[go: up one dir, main page]

JPS6266147A - Measuring method for heat constant by temperature step thin wire heating - Google Patents

Measuring method for heat constant by temperature step thin wire heating

Info

Publication number
JPS6266147A
JPS6266147A JP20747085A JP20747085A JPS6266147A JP S6266147 A JPS6266147 A JP S6266147A JP 20747085 A JP20747085 A JP 20747085A JP 20747085 A JP20747085 A JP 20747085A JP S6266147 A JPS6266147 A JP S6266147A
Authority
JP
Japan
Prior art keywords
heat
deltat
thin wire
medium
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20747085A
Other languages
Japanese (ja)
Other versions
JPH0465972B2 (en
Inventor
Hideo Watanabe
英雄 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP20747085A priority Critical patent/JPS6266147A/en
Publication of JPS6266147A publication Critical patent/JPS6266147A/en
Publication of JPH0465972B2 publication Critical patent/JPH0465972B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To measure a thermal conductivity and a thermal diffusivity being heat constants of a medium from a relation of DELTAT and Q(t) by raising a temperature instantaneously by DELTAT with a cylindrical heat transmission body of a heat balanced state in the medium, and thereafter, maintaining a prescribed temperature by giving a heating value Q(t). CONSTITUTION:A cylindrical conductor thin wire of a radius (a) is placed in a medium being in a heat balanced state, and when raising a temperature stepwise by DELTAT, a heating value Q(t) flowing out of a unit length surface and DELTAT have a prescribed relation. By using long and short resistances RL, RS by the thin wire, an influence of a heat flow in the axial direction of the thin wire is negated, a Wheatstone bridge is constituted in an initial state by using together R1-R3 and an output is led to a servo-amplifier, and its output is fed back to the bridge. When one of R1-R3 is changed by a minute quantity, and they have been balanced again, RS and RL are brought to a temperature rise by DELTAT and a generated heat flows out into the medium, and from an effective length of the thin wire, Q(t) is known by an expression. In this way, heat constants such as a thermal conductivity lambda, a thermal diffusivity (k), etc. can be derived from a relation of Q(t) and DELTAT.

Description

【発明の詳細な説明】 本発明は、媒質内に熱量の非定常拡散を、熱源素子、温
度設定素子を共用する細線(円筒状熱伝導体)を利用し
て行い、媒質の熱定数である熱伝導率、熱拡散率等を測
定する方法に関するものである。
Detailed Description of the Invention The present invention performs unsteady diffusion of heat in a medium by using a thin wire (cylindrical thermal conductor) that serves as a heat source element and a temperature setting element, and the thermal constant of the medium is It relates to a method of measuring thermal conductivity, thermal diffusivity, etc.

本発明の特徴とするところは、熱的に平衡状態で媒質中
に円筒状熱伝導体を配置し、ある時刻から円筒状熱伝導
体を瞬時的に一定温度量ΔTだけステップ状に変化させ
て熱平衡を破り2円筒状熱稲導体の温度を以後、一定値
に維持するよう1こ熱を既知の時間tに関する関数に回
帰し2回帰係数より媒質の熱定数を求めることにある。
The present invention is characterized by arranging a cylindrical heat conductor in a medium in a thermally balanced state, and instantaneously changing the temperature of the cylindrical heat conductor by a constant temperature amount ΔT stepwise from a certain time. To break the thermal equilibrium and maintain the temperature of the cylindrical hot rice conductor at a constant value from then on, the heat is regressed to a function related to a known time t, and the thermal constant of the medium is determined from the regression coefficient.

媒質中に温度の不均一分布があると、温度勾配。Temperature gradