[go: up one dir, main page]

JPS6272149A - Heat dissipation fin with piezoelectric fan - Google Patents

Heat dissipation fin with piezoelectric fan

Info

Publication number
JPS6272149A
JPS6272149A JP60211145A JP21114585A JPS6272149A JP S6272149 A JPS6272149 A JP S6272149A JP 60211145 A JP60211145 A JP 60211145A JP 21114585 A JP21114585 A JP 21114585A JP S6272149 A JPS6272149 A JP S6272149A
Authority
JP
Japan
Prior art keywords
piezoelectric
heat dissipation
heat
fan
piezoelectric fan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60211145A
Other languages
Japanese (ja)
Inventor
Takenobu Matsumura
武宣 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP60211145A priority Critical patent/JPS6272149A/en
Publication of JPS6272149A publication Critical patent/JPS6272149A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D33/00Non-positive-displacement pumps with other than pure rotation, e.g. of oscillating type

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は放熱フィンに係り、特に圧電ファンによって効
率的な放熱を行うことを企図した圧電ファン付放熱フィ
ンに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a heat dissipation fin, and more particularly to a heat dissipation fin with a piezoelectric fan intended to efficiently dissipate heat using a piezoelectric fan.

本発明による圧電ファン付放熱フィンは、たとえばパワ
ートランジスタの放熱フィンや各種エレクトロニクス機
器の放熱手段等に適用される。
The heat radiation fin with a piezoelectric fan according to the present invention is applied to, for example, a heat radiation fin of a power transistor, a heat radiation means of various electronic devices, and the like.

[従来技術] 近年、電子回路の集積化および機器の小型化が進み、そ
れに伴なって回路やa器の放熱対策が重要となってきた
。放熱対策が不十分であると、回路の誤動作の原因にな
り、信頼性を高める上で大きな支障となるからである。
[Prior Art] In recent years, the integration of electronic circuits and the miniaturization of devices have progressed, and as a result, heat dissipation measures for circuits and appliances have become important. This is because insufficient heat dissipation measures can cause circuit malfunctions and pose a major hindrance to improving reliability.

このような放熱対策として、従来では、たとえばパワー
トランジスタをアルミ材等で作製された放熱フィン上に
固定し、その放熱フィンを外気に触れ易く配置すること
によって、パワートランジスタ等から発生する熱を外部
へ除去する。という方法が一般的に用いられていた。
Conventionally, as heat dissipation measures such as this, power transistors are fixed on heat dissipation fins made of aluminum or the like, and the heat dissipation fins are placed so that they can easily come in contact with the outside air. Remove to. This method was commonly used.

[発明が解決しようとする問題点] しかしながら、回路の高密度化およびパワートランジス
タの高出力化に伴って発熱量は増加する傾向にあり、こ
の発fj11ftの増大傾向に対して上記従来の方法で
は、放熱フィンの放熱部の表面積を大きくし放熱効率を
増大させることで対処しなければならない、このために
、大きな放熱フィンを組込むスペースを必要とし装置全
体の小型化を極めて困難にしていた。また逆に、装置の
小型化を図ろうとすれば、放熱フィンの大きさが制限さ
れるために、十分な放熱効果を得ることができず、蓄熱
によって装置の信頼性が低下してしまう。いずれにして
も、従来の放熱フィンでは、このような問題点を解決す
ることはできなかった。
[Problems to be Solved by the Invention] However, as the density of circuits increases and the output of power transistors increases, the amount of heat generated tends to increase. This problem has to be solved by increasing the surface area of the heat dissipation part of the heat dissipation fin to increase the heat dissipation efficiency, which requires a space to incorporate the large heat dissipation fin, making it extremely difficult to downsize the entire device. On the other hand, if an attempt is made to downsize the device, the size of the heat radiation fins is limited, making it impossible to obtain a sufficient heat radiation effect and reducing the reliability of the device due to heat accumulation. In any case, conventional heat dissipation fins have not been able to solve these problems.

[問題点を解決するための手段] 本発明による圧電ファン付放熱フィンは、放熱板に圧電
ファンを設け、前記放熱板に送風することを特徴とする
[Means for Solving the Problems] A heat dissipation fin with a piezoelectric fan according to the present invention is characterized in that a piezoelectric fan is provided on a heat dissipation plate and air is blown to the heat dissipation plate.

