinal direction under the same load when the load is less than that, and the elongation that is 3 times or more is the longitudinal tensile strength. This causes wavy wrinkles in the vertical direction and warping in the horizontal direction.
This relationship between tensile strength and elongation is a major factor in preventing warpage, deformation, and surface wrinkles in the insulation board obtained during continuous molding of the insulation board. The relationship between the tensile strength and elongation in the longitudinal and transverse directions can be arbitrarily obtained by adjusting the arrangement of the fibers used in the nonwoven fabric applied to the present invention.
Nowadays, many types of nonwoven fabrics with different physical properties are being produced, depending not only on the type, thickness, and length of the fibers used, but also on the method of forming the web and the method of fixing the web. As mentioned above, the basic properties of a nonwoven fabric suitable for this purpose include excellent tensile properties and concrete adhesion. Considering the suitability of nonwoven fabric manufacturing methods from the viewpoint of tensile properties, it is generally preferable to use a wet method, a dry adhesive impregnation method, or a spunbond method.
Particularly preferred are manufacturing methods that have similar lateral tensile properties, such as the air-lay method and card cross-type method among dry methods. The needle punching method and the stitch bonding method are not very preferable because it is difficult to produce thin products of 100 g/m 2 or less, and the products obtained are often cotton-like or cloth-like with high elongation. However, this does not limit the method of manufacturing the nonwoven fabric. In addition, synthetic fibers with a fineness of less than 2 denier and synthetic fibers with a fiber length of less than 1 inch, and glass fibers may be contained as long as they do not affect the basic physical properties mentioned above, that is, 20% or less. . In the present invention, it is essential to use such a special nonwoven fabric as the bonding layer of the heat insulating board. The heat insulation board of the present invention will be explained according to the drawings. FIG. 1 is a cross-sectional view of the architectural insulation board of the present invention. A bonding layer 1 and a heat insulating layer 3 are integrally formed with a moisture-proof layer 2 in between, and a suitable surface material 4 is integrally formed on the other surface of the heat insulating layer 3. Bonding layer 1 is the above-mentioned special nonwoven fabric. The moisture-proof layer 2 is made of a synthetic resin film with low moisture permeability, such as polyvinyl chloride, polyethylene, polypropylene, or the like. Alternatively, a laminate film in which a synthetic resin film is laminated onto a paper base material, or a film impregnated or coated with a moisture-proofing material such as asphalt may be used. Even those with low tensile force and high elongation can be used without any problems. The heat insulating layer 3 is preferably made of synthetic resin foam;
Hard polyurethane foam, phenolic resin foam, epoxy resin foam, urea resin foam, etc. are suitable. There is no problem even if the surface material 4 is the same as the back material 5. Decorative plywood, gypsum board, wood wool board, iron board, etc. can be selected as appropriate depending on the purpose of the building. FIG. 2 explains one embodiment of the apparatus for continuously forming the building insulation board of the present invention.
This is not intended to limit the invention in any way. In FIG. 2, the back material 5 moves at a constant speed in the direction of the arrow, and a foamable synthetic resin is deposited on one side thereof by a means 6 for depositing the foamable synthetic resin. This attachment means 6 may be any ordinary attachment means such as a spray, roll coater, bar coater, knife coater, etc., and any means capable of attaching the foamable synthetic resin at a constant speed may be used, but the simplest method is The thing is a spray.
