[go: up one dir, main page]

JPS6267803A - superconducting coil - Google Patents

superconducting coil

Info

Publication number
JPS6267803A
JPS6267803A JP20651285A JP20651285A JPS6267803A JP S6267803 A JPS6267803 A JP S6267803A JP 20651285 A JP20651285 A JP 20651285A JP 20651285 A JP20651285 A JP 20651285A JP S6267803 A JPS6267803 A JP S6267803A
Authority
JP
Japan
Prior art keywords
coil
insulating
superconducting
spacer
recesses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20651285A
Other languages
Japanese (ja)
Inventor
Matao Nagai
永井 又男
Yoshishige Fukushi
慶滋 福士
Hiroyuki Kamiya
宏之 神谷
Katsuhiko Asano
克彦 浅野
Takeshi Yamagiwa
威 山際
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20651285A priority Critical patent/JPS6267803A/en
Publication of JPS6267803A publication Critical patent/JPS6267803A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductive Dynamoelectric Machines (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、コイルに係り、特に、超電導コイルに好適な
絶縁スペーサの支持構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a coil, and particularly to a support structure for an insulating spacer suitable for a superconducting coil.

〔発明の背景〕[Background of the invention]

第2図は、浸漬冷却型超電導コイルの概略構造図であシ
、第3図は第2図のコイルの絶縁スペーサの取付部であ
り、第4図は第3図の■−■矢視断面図である。
Figure 2 is a schematic structural diagram of an immersion-cooled superconducting coil, Figure 3 is a mounting part of the insulating spacer of the coil in Figure 2, and Figure 4 is a cross section taken along the It is a diagram.

超電導マグネットコイルlは、銅ベースに超電導線を埋
設した超電導4体lを層間絶縁層2を施しながら円形状
に巻回し、単位コイルのディスク3になる。この単位コ
イルのディスク間には、電気絶縁とコイル冷却のための
液体ヘリウムの流通路4を形成するための絶縁スペーサ
5を施しながら、所定数積み重ね、コイルの接地間絶縁
を目的とした内張絶縁6を施し、コイルサポートリング
7、SUS製のコイル枠8内に収納きれて、マグネット
コイル1となる。
The superconducting magnet coil 1 is made by winding four superconducting bodies 1, each having a superconducting wire embedded in a copper base, in a circular shape while applying an interlayer insulating layer 2 to form a disk 3 of a unit coil. A predetermined number of insulating spacers 5 are provided between the disks of this unit coil to form liquid helium flow paths 4 for electrical insulation and coil cooling, and a predetermined number of disks are stacked, and a lining is provided for the purpose of insulating the ground between the coils. The magnet coil 1 is provided with insulation 6, and is housed within a coil support ring 7 and a coil frame 8 made of SUS.

単位コイルのディスク3は、層間絶縁として、レジンを
含浸したガラスクロスプリプレグテープ硬化ガラスクロ
ステープにレジンを塗布したものなどが用いられる。こ
れらの層間絶縁をフィル導体間に連続して挿入しながら
導体に圧力をかけて所定数巻回し、巻回後は圧力負荷状
態で層間絶縁を固化し、層間絶縁層2を形成し、単位コ
イルのディスク3になる。
For the disk 3 of the unit coil, a resin-impregnated glass cloth prepreg tape or a hardened glass cloth tape coated with resin is used as interlayer insulation. These interlayer insulations are continuously inserted between the fill conductors, applying pressure to the conductor and winding it a predetermined number of times. After winding, the interlayer insulation is solidified under pressure, forming the interlayer insulation layer 2, and forming a unit coil. It becomes disk 3 of .

一般に、絶縁スペーサ5は、極低温における機械的%i
の優れる厚さ約2〜5■のガラス線維強化プラスチック
ス(以下、GFR,P )が用いられる。このGFRP
  を所定寸法形状に切断し、単位コイルのディスクの
径方向に亘るように配置され接着レジン9で単位コイル
のディスク間に固定スる。
Generally, the insulating spacer 5 has a mechanical %i at cryogenic temperatures.
Glass fiber reinforced plastics (hereinafter referred to as GFR, P) having a thickness of about 2 to 5 cm are used. This GFRP
is cut into a predetermined size and shape, arranged so as to extend in the radial direction of the disks of the unit coil, and fixed between the disks of the unit coil with adhesive resin 9.

