[go: up one dir, main page]

JPS6270603A - Steam turbine - Google Patents

Steam turbine

Info

Publication number
JPS6270603A
JPS6270603A JP21155685A JP21155685A JPS6270603A JP S6270603 A JPS6270603 A JP S6270603A JP 21155685 A JP21155685 A JP 21155685A JP 21155685 A JP21155685 A JP 21155685A JP S6270603 A JPS6270603 A JP S6270603A
Authority
JP
Japan
Prior art keywords
pressure
steam
main steam
turbine
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21155685A
Other languages
Japanese (ja)
Inventor
Kimiya Higuchi
樋口 公弥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21155685A priority Critical patent/JPS6270603A/en
Publication of JPS6270603A publication Critical patent/JPS6270603A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)

Abstract

PURPOSE:To ensure the stable turbine output by, upon an over pressure running, throtting the part of a steam adjusting valve through a control device for controlling said valve due to the signal supplied from a pressure detecting device, thereby distributing the whole nozzle area in varying the effective nozzle number out of the nozzles in a first stage. CONSTITUTION:Upon an over pressure running where only a main steam pressure rises while a main steam from rate in not changed, the main steam pressure exceeding the rating pressure is detected by a pressure detecting device 8 and the obtained pressure signal is input to the comparator 11c of a second control circuit 9b. Then, in the comparator 11c, said pressure signal is compared with the set pressure signal output from a pressure setting device 10 so as to be output as a deviation signal. And, the deviation signal is multiplied by a pressure adjusting ratio in a multiplier 14 so as to be input to an opening setting device 12b and to be amplified by an amplifier 13b, thereafter being input to a second steam adjusting valve 3b for turning said valve 3b in the closing direction. Therefore, it is possible to control the valve 3b to be full open, upon the over pressure running where the main steam pressure becomes extremely higher.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は蒸気タービンに係り、特に主蒸気圧力が上界し
たオーバプレッシャ運転時のタービンの効率を向上させ
るようにした蒸気タービンに関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a steam turbine, and more particularly to a steam turbine that improves the efficiency of the turbine during overpressure operation when the main steam pressure exceeds the upper limit.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

一般に、タービンの定格運転時において蒸気発生源より
蒸気タービンに供給される主蒸気流量が一定に保たれる
蒸気タービンがあり、この種の蒸気タービンとして従来
より蒸気発生源に蒸気井戸を利用した地熱タービンが知
られている。
In general, there is a steam turbine in which the main steam flow rate supplied from the steam generation source to the steam turbine is kept constant during the rated operation of the turbine. Turbines are known.

上記地熱タービンは、第5図に示すように、蒸気井戸1
で発生した主蒸気が主蒸気止め弁2および蒸気加減弁3
を有する主蒸気ライン4より蒸気タービン5に供給され
、この蒸気タービン5を運転して発電11fi6を駆動
したのち復水器7で凝縮され水となり系外に排出される
ものである。上記蒸気加減弁3は、第6図に示すように
、主蒸気圧力が定格圧力P1に達した時全開となるよう
に制御されており、また上記蒸気加減弁3より蒸気ター
ビン5に供給される主蒸気流量Gは蒸気加減弁3の開度
に比例して増加され、蒸気加減弁3が全問となる定格運
転時に最大かつ一定となるように制御されている。
The above-mentioned geothermal turbine has a steam well 1 as shown in FIG.
The main steam generated in the main steam stop valve 2 and the steam control valve 3
The water is supplied to the steam turbine 5 from a main steam line 4 having a main steam line 4, and after operating the steam turbine 5 to drive the power generation 11fi6, it is condensed in the condenser 7 to become water and is discharged outside the system. As shown in FIG. 6, the steam control valve 3 is controlled to be fully open when the main steam pressure reaches the rated pressure P1, and the steam control valve 3 supplies the steam to the steam turbine 5. The main steam flow rate G is increased in proportion to the opening degree of the steam control valve 3, and is controlled to be maximum and constant during rated operation when the steam control valve 3 is fully operated.

しかしながら、上記地熱タービンは定格運転時に気象条
件の変化等により蒸気井戸1で発生する主蒸気圧力が定
格圧力P1より上昇することがあり、この主蒸気圧力が
上昇したオーパブレッジ1ア運転は、主蒸気流ff1G
が一定なので主蒸気体積の減少をもたらし、この主蒸気
体積の減少による体積流量の減少は蒸気加減弁3を通過
する際に生ずる主蒸気の圧力損失を増加さ往、タービン
出力を低下させるという問題があった。第7図は上記主
蒸気圧力がPlよりP2に上昇することによりタービン
出力が定格出力KwRよりオーバプレッシャ運転出力K
W1に低下することを示しており、第8図は蒸気タービ
ン内部のWB服線を示し、オーバプレッシャ運転時は蒸
気加減弁3による圧ツノ10失の増加により蒸気タービ
ンのノズル入口圧力(ボウル圧力)がP、pからP2F
下り2P−38線で示すようにタービンの効率が低下し
、定格出力を維持するのが困難になることを示している
However, during rated operation of the geothermal turbine, the main steam pressure generated in the steam well 1 may rise above the rated pressure P1 due to changes in weather conditions. flowff1G
is constant, resulting in a decrease in main steam volume, and the decrease in volumetric flow rate due to this decrease in main steam volume increases the pressure loss of the main steam that occurs when passing through the steam control valve 3, which leads to a reduction in turbine output. was there. Figure 7 shows that as the main steam pressure increases from Pl to P2, the turbine output becomes overpressure operating output K than the rated output KwR.
Figure 8 shows the WB clothing line inside the steam turbine.During overpressure operation, the steam turbine nozzle inlet pressure (bowl pressure ) is P, p to P2F
As shown by the downward line 2P-38, the efficiency of the turbine decreases, indicating that it becomes difficult to maintain the rated output.

このため、上述のようなオーバプレッシャ運転時は、主
蒸気の体積流量が減少する分蒸気加減弁3を絞り込み、
ノズル入口圧力を上げて定格出力を維持する必要があっ
た。しかしながら、上記蒸気加減弁3の絞り込みは絞り
損失を発生させ、出力の低下が防げたとしてもタービン
全体の効率は定格運転時と変らず、オーバプレッシャ運
転時における蒸気加減弁3の絞り込みは蒸気タービンの
効率を向上させる解決手段とはならなかった。
Therefore, during overpressure operation as described above, the steam control valve 3 is throttled down to compensate for the decrease in the volumetric flow rate of the main steam.
It was necessary to increase the nozzle inlet pressure to maintain the rated output. However, the throttling of the steam regulating valve 3 causes throttling loss, and even if a reduction in output can be prevented, the overall efficiency of the turbine remains the same as during rated operation. It was not a solution to improve efficiency.

〔発明の目的〕[Purpose of the invention]

そこで、本発明の目的は上述した従来技術が有する問題
点を解消し、主蒸気圧力が上界したオーバプレッシャ運
転時においても安定した出力を得ることができる高効率
の蒸気タービンを提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to solve the above-mentioned problems of the conventional technology and to provide a highly efficient steam turbine that can obtain stable output even during overpressure operation when the main steam pressure has exceeded the limit. be.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために、本発明は、主蒸気ライン内
を流れる蒸気圧力を検出する圧力検出器と、緊急時に上
記主蒸気ラインを遮断する主蒸気止め弁と、蒸気タービ
ン内への蒸気流入mを調節する複数の蒸気加減弁と、上
記圧力検出器からの信号と設定圧力とを比較して上記蒸
気加減弁の開度を調節する複数の蒸気加減弁制御装置と
を備え、上記主蒸気ライン内の主蒸気圧力が上昇するA
−バプレッシャ運転時に上記蒸気加減弁制御装置からの
信号により蒸気加減弁の一部を制60するようにしたこ
とを特徴とするもので、蒸気圧力が上昇1ノたオーバプ
レッシャ運転時においても安定した出力を得ることがで
きるようにしたものである。
In order to achieve the above object, the present invention provides a pressure detector that detects the pressure of steam flowing in a main steam line, a main steam stop valve that shuts off the main steam line in an emergency, and a steam inflow into a steam turbine. m, and a plurality of steam control valve control devices that compare the signal from the pressure detector with a set pressure to adjust the opening degree of the steam control valve, Main steam pressure in the line increases A
- A part of the steam control valve is controlled by a signal from the steam control valve control device during vapor pressure operation, so that it is stable even during overpressure operation when the steam pressure increases by one step. This allows output to be obtained.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明による蒸気タービンの実施例を第1図乃至
第5図を参照して説明する。
Hereinafter, embodiments of a steam turbine according to the present invention will be described with reference to FIGS. 1 to 5.

第1図において、符号1は主蒸気を発生する蒸気井戸で
、主蒸気は主蒸気ライン4を経て蒸気タービン5に供給
され蒸気タービンを運転したのち復水器7で凝縮されて
水となり系外に排出されるようになっている。上記主蒸
気ライン4は途中で2系列に分岐しており、分岐点の上
流側の主蒸気ライン4には圧力検出器8および主蒸気止
め弁2が設けられ、分岐点の下流側の各主蒸気ライン4
a、4bにはそれぞれ第1蒸気加減弁3aおよび第2蒸
気加減弁3bが設けられている。また、上記圧力検出器
8と各蒸気加減弁3aおよび3bとの間には蒸気加減弁
の開度を調整する蒸気加減弁制御装置として第1制御回
路9aおよび第2制御回路9bが設けられている。上記
第1制御回路9aには、圧力設定器10aが接続された
比較器11a、第1蒸気加減弁3aの開度を設定する開
度設定器12aおよび開度設定信号を増幅する増幅器1
3aが設けられている。一方、上記第2制御回路9bは
途中で2系統に分岐してa3す、一方の系統には圧力設
定器10bおよび比較器11bが設けられると共に他方
の系統には圧力設定器10C1比較器11Cおよび乗算
器14が設りられ、さらに合流した第2制御回路9bに
は開度設定器12bと増幅器13b/′fi設けられて
いる。
In Fig. 1, reference numeral 1 denotes a steam well that generates main steam.The main steam is supplied to a steam turbine 5 through a main steam line 4, operates the steam turbine, and is condensed in a condenser 7 to become water outside the system. It is designed to be discharged. The main steam line 4 branches into two lines in the middle, and the main steam line 4 on the upstream side of the branch point is provided with a pressure detector 8 and a main steam stop valve 2, and each main steam line on the downstream side of the branch point steam line 4
A and 4b are provided with a first steam regulating valve 3a and a second steam regulating valve 3b, respectively. Further, a first control circuit 9a and a second control circuit 9b are provided between the pressure detector 8 and each steam control valve 3a and 3b as a steam control valve control device for adjusting the opening degree of the steam control valve. There is. The first control circuit 9a includes a comparator 11a connected to a pressure setting device 10a, an opening setting device 12a for setting the opening of the first steam control valve 3a, and an amplifier 1 for amplifying the opening setting signal.
3a is provided. On the other hand, the second control circuit 9b branches into two systems a3 in the middle, one system is provided with a pressure setting device 10b and a comparator 11b, and the other system is provided with a pressure setting device 10C, a comparator 11C and a A multiplier 14 is provided, and the merging second control circuit 9b is further provided with an opening setting device 12b and an amplifier 13b/'fi.

また、上記蒸気タービン5の入口部分である初段ノズル
15は、第2図に示すように、ノズル8Yが2つのブロ
ック15a、15bに分けられた2アトミツシヨン構造
とされ、各ブロック15a。
The first stage nozzle 15, which is the inlet part of the steam turbine 5, has a two-atomization structure in which the nozzle 8Y is divided into two blocks 15a and 15b, as shown in FIG.

15b毎に上記第1および第2の蒸気加減弁3a。15b, the first and second steam control valves 3a.

3bが設けられ、この蒸気加減弁3a、3bの間開によ
りタービン運転時の使用ノズル数が変えられるノズルガ
バニング方式となっている。
3b is provided, and a nozzle governing system is adopted in which the number of nozzles used during turbine operation can be changed by opening the steam control valves 3a and 3b.

次に本発明の作用について説明する。Next, the operation of the present invention will be explained.

通常、定格運転時において、上記第1および第2の蒸気
加減弁3a、3bは全開となっており、この蒸気加減弁
3a、3bより蒸気タービン5に供給される主蒸気は、
その圧力が定格圧力P1に達していると共に流6Gが最
大かつ一定となっている。主蒸気は、各蒸気加減弁3a
、3bより上記初段ノズルの各ブロック15a、15b
に供給され、各ブロック内で膨張を開始しタービンの各
段で仕事をおこなったのち復水器7で凝縮されて水とな
り系外に排出されている。また、主蒸気圧力は、主蒸気
ライン4に設けられた圧力検出器8ににり常時検知され
ており、上記圧力検出器8からの圧力信号は、上記第1
および第2の蒸気加減弁3a、3bを開閉制御する制御
回路9aおよび9bに入力され、回路中の各比較器11
a。
Normally, during rated operation, the first and second steam control valves 3a, 3b are fully open, and the main steam supplied from the steam control valves 3a, 3b to the steam turbine 5 is as follows:
The pressure has reached the rated pressure P1 and the flow 6G is maximum and constant. Main steam is each steam control valve 3a
, 3b, each block 15a, 15b of the first stage nozzle
It starts expanding in each block and performs work in each stage of the turbine, and then is condensed in the condenser 7 to become water and is discharged outside the system. Further, the main steam pressure is constantly detected by a pressure detector 8 provided in the main steam line 4, and the pressure signal from the pressure detector 8 is
and is input to control circuits 9a and 9b that control the opening and closing of the second steam control valves 3a and 3b, and each comparator 11 in the circuit.
a.