[作用] このように、圧電ファンを放熱フィンの放熱部である放
熱板に設けて送風することにより、強制冷却を行い、放
熱効果を大幅に高めることができる。また、圧電ファン
を放熱板に設けたことで、放熱板の熱を圧電ファンに直
接伝えることができ、圧電素子の温度特性を利用して送
風力の自動調節を行うことができる。
[Function] In this way, by providing the piezoelectric fan on the heat sink, which is the heat dissipation part of the heat dissipation fin, and blowing air, forced cooling can be performed and the heat dissipation effect can be greatly enhanced. Furthermore, by providing the piezoelectric fan on the heat sink, the heat from the heat sink can be directly transferred to the piezoelectric fan, and the air flow can be automatically adjusted using the temperature characteristics of the piezoelectric element.

[実施例] 以下、本発明の実施例を図面に基づいて詳細に説明する
[Example] Hereinafter, an example of the present invention will be described in detail based on the drawings.

第1図は、本発明による圧電ファン付放熱フィンの一実
施例の斜視図である。
FIG. 1 is a perspective view of an embodiment of a heat radiation fin with a piezoelectric fan according to the present invention.

同図において、放熱フィンの複数の放熱板lには開口部
2が各々形成され、その開口部2内に圧電ファン3は上
方に向けて設置されている。圧′屯ファン3は弾性板4
と圧電素子5とから成り、圧電素子5の一端は放熱板1
に直接又は熱伝導の良好な弾性材を介して固定されてい
る。したがって、圧′屯素子5に適当な周波数の交流電
圧を印加することで、圧電ファン3を駆動させ、放熱板
1に下方から送風することができ、放熱効果を増大させ
ることができる。
In the figure, an opening 2 is formed in each of the plurality of heat sinks l of the heat sink, and a piezoelectric fan 3 is installed in the opening 2 facing upward. The pressure fan 3 has an elastic plate 4
and a piezoelectric element 5, and one end of the piezoelectric element 5 is connected to a heat sink 1.
It is fixed directly or via an elastic material with good heat conduction. Therefore, by applying an alternating current voltage of an appropriate frequency to the piezoelectric element 5, the piezoelectric fan 3 can be driven to blow air onto the heat sink 1 from below, thereby increasing the heat radiation effect.

また、圧1ヒ素子5には、第2図に示すように、各種横
効果型圧電素子を用いることができる。
Moreover, as shown in FIG. 2, various transverse effect type piezoelectric elements can be used as the piezoelectric element 5. As shown in FIG.

21’S 2 ’Ill (A)〜(D)は、ユニモル
フ、へイモルフ、積層ユニモルフ、積層バイモルフの各
構造を有する圧電素子の概略的断面図である。
21'S 2 'Ill (A) to (D) are schematic cross-sectional views of piezoelectric elements having unimorph, heimorph, laminated unimorph, and laminated bimorph structures.

第2図(A)では、金属板51の一方に圧電セラミック
ス52およびt極53が形成され、同図(B)では、金
属板51の両側に形成されている。
In FIG. 2(A), a piezoelectric ceramic 52 and a t-pole 53 are formed on one side of the metal plate 51, and in FIG. 2(B), they are formed on both sides of the metal plate 51.

同図(C)では、金属板51の一方に圧電セラミックス
および電極の積層部54が形成されており、同図(ロ)
では、金属板51のH側に積層部54が形成されている
。このような圧電セラミックスと電極との積層化により
内部電極間距離が短縮され、圧電素子を低電圧で駆動す
ることができる。なお、金属板51を延長して弾性板4
を構成してもよい。
In the same figure (C), a laminated part 54 of piezoelectric ceramics and electrodes is formed on one side of the metal plate 51, and in the same figure (B)
Here, a laminated portion 54 is formed on the H side of the metal plate 51. By laminating piezoelectric ceramics and electrodes in this manner, the distance between internal electrodes can be shortened, and the piezoelectric element can be driven at low voltage. Note that the metal plate 51 is extended to form the elastic plate 4.
may be configured.

さらに、本実施例では、圧電定数d31の温度係数が正
で、且つ1o00pPl / ”C以上の圧電セラミッ
クスを用い、圧電ファン3の送風力を放熱板1の温度に
よって自動的に31節するように構成した。
Furthermore, in this embodiment, piezoelectric ceramics are used in which the temperature coefficient of the piezoelectric constant d31 is positive and is greater than or equal to 1o00pPl/''C, and the blowing force of the piezoelectric fan 3 is automatically divided into 31 nodes depending on the temperature of the heat sink 1. Configured.

以下、圧電定数d31と圧電素子5の変位量および駆動
力との関係を説明する。
The relationship between the piezoelectric constant d31 and the displacement amount and driving force of the piezoelectric element 5 will be explained below.