クライオスタット中に収納されなコイルは、運転時に液
体ヘリウム中に浸漬され4.2°k 付近まで冷却され
、通電・励磁される。
During operation, the coil housed in the cryostat is immersed in liquid helium, cooled to around 4.2°k, and energized and excited.

さて、高電流密度、高磁界のマグネットコイルの励磁に
際し、コイルの軸方向5つまシ、絶縁スペーサの軸方向
には、電磁応力によシ強大な圧縮応力、周方向にはコイ
ルの7−プカが働く。このため、単位コイルのディスク
に接着した絶縁スペーサの接着部に剪断応力が発生し、
電磁応力に耐えられず、容易に荀断破壊が生じる。この
ようになると、コイル全体にガタを発生し、を磁応力の
繰り返しによって絶縁スペーサが正規の位置にとどまら
ずに移動し、スペーサ間隔が広がるようになる。広がっ
たスペーサが支点となって軸方向の圧縮応力によシちょ
うど導体に曲げ応力が加わった状態にな)、導体間の層
間絶縁層の剥がれが容易に起こり、ディスク間の短絡が
発生する恐れがあった。
When a magnet coil is excited with a high current density and a high magnetic field, there is a strong compressive stress due to electromagnetic stress in the axial direction of the coil and the axial direction of the insulating spacer, and a strong compressive stress due to electromagnetic stress in the circumferential direction. works. For this reason, shear stress is generated at the bonded part of the insulating spacer bonded to the disk of the unit coil.
Unable to withstand electromagnetic stress, fracture easily occurs. When this happens, play occurs in the entire coil, and due to repeated magnetic stress, the insulating spacers move instead of staying in their normal positions, and the distance between the spacers becomes wider. The expanded spacer serves as a fulcrum and bending stress is applied to the conductor due to compressive stress in the axial direction), and the interlayer insulation layer between the conductors can easily peel off, causing a short circuit between the disks. was there.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、層間絶縁材の幅方向に放射状に凹部を
設け、且つ、この凹部に絶縁スペーサ材を単位コイルデ
ィスクを横切るように配置することにより、電磁応力に
対して強固な超電導コイルを提供することにある′。
An object of the present invention is to provide a superconducting coil that is strong against electromagnetic stress by providing recesses radially in the width direction of the interlayer insulating material and arranging insulating spacer materials in the recesses across the unit coil disk. Our goal is to provide.

〔発明の概要〕[Summary of the invention]

従来の超電導マグネットコイルの絶縁スペーサは、超電
導導体の幅と同じ幅の層間絶縁層で構成された単位コイ
ルのディスク間に接着レジンで固定されていた。導体幅
と層間絶縁層の幅が同じであるなめ、コイル励磁による
電磁応力の繰り返しで絶縁スペーサの接着部が剥がれ、
絶縁スペーサが移動してしまう恐れがあった。解決策と
して。
The insulating spacers of conventional superconducting magnet coils are fixed with adhesive resin between disks of unit coils made of interlayer insulating layers with the same width as the superconducting conductor. Since the conductor width and the interlayer insulation layer width are the same, the adhesive part of the insulation spacer peels off due to repeated electromagnetic stress due to coil excitation.
There was a risk that the insulating spacer would move. as a solution.

層間絶縁材の幅方向に放射状に凹部を設け、この凹部に
絶縁スペーサを単位コイルのディスクに横切るように配
置する方式を採用した。
A method was adopted in which recesses were provided radially in the width direction of the interlayer insulating material, and insulating spacers were placed in the recesses so as to cross the disks of the unit coils.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図によシ説明する。 An embodiment of the present invention will be explained below with reference to FIG.

第1図は本発明の一実施例の超電導マグネットの単位コ
イルのディスクを示す。
FIG. 1 shows a disk of a unit coil of a superconducting magnet according to an embodiment of the present invention.