11b、11cで設定圧力と比較されている。そして、
上記比較器11a、11b、11cより出力される偏差
信号により蒸気加減弁3aおよび3bの開度を調整して
いる。
The pressure is compared with the set pressure at 11b and 11c. and,
The opening degrees of the steam control valves 3a and 3b are adjusted by the deviation signals output from the comparators 11a, 11b, and 11c.

このため、気染条件の変化等外的要因により主蒸気圧力
のみが上昇し主蒸気流ff1Gが変化しないオーバプレ
ッシャ運転になった時は、主蒸気圧力が定格圧力P1よ
り高くなりはじめると上記圧力検出器8により圧力信号
が検出され、この圧力信号は上記第2制御回路9bの比
較器11Cに入力され、ここで圧力設定器10Cから出
力される設定圧力信号と比較されたのち偏差信号として
出力される。また、この偏差信号は乗惇器14で圧力調
定率が乗算されて17f1度設定器12bに入力される
。さらに、この開度設定器12bから出力される閉鎖信
号は増幅器13bで増幅されたのち第2蒸気加減弁3b
に入力され、第2蒸気加減弁3bは閉鎖位置に向けて回
動される。そして、主蒸気圧力がP2と最も高いオーバ
プレッシャ運転時に、上記第2蒸気加減弁3bは全開と
なるように$制御される。
Therefore, when overpressure operation occurs where only the main steam pressure increases due to external factors such as changes in air contamination conditions and the main steam flow ff1G does not change, when the main steam pressure starts to rise above the rated pressure P1, the above pressure A pressure signal is detected by the detector 8, and this pressure signal is input to the comparator 11C of the second control circuit 9b, where it is compared with the set pressure signal output from the pressure setting device 10C, and then output as a deviation signal. be done. Further, this deviation signal is multiplied by the pressure adjustment rate in the multiplier 14 and input to the 17f1 degree setting device 12b. Further, the closing signal outputted from the opening setting device 12b is amplified by the amplifier 13b, and then the second steam control valve 3b is amplified by the amplifier 13b.
is input, and the second steam control valve 3b is rotated toward the closed position. Then, during overpressure operation where the main steam pressure is at its highest, P2, the second steam control valve 3b is controlled to be fully open.

第3図は蒸気タービン内部の膨張線を示し、1P・IP
’−3D線は上記第1および第2蒸気加減弁3a、3b
を全開にした定格運転時を示し、2P−3C線は第2蒸
気加減弁3bを全開にしたオーバプレッシャ運転時を示
している。この図より、オーバプレッシャ運転時に上記
第2蒸気加減弁3bを全開にすると蒸気タービンのノズ
ル入口圧力がP2.に上昇し、第2蒸気加減弁3bの絞
り込みによる絞り損失が多少生じるにもかかわらず2P
−3C線で示すようにタービンの効率が定格運転時より
向上することがわかり、従来オーバプレッシャ運転時に
生じていた蒸気加減弁による圧力損失を防ぐことができ
る。
Figure 3 shows the expansion line inside the steam turbine, 1P/IP
'-3D line indicates the first and second steam control valves 3a and 3b.
The line 2P-3C shows the overpressure operation with the second steam control valve 3b fully open. From this figure, when the second steam control valve 3b is fully opened during overpressure operation, the nozzle inlet pressure of the steam turbine increases to P2. 2P even though some throttling loss occurs due to throttling of the second steam control valve 3b.
As shown by the -3C line, it can be seen that the efficiency of the turbine is improved compared to the rated operation, and the pressure loss caused by the steam control valve that conventionally occurs during overpressure operation can be prevented.