第3図は、バイモルフ構造の圧電素子における圧電定数
d31と変位量および駆動力との関係を説明するための
圧電素子の斜視図である。
FIG. 3 is a perspective view of the piezoelectric element for explaining the relationship between the piezoelectric constant d31, the amount of displacement, and the driving force in the piezoelectric element having a bimorph structure.

同図において、自由状態にあるバイモルフ圧電素子の金
属板51と7[極53との間に直流電圧Vを印加した場
合、圧電素子の変位量Xおよび駆動力Fは次式で表わさ
れる。
In the figure, when a DC voltage V is applied between the metal plate 51 and the pole 53 of the bimorph piezoelectric element in a free state, the displacement X and the driving force F of the piezoelectric element are expressed by the following equation.

x = 3 (L/T)2 @dH* VF = (T
W /L) ・(d:u/ S目E)  * Vただし
、L、’it、Tは各々圧電素子の高さ、幅、厚さを表
わし、 5llEは電界ゼロの場合の弾性コンプライア
ンス全表わす。
x = 3 (L/T)2 @dH* VF = (T
W/L) ・(d:u/SthE) *V However, L, 'it, and T represent the height, width, and thickness of the piezoelectric element, respectively, and 5llE represents the total elastic compliance when the electric field is zero. .

上記各式から明らかなように、温度が上昇することで圧
電セラミックスの圧電定数d31の値が大きくなると、
バイモルフ圧電素子5の変位端Xおよび駆動力Fは共に
増加する。逆に、温度が低下して圧゛准セラミックスの
圧電定数dllの値が小さ ・くなれば、変位量Xおよ
び駆動力Fは減少する。
As is clear from the above equations, when the piezoelectric constant d31 of the piezoelectric ceramic increases as the temperature increases,
Both the displacement end X and the driving force F of the bimorph piezoelectric element 5 increase. Conversely, if the temperature decreases and the value of the piezoelectric constant dll of the compact ceramic becomes smaller, the displacement amount X and the driving force F decrease.

すでに述べたようにバイモルフ圧電素子5の一端は放熱
板1に直接又は熱伝導の良好な弾性材を介して固定され
ているために、放熱板lの熱は即座にバイモルフ圧電素
子5に伝達される。従って圧電素子の駆動で素子自身も
温度上昇するが、その温度以上に放熱板1の温度が上昇
すると、バイモルフ圧電素子5の圧電セラミックスの圧
圧電定数d31の値が大きくなり、バイモルフ圧電素子
5の変位M xおよび駆動力Fが増加して圧電ファン3
の送風力が増大する。その結果、放熱板lの放熱効果が
大きくなり、冷却能力が増加する。また、放熱板1の温
度が低下すれば、バイモルフ圧′if素′f−5の変位
量Xおよび駆動力Fが低下し、圧電ファン3の送風力が
低下する。
As already mentioned, one end of the bimorph piezoelectric element 5 is fixed to the heat sink 1 either directly or via an elastic material with good heat conduction, so that the heat of the heat sink 1 is immediately transferred to the bimorph piezoelectric element 5. Ru. Therefore, when the piezoelectric element is driven, the temperature of the element itself rises, but if the temperature of the heat sink 1 rises above that temperature, the piezoelectric constant d31 of the piezoelectric ceramic of the bimorph piezoelectric element 5 increases, and the piezoelectric constant d31 of the piezoelectric ceramic of the bimorph piezoelectric element 5 increases. The displacement M x and the driving force F increase and the piezoelectric fan 3
The sending force of will increase. As a result, the heat dissipation effect of the heat sink l increases, and the cooling capacity increases. Further, if the temperature of the heat sink 1 decreases, the displacement X and the driving force F of the bimorph pressure 'if element' f-5 decrease, and the air force sent by the piezoelectric fan 3 decreases.

このように、圧電定数d31の温度係数が正で、且つ1
000PP鳳/℃以上の圧電セラミックスを用いたバイ
モルフ圧電素子5を放熱板1に設けることで、特別な温
度検出手段を用いることなく、放熱板lの温度に従って
圧電ファン3の送風力を自動的に調節することができる
。勿論、バイモルフ構造だけではなく、第2図に示す各
種圧電素子を用いて同様の効果が得られる。
In this way, the temperature coefficient of the piezoelectric constant d31 is positive and 1
By providing the bimorph piezoelectric element 5 using piezoelectric ceramics with a temperature of 000PP/°C or higher on the heat sink 1, the air force of the piezoelectric fan 3 can be automatically adjusted according to the temperature of the heat sink 1 without using any special temperature detection means. Can be adjusted. Of course, similar effects can be obtained using not only the bimorph structure but also various piezoelectric elements shown in FIG.