超電導導体1をペンディングローラで圧力をかけて円形
状にし、導体間にレジンを塗布した導体幅よシ数f1幅
の大きい層間絶縁材2を挿入しながら所定数巻回し、E
E力を開放せずにレジンを常温、或いは、加温キュアし
て単位コイルのディスク3が完成する。こののち、絶縁
スペーサ5の挿入する凹部10分径方向にある間隔をも
って放射状に設ケ、スペーサをレジンで凹部にしつかり
接着させる。このとき5層間絶縁材の絶縁スペーサ側へ
の出張りは、液体ヘリウムの流通を妨げないよう絶縁ス
ペーサの厚さの半分以下が望ましい。
The superconducting conductor 1 is made into a circular shape by applying pressure with a pending roller, and is wound a predetermined number of times while inserting an interlayer insulating material 2 having a width f1 larger than the conductor width coated with resin between the conductors.
The disk 3 of the unit coil is completed by curing the resin at room temperature or by heating without releasing the E-force. Thereafter, the insulating spacers 5 are inserted radially into the recesses 10 minutes apart at intervals in the radial direction, and the spacers are firmly adhered to the recesses with resin. At this time, the protrusion of the five-layer insulating material toward the insulating spacer is preferably less than half the thickness of the insulating spacer so as not to impede the flow of liquid helium.

こうして完成した単位コイルのディスクを所定数積上げ
、かつ、単位コイル間を絶縁スペーサを介して接着固定
し、コイル枠8内に収納し、内張絶縁6を施してコイル
1が完成する。
The coil 1 is completed by stacking a predetermined number of disks of unit coils thus completed, adhesively fixing the unit coils to each other via insulating spacers, storing them in a coil frame 8, and applying lining insulation 6.

こうして製作したコイルは、コイルの励時による電磁応
力F1或いは、フープ力F2による影響を受けない強固
なものとなる。
The coil manufactured in this manner is strong and unaffected by the electromagnetic stress F1 or hoop force F2 caused by excitation of the coil.

本実施例によれば、層間絶縁層に凹部を設け。According to this embodiment, a recess is provided in the interlayer insulating layer.

この凹部に絶縁スペーサが一種のクサビ状に挿入された
ため、1!磁応力によるコイルの広がりを強固に押える
ため電磁応力に対して強固なものとなυ、緩みのないコ
イルを提供し、コイルの安全長期稼動に寄与できる。
Because the insulating spacer was inserted into this recess in a kind of wedge shape, 1! Since it firmly suppresses the expansion of the coil due to magnetic stress, it is strong against electromagnetic stress, provides a coil that does not loosen, and contributes to safe long-term operation of the coil.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、超電導マグネットの励磁による電磁応
力、或いは、フープ力からコイルの拡がりを防止し、コ
イル全体として強固になる効果がある。
According to the present invention, it is possible to prevent the coil from expanding due to the electromagnetic stress or hoop force caused by the excitation of the superconducting magnet, thereby making the coil stronger as a whole.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の超電導マグネットの単位コ
イルのディスクの斜視図、第2図は浸漬冷却型超電導マ
グネットコイルの斜視図、第3図は第2図コイルの絶縁
スペーサ地付部斜視図、第4図は第3図のIV−IV矢
視断面図である。 1・・・超電導導体、2・・・層間絶縁層、3・・・単
位コイルのディスク、4・・・液体ヘリウム流通路、5
・・・絶嫌スペーサ、6・・・内張絶縁、7・・・コイ
ルサポートリング、8・・・コイル枠、9・・・接着レ
ジン、1o・・・凹部。
Fig. 1 is a perspective view of a disk of a unit coil of a superconducting magnet according to an embodiment of the present invention, Fig. 2 is a perspective view of an immersion-cooled superconducting magnet coil, and Fig. 3 is a portion of the insulating spacer of the coil shown in Fig. 2. The perspective view and FIG. 4 are cross-sectional views taken along the line IV-IV in FIG. 3. DESCRIPTION OF SYMBOLS 1... Superconducting conductor, 2... Interlayer insulating layer, 3... Disk of unit coil, 4... Liquid helium flow path, 5
. . . Absolute spacer, 6. Insulation lining, 7. Coil support ring, 8. Coil frame, 9. Adhesive resin, 1o. Recess.