また、第4図は主蒸気圧力がPlよりP2に上界した時
のタービン出力を示し、オーバプレッシャ運転となるに
もかかわらず第2蒸気加減弁3bを全開にすることによ
りタービン出力を定格出力より向上させることができる
In addition, Fig. 4 shows the turbine output when the main steam pressure exceeds P2 from Pl, and the turbine output is changed to the rated output by fully opening the second steam control valve 3b despite overpressure operation. It can be further improved.

なお、を記実施例では蒸気井戸から発生する主蒸気によ
りタービンを運転し発i 13を駆動する地熱タービン
について説明したが、廃熱回収ボイラ等主蒸気流聞が一
定でかつ主蒸気圧力が定格圧力より上昇するオーバプレ
ッシャ運転モードを有するプラントなら本発明を適用す
ることができることはいうまでもない。
In addition, in the example described above, a geothermal turbine was explained in which the turbine is operated by main steam generated from a steam well to drive the generator I13. It goes without saying that the present invention can be applied to any plant having an overpressure operation mode in which the pressure increases.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明は定格運転時の
主蒸気流mが一定でかつ主蒸気圧力が定格圧力より上昇
するオーバプレッシャ運転モードとなる蒸気タービンに
おいて、蒸気タービンの初のノズルを複数のブロックに
形成し、この各ブロックにはそれぞれ蒸気加減弁を設け
ると共に主蒸気ラインには圧力検出器を設け、A−パブ
レッシャ運転時に上記圧力検出器からの信号により蒸気
加減弁制御装置を介して蒸気加減弁の一部を絞り込み上
記初段ノズルの使用ノズル数を変えノズル面積を割り撮
るようにしたので、蒸気タービンのノズル入口圧力が上
昇しタービンの効率が向上する。このため、従来オーバ
プレッシャ運転時に生じていた蒸気加減弁による圧力損
失を防ぐことができ、オーバブレッシセ運転時において
も安定したタービン出力を得ることができる。
As is clear from the above description, the present invention provides a first nozzle for a steam turbine in an overpressure operation mode in which the main steam flow m is constant during rated operation and the main steam pressure rises above the rated pressure. It is formed into a plurality of blocks, each block is provided with a steam control valve, and a pressure detector is provided in the main steam line, and when the A-pressure is operated, a signal from the pressure detector is used to control the steam control valve through the steam control valve control device. Since the nozzle area is divided by narrowing down a part of the steam control valve and changing the number of nozzles used in the first stage nozzle, the nozzle inlet pressure of the steam turbine increases and the efficiency of the turbine is improved. Therefore, pressure loss caused by the steam control valve, which conventionally occurs during overpressure operation, can be prevented, and stable turbine output can be obtained even during overpressure operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による蒸気タービンの全体系統図、第2
図は本発明による蒸気タービンの初段ノズルを示す概略
図、第3図は本発明による蒸気タービンの膨張線を示す
エンタルピーエントロピ線図、第4図は本発明と従来の
蒸気タービンの出力を比較した図、第5図は従来の地熱
タービンの全体系統図、第6図は上記地熱タービンに用
いる蒸気タービンの主蒸気圧力、主蒸気流量および蒸気
加減弁開度の関係を示ず図、第7図は従来の主蒸気圧力
とタービン出力の関係を示す図、第8図は従来の蒸気タ
ービンの膨張線を示すエンタルピーエントロピ線図であ
る。 1・・・蒸気井戸、2・・・主蒸気止め弁、3a・・・
第1蒸気加減弁、3b・・・第2蒸気加減弁、4・・・
主蒸気ライン、5・・・蒸気タービン、6・・・発電機
、7・・・復水器、8・・・圧力検出器、9a、9b・
・・制御回路、10a、10b、10c・・・圧力設定
器、11a。 11b、11C−・・比較器、12a、12b−・・開
度設定器、13a、13b・・・増幅器、14・・・乗
算器、15・・・初段ノズル。 出願人代理人  佐  藤  −雄 q 第1図 第2図 第3図 第4図 第5図 第8図Z71’Of″′5
FIG. 1 is an overall system diagram of a steam turbine according to the present invention, and FIG.
The figure is a schematic diagram showing the first stage nozzle of the steam turbine according to the present invention, Figure 3 is an enthalpy entropy diagram showing the expansion line of the steam turbine according to the present invention, and Figure 4 is a comparison between the output of the present invention and a conventional steam turbine. Figure 5 is an overall system diagram of a conventional geothermal turbine, Figure 6 is a diagram showing the relationship among the main steam pressure, main steam flow rate, and steam control valve opening of the steam turbine used in the geothermal turbine. 8 is a diagram showing the conventional relationship between main steam pressure and turbine output, and FIG. 8 is an enthalpy entropy diagram showing the expansion line of the conventional steam turbine. 1...Steam well, 2...Main steam stop valve, 3a...
First steam control valve, 3b...Second steam control valve, 4...
Main steam line, 5... Steam turbine, 6... Generator, 7... Condenser, 8... Pressure detector, 9a, 9b.
...Control circuit, 10a, 10b, 10c...Pressure setting device, 11a. 11b, 11C--Comparator, 12a, 12b--Opening degree setter, 13a, 13b--Amplifier, 14--Multiplier, 15--First stage nozzle. Applicant's agent Sato-Yuq Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 8 Z71'Of'''5