The foamable synthetic resin attached to the backing material adheres to one side of the backing material due to its own adhesiveness,
It is fed while being foamed by a normal method, and is pressed into contact with the surface material 4 moving at the same speed in the direction of the arrow while foaming or while in an uncured state after foaming. This structure is then transported while being adjusted to a constant thickness by transport means 7, 8 such as upper and lower belt conveyors, during which time the foamable synthetic resin is sufficiently foamed and hardened. In this way, a heat insulating board 9 is obtained in which the back material, the foamed synthetic resin layer, and the surface material are integrated. The backing material 5 is made by bonding and integrating the sheet material of the bonding layer 1 and the film material of the moisture-proof layer 2 in advance, and the foamable synthetic resin is attached to the moisture-proof layer 2 side. In order to move the back material 5 and the front material 4, it is normal to apply a tensile force from the direction of movement. The architectural insulation board according to the present invention is thus obtained by continuous molding, but since the backing material is made of a special non-woven fabric, a strong tensile force is applied to the backing material during continuous molding. Despite this, the resulting insulation board does not warp or deform, exhibits strong bonding strength even when integrated with concrete, and has excellent waterproof properties, making it an excellent insulation board for buildings. The board is what you get. Next, FIGS. 3 to 5 show how the effect of each element constituting the nonwoven fabric used in the present invention on the bonding force with concrete changes depending on the variables of each element. In Figures 3 and 4, two types of fineness are illustrated, 3 denier and 7 denier, and 5
In the figure, examples are given for the basis weights of 40 g/m 2 and 60 g/m 2 . Binder content in Figure 3,
It is clear that the bonding force with concrete increases and then gradually decreases as each element changes, such as the basis weight in Figure 4 and the fineness in Figure 5, and the quantitative effective limit of each element is It shows that there is. Examples, conventional examples, and comparative examples will be described below. (Example 1) A web was formed by a dry card random method using vinylon fibers having a fineness of 3 denier and 7 denier and a fiber length of 2 inches, and HA-16 containing 20 parts of trimethylolmelamine. (manufactured by Nippon Acrylic Co., Ltd.) was used as a binder to obtain a nonwoven fabric having a basis weight of 62 g/m 2 . This one has a thickness of 40μ
A backing material sheet was created by extrusion laminating polyethylene onto m and integrating a moisture-proof layer. Using this backing material, the backing material 5 is
A hard urethane foam stock solution 10 was discharged and foamed onto the surface of the polyethylene moisture-proof layer to obtain a heat insulating board 9 with nonwoven fabric laminated on both sides. To measure the tensile properties of nonwoven fabrics (TSB, EB, elongation at 3Kg/15mm load), use Tensilon to measure a 15mm wide sample.
This was done by pulling at a speed of 100 mm/min.
In addition, the bonding strength with concrete is determined by installing a 50 mm square board on the side of the nonwoven fabric with a moisture barrier layer that does not have a moisture barrier layer, pouring concrete into it, curing it for two weeks, and then gluing T-shaped metal fittings to the concrete surface and the moisture barrier layer surface. This was fixed to the chuck of Tensilon and pulled at a speed of 100 mm/min to measure the surface peel strength. The results are shown in Table-1. (Conventional Examples 1 to 6) Nonwoven fabrics serving as bonding layers were selected from commercially available nonwoven fabrics with relatively low elongation when stretched, and the same tests as in Example 1 were conducted. The results are shown in Table-1. (Comparative Examples 1 to 13, Examples 2 to 16) Nonwoven fabrics were manufactured using vinylon fibers using a dry air lay adhesive impregnation method, and their tensile properties, bonding strength with concrete, and compatibility with insulation board manufacturing conditions were evaluated. Measurement was performed in the same manner as in Example-1. The results are shown in Table-2. From these Examples and Comparative Examples, it is clear that it is essential to use a new nonwoven fabric manufactured under unprecedentedly strict conditions as a heat insulating board that is integrally joined to concrete during concrete pouring.
【表】【table】
【表】【table】
【表】【table】
第1図は本発明断熱ボードの断面図、第2図は
断熱ボードの製造装置の一実施態様図、第3図、
第4図、第5図は本発明に使用する不織布を構成
する各要素がコンクリートとの接合力に及ぼす効
果が各要素の変量によつて変化する状態を示した
説明図である。
1……接合層、2……防湿層、3……断熱層、
4……表面材。
Fig. 1 is a cross-sectional view of the heat insulating board of the present invention, Fig. 2 is a diagram of an embodiment of a heat insulating board manufacturing apparatus, Fig. 3,
FIGS. 4 and 5 are explanatory diagrams showing how the effect of each element constituting the nonwoven fabric used in the present invention on the bonding force with concrete changes depending on the variables of each element. 1... Bonding layer, 2... Moisture-proof layer, 3... Heat insulation layer,
4... Surface material.