なお、圧電セラミックスの圧電定数d31の温度係数を
tooopp■/℃以上としたのは、圧電ファンの送風
力を放熱板1の温度変化に応じて効果的に変化させるた
めである。
The reason why the temperature coefficient of the piezoelectric constant d31 of the piezoelectric ceramic is set to be equal to or higher than toopp■/° C. is to effectively change the blowing force of the piezoelectric fan in accordance with the temperature change of the heat sink 1.

また、圧電ファン3の設d位置は、本実施例に限定され
るものではないが、放熱板Iの下方部であることが放熱
効果の点で望ましいことは明らかである。さらに、複数
の放熱板lに設けられた圧電ファン3は、交互に反対方
向に揺動させるなどの方法で駆動することが不要な振動
を防1トするために望ましい。
Furthermore, although the position d of the piezoelectric fan 3 is not limited to this embodiment, it is clear that it is desirable to place it below the heat sink I in terms of the heat radiation effect. Furthermore, it is desirable to drive the piezoelectric fans 3 provided on the plurality of heat sinks 1 by alternately swinging them in opposite directions, etc., in order to prevent unnecessary vibrations.

[発明の効果] 以上詳細に説明したように、本発明による圧電ファ71
=t 放MフィンilD[ファンを放熱フィンの放熱部
である放熱板に設けて送風するために、強制冷却により
放熱効果を大幅に高めることができる。したがって、放
熱フィンの表面植を小さくすることができ、放熱手段を
必要とする装ごの小型化を促進することができる。
[Effects of the Invention] As explained in detail above, the piezoelectric fan 71 according to the present invention
=t M radiating fin ilD [Since the fan is provided on the radiating plate, which is the heat radiating part of the radiating fin, to blow air, the heat radiating effect can be greatly enhanced by forced cooling. Therefore, the surface of the radiation fins can be reduced in size, and it is possible to promote downsizing of equipment that requires heat radiation means.

また、圧電ファンを放熱板に設けたことで、放熱板の熱
を圧電ファンに直接伝えることができ、圧電素子の圧電
定数の温度特性を利用して送風力の自動[’iを行うこ
とができる。
In addition, by installing a piezoelectric fan on the heat sink, the heat from the heat sink can be directly transferred to the piezoelectric fan, and the temperature characteristics of the piezoelectric constant of the piezoelectric element can be used to automatically control the air flow. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明による圧電ファン付放熱フィンの一実
施例の斜視図、 :52 図(A)〜(D)は、ユニモルフ、バイモルフ
、積層ユニモルフ、積層バイモルフの各構造を有する圧
電素子の概略的断面図、 第3図は、バイモルフ構造の圧電素子における圧電定数
d31と変位量および駆動力との関係を説明するための
圧電素子の斜視図である。 1・・・放熱板 3・・・圧電ファン 4・・・弾性板 5・・・圧電素子 代理人  弁理士 山 下 穣 平 第2 図 (A) (B) (C) (D) 第3図 口一一ツー一一
FIG. 1 is a perspective view of an embodiment of a heat dissipation fin with a piezoelectric fan according to the present invention. 3 is a perspective view of the piezoelectric element for explaining the relationship between the piezoelectric constant d31, the amount of displacement, and the driving force in the piezoelectric element having a bimorph structure. 1... Heat dissipation plate 3... Piezoelectric fan 4... Elastic plate 5... Piezoelectric element agent Patent attorney Minoru Yamashita Figure 2 (A) (B) (C) (D) Figure 3 Mouth one one two eleven

Claims (2)

【特許請求の範囲】[Claims] (1)放熱板に圧電ファンを設け、前記放熱板に送風す
ることを特徴とする圧電ファン付放熱フィン。
(1) A heat dissipation fin with a piezoelectric fan, characterized in that a piezoelectric fan is provided on a heat dissipation plate, and air is blown to the heat dissipation plate.
(2)上記圧電ファンの圧電素子は、圧電定数d_3_
1の温度係数が正で1000ppm/℃以上の圧電セラ
ミックスを用いたことを特徴とする特許請求の範囲第1
項記載の圧電ファン付放熱フィン。
(2) The piezoelectric element of the piezoelectric fan has a piezoelectric constant d_3_
Claim 1, characterized in that a piezoelectric ceramic having a positive temperature coefficient of 1000 ppm/°C or more is used.
Heat dissipation fin with piezoelectric fan as described in section.
JP60211145A 1985-09-26 1985-09-26 Heat dissipation fin with piezoelectric fan Pending JPS6272149A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60211145A JPS6272149A (en) 1985-09-26 1985-09-26 Heat dissipation fin with piezoelectric fan