Claims (1)

【特許請求の範囲】[Claims] 主蒸気ライン内を流れる蒸気圧力を検出する圧力検出器
と、緊急時に上記主蒸気ラインを遮断する主蒸気止め弁
と、蒸気タービン内への蒸気流入量を調節する複数の蒸
気加減弁と、上記圧力検出器からの信号と設定圧力とを
比較して上記蒸気加減弁の開度を調節する複数の蒸気加
減弁制御装置とを備え、上記主蒸気ライン内の主蒸気圧
力が上界するオーバプレッシャ運転時に上記蒸気加減弁
制御装置からの信号により蒸気加減弁の一部を制御する
ようにしたことを特徴とする蒸気タービン。
a pressure detector that detects the pressure of steam flowing in the main steam line; a main steam stop valve that shuts off the main steam line in an emergency; a plurality of steam control valves that adjust the amount of steam flowing into the steam turbine; a plurality of steam regulating valve control devices that compare the signal from the pressure detector and a set pressure to adjust the opening degree of the steam regulating valve, and overpressure the main steam pressure in the main steam line to an upper limit; A steam turbine characterized in that a part of the steam regulating valve is controlled by a signal from the steam regulating valve control device during operation.
JP21155685A 1985-09-25 1985-09-25 Steam turbine Pending JPS6270603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21155685A JPS6270603A (en) 1985-09-25 1985-09-25 Steam turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21155685A JPS6270603A (en) 1985-09-25 1985-09-25 Steam turbine

Publications (1)

Publication Number Publication Date
JPS6270603A true JPS6270603A (en) 1987-04-01

Family

ID=16607760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21155685A Pending JPS6270603A (en) 1985-09-25 1985-09-25 Steam turbine

Country Status (1)

Country Link
JP (1) JPS6270603A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018087502A (en) * 2016-11-28 2018-06-07 三菱日立パワーシステムズ株式会社 Operation method of steam turbine device and steam turbine device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018087502A (en) * 2016-11-28 2018-06-07 三菱日立パワーシステムズ株式会社 Operation method of steam turbine device and steam turbine device

Similar Documents

Publication Publication Date Title
JPS6270603A (en) Steam turbine
JPH0454204A (en) Control device for gas-extraction and condensation type turbine
JPH0467001B2 (en)
JPH0553922B2 (en)
JPS62139906A (en) Geothermal turbine
JPH03481Y2 (en)
JPS59145307A (en) Control system of bleeder condensing turbine in thermal and power generation plant
CA1163814A (en) Method of varying turbine output of a supercritical- pressure steam generator-turbine installation
JPS61205701A (en) Method of adjusting temperature of outlet gas from waste heat boiler
JPS5915608A (en) Controller of steam turbine
JPS61279703A (en) Controller of steam turbine
JPS59113215A (en) Valve controlling method for steam turbine
JPS6239654B2 (en)
JPS58152107A (en) Steam turbine two-axis synchronization method and two-axis synchronization device
JPH0318643Y2 (en)
JPS5944506B2 (en) Geothermal steam turbine control device
JPS63143305A (en) Turbine overload prevention method
JPH03134203A (en) Reheating extraction turbine
JPH02149705A (en) How to operate a multi-shaft combined plant
JPH0623723Y2 (en) Combustor injection steam drain treatment device
JPH1130488A (en) Hot well water level controller for condenser
JPS60108509A (en) Steam turbine protecting device in combined cycle plant
JPH04103902A (en) Boiler water supply control method and device
JPH0399101A (en) Controller of exhaust heat recovering heat exchanger
JPS62297602A (en) Controller for pressure of main steam