Claims (1)

【特許請求の範囲】[Claims] 1、銅ベースに超電導線を埋設してなる超電導導体を半
径方向に層間絶縁材を施こしながら巻回し、単位コイル
のディスクとして完成し、かつ、前記単位コイルの前記
ディスク間に絶縁スペーサを介しながら積層してコイル
を形成するものに於いて、前記層間絶縁材は前記超電導
導体の幅より大きくし、かつ、前記絶縁スペーサの固定
用の凹部をある間隔をおいて設け、この凹部に前記絶縁
スペーサを挿入したことを特徴とする超電導コイル。
1. A superconducting conductor made by embedding a superconducting wire in a copper base is wound in the radial direction while applying an interlayer insulation material to complete a disk of a unit coil, and an insulating spacer is interposed between the disks of the unit coil. In the case where the interlayer insulation material is laminated to form a coil, the width of the interlayer insulating material is larger than the width of the superconducting conductor, and recesses for fixing the insulating spacers are provided at certain intervals, and the insulating material is placed in the recesses. A superconducting coil characterized by inserting a spacer.
JP20651285A 1985-09-20 1985-09-20 superconducting coil Pending JPS6267803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20651285A JPS6267803A (en) 1985-09-20 1985-09-20 superconducting coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20651285A JPS6267803A (en) 1985-09-20 1985-09-20 superconducting coil

Publications (1)

Publication Number Publication Date
JPS6267803A true JPS6267803A (en) 1987-03-27

Family

ID=16524589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20651285A Pending JPS6267803A (en) 1985-09-20 1985-09-20 superconducting coil

Country Status (1)

Country Link
JP (1) JPS6267803A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5996638A (en) * 1997-03-19 1999-12-07 Alcatel Spacer block for an elongated substrate
GB2480636A (en) * 2010-05-26 2011-11-30 Siemens Plc Solenoid magnet with coils and compression block spacers impregnated with resin.
JP2013030661A (en) * 2011-07-29 2013-02-07 Fujikura Ltd Superconducting coil

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5996638A (en) * 1997-03-19 1999-12-07 Alcatel Spacer block for an elongated substrate
GB2480636A (en) * 2010-05-26 2011-11-30 Siemens Plc Solenoid magnet with coils and compression block spacers impregnated with resin.
GB2480636B (en) * 2010-05-26 2012-12-05 Siemens Plc A method for the production of solenoidal magnets made up of several axially aligned coils
GB2529596A (en) * 2010-05-26 2016-02-24 Siemens Plc Solenoidal magnets made up of several axially aligned coils
GB2493467B (en) * 2010-05-26 2016-03-16 Siemens Healthcare Ltd Solenoidal magnets made up of several axially aligned coils
GB2529596B (en) * 2010-05-26 2016-05-18 Siemens Plc Solenoidal magnets made up of several axially aligned coils
US9536659B2 (en) 2010-05-26 2017-01-03 Siemens Plc Solenoidal magnets composed of multiple axially aligned coils
JP2013030661A (en) * 2011-07-29 2013-02-07 Fujikura Ltd Superconducting coil

Similar Documents

Publication Publication Date Title
US4578610A (en) Synchronous disk motor with amorphous metal stator and permanent magnet rotor and flywheel
CN102651265B (en) Superconducting electromagnet comprising coils bonded to a heated support structure
JP6445165B2 (en) Superconducting coil and manufacturing method thereof
JPS6267803A (en) superconducting coil
JPH0794317A (en) Superconducting coil device
JP2014165383A (en) Superconducting coil and method for manufacturing the same
JPS6213010A (en) Superconductive electromagnet
JP2014013877A (en) Superconductive pancake coil, and method of manufacturing the same
US5341555A (en) Method of preparing film adhesive thermal foil
JP3195874B2 (en) Superconducting coil device and method of manufacturing the same
JPH01179406A (en) Manufacture of molded coil
JPS62196802A (en) Superconducting coil manufacturing method
JPS6348165B2 (en)
WO2017033704A1 (en) Superconducting magnetic device and magnetic resonance imaging device
JPH08107012A (en) Superconductive coil
JPS6199311A (en) resin mold coil
JP3050425B2 (en) Superconducting coil, manufacturing method thereof and superconducting magnet device
JPS59208811A (en) Superconductive coil
JPS6266608A (en) superconducting coil
JPS6243526B2 (en)
JPS6156847B2 (en)
JPS62193523A (en) Salient pole rotor
JPS5818810A (en) Cryogenic insulating conductor
JP2025070586A (en) Rotor for superconducting rotating electric machine and superconducting rotating electric machine
JPS63219106A (en) Resin-impregnated superconducting magnet