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60211145A JPS6272149A (en) 1985-09-26 1985-09-26 Heat dissipation fin with piezoelectric fan

Publications (1)

Publication Number Publication Date
JPS6272149A true JPS6272149A (en) 1987-04-02

Family

ID=16601124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60211145A Pending JPS6272149A (en) 1985-09-26 1985-09-26 Heat dissipation fin with piezoelectric fan

Country Status (1)

Country Link
JP (1) JPS6272149A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01233796A (en) * 1988-03-14 1989-09-19 Murata Mfg Co Ltd Radiator
US5008582A (en) * 1988-01-29 1991-04-16 Kabushiki Kaisha Toshiba Electronic device having a cooling element
WO2004095593A1 (en) * 2003-03-31 2004-11-04 Gelcore Llc Led light assembly with active cooling
US7543961B2 (en) 2003-03-31 2009-06-09 Lumination Llc LED light with active cooling
US7550901B2 (en) * 2007-09-27 2009-06-23 Intel Corporation Piezoelectric fan, cooling device containing same, and method of cooling a microelectronic device using same
US7556406B2 (en) 2003-03-31 2009-07-07 Lumination Llc Led light with active cooling
US8322889B2 (en) 2006-09-12 2012-12-04 GE Lighting Solutions, LLC Piezofan and heat sink system for enhanced heat transfer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59158542A (en) * 1983-02-28 1984-09-08 Kureha Chem Ind Co Ltd Cooling device for electrical parts

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59158542A (en) * 1983-02-28 1984-09-08 Kureha Chem Ind Co Ltd Cooling device for electrical parts

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5008582A (en) * 1988-01-29 1991-04-16 Kabushiki Kaisha Toshiba Electronic device having a cooling element
JPH01233796A (en) * 1988-03-14 1989-09-19 Murata Mfg Co Ltd Radiator
WO2004095593A1 (en) * 2003-03-31 2004-11-04 Gelcore Llc Led light assembly with active cooling
US7204615B2 (en) 2003-03-31 2007-04-17 Lumination Llc LED light with active cooling
US7543961B2 (en) 2003-03-31 2009-06-09 Lumination Llc LED light with active cooling
US7556406B2 (en) 2003-03-31 2009-07-07 Lumination Llc Led light with active cooling
US8322889B2 (en) 2006-09-12 2012-12-04 GE Lighting Solutions, LLC Piezofan and heat sink system for enhanced heat transfer
US7550901B2 (en) * 2007-09-27 2009-06-23 Intel Corporation Piezoelectric fan, cooling device containing same, and method of cooling a microelectronic device using same

Similar Documents

Publication Publication Date Title
US6958915B2 (en) Heat dissipating device for electronic component
US5311928A (en) Heat dissipator
JP2001110956A (en) Cooling equipment for electronic component
JP2002134973A (en) Heat sink device and electronic equipment
JPH0340462A (en) Fluid heat exchanger
US6920045B2 (en) Heat-dissipating assembly
JPS6272149A (en) Heat dissipation fin with piezoelectric fan
WO2016199352A1 (en) Semiconductor device
JPH08330488A (en) Heat sink with piezoelectric fan
JP2002134975A (en) Cooling fan
JP2002050722A (en) Semiconductor package and application device thereof
JP2005150454A (en) Cooling structure of electric power conversion system
JP2005005400A (en) Semiconductor device
JPH08204068A (en) Modular semiconductor device
JP3467891B2 (en) Multi-stage electronic cooler
JPH04346251A (en) Cooling device
US11343943B1 (en) Heat dissipation for power switches
CN117204129A (en) Cooling device for cooling semiconductor modules and converter having a cooling device
JP3256348B2 (en) heatsink
TWI736445B (en) Heat dissipating device
WO1996018823A1 (en) Metal enforced pvdf vibrational fan
JP3013612B2 (en) Semiconductor device
JPH0412683Y2 (en)
WO2016178352A1 (en) Stack heat-radiating structure and power conversion device provided with stack having stack heat-radiating structure
JP6680393B2 (en) Power converter