Claims (1)
該表面材若しくは裏面材上に発泡性合成樹脂を付
着させ、該合成樹脂を発泡させて得られる表面材
及び裏面材を一体形成した断熱ボードにおいて、
裏面材が合成樹脂発泡体に面して低透湿性プラス
チツクフイルムまたはラミネートフイルムからな
る防湿層と、該防湿層をはさんで不織布からなる
接合層とからなり、かつ該接合層の不織布が2デ
ニール以上の太さで1インチ以上の繊維長を有す
る合成繊維と熱硬化型樹脂バインダーを使用した
ものからなり、3.0Kg/15mmのテンシヨン時に縦
方向において6.0%以下の伸びであり、横方向に
おいて12%以下の伸びであることを特徴とする建
築用断熱ボード。1 While continuously moving the front material and back material,
A heat insulating board in which a front surface material and a back surface material obtained by adhering a foamable synthetic resin to the front surface material or the back surface material and foaming the synthetic resin are integrally formed,
The backing material is composed of a moisture-proof layer made of a low moisture permeable plastic film or a laminate film facing the synthetic resin foam, and a bonding layer made of a non-woven fabric sandwiching the moisture-proof layer, and the non-woven fabric of the bonding layer is 2 denier. It is made of synthetic fibers with a fiber length of 1 inch or more and a thermosetting resin binder, and has an elongation of 6.0% or less in the longitudinal direction and 12% in the transverse direction when tensioned at 3.0 kg/15 mm. An architectural insulation board characterized by an elongation of less than %.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6721379A JPS55159047A (en) | 1979-05-30 | 1979-05-30 | Heattinsulating board for building |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6721379A JPS55159047A (en) | 1979-05-30 | 1979-05-30 | Heattinsulating board for building |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS55159047A JPS55159047A (en) | 1980-12-10 |
JPS627337B2 true JPS627337B2 (en) | 1987-02-17 |
Family
ID=13338400
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6721379A Granted JPS55159047A (en) | 1979-05-30 | 1979-05-30 | Heattinsulating board for building |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS55159047A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57151729U (en) * | 1981-03-17 | 1982-09-24 | ||
JPS57151733U (en) * | 1981-03-19 | 1982-09-24 | ||
JP4940687B2 (en) * | 2006-02-17 | 2012-05-30 | パナソニック株式会社 | Vacuum cleaner suction tool and vacuum cleaner |
-
1979
- 1979-05-30 JP JP6721379A patent/JPS55159047A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS55159047A (en) | 1980-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5001005A (en) | Structural laminates made with novel facing sheets | |
US4303722A (en) | Building components | |
US20160361892A1 (en) | Foam sheathing reinforced with hybrid laminated fabric impregnated with vapor permeable air barrier material and method of making and using same | |
US7829488B2 (en) | Non-woven glass fiber mat faced gypsum board and process of manufacture | |
RU2078882C1 (en) | Plate or roll form insulating material for new and requiring sanitation structures and method of its production | |
US4378405A (en) | Production of building board | |
US4824498A (en) | Strippalble sponge cushion underlay for a surface covering, such as carpeting | |
CA2804167A1 (en) | A panel comprising a polymeric composite layer and a reinforcement layer | |
US20080176469A1 (en) | Drywall Tape and Drywall Joint | |
JP2017100326A (en) | Decorative panel | |
US5082708A (en) | Tension floor covering with reinforcing layer | |
JP2005507982A (en) | Drywall finish trim with fiber coating made of reinforced compound | |
US5188874A (en) | Hybrid floor covering | |
JPS627337B2 (en) | ||
JP2015189065A (en) | Reinforcing panel, method for producing the reinforcing panel, concrete structure and method for applying the concrete structure | |
JPH0835281A (en) | Deck plate and floor construction method using the deck plate | |
CN105899727B (en) | Textiles and their uses, methods for producing such textiles and methods for recycling the same | |
JP4105784B2 (en) | Sound absorbing plate and manufacturing method thereof | |
JP2665536B2 (en) | Composite material for concrete panel | |
JPS6113305Y2 (en) | ||
JPH0332509Y2 (en) | ||
JP3028976B2 (en) | Base adjustment method | |
US12180718B2 (en) | Dimensionally stable floor covering and method for the production thereof | |
SK280008B6 (en) | Insulating panel for thermal and rainproof isolation of roofs and method and apparatus for the manufacture thereof | |
JPS6328954Y2 (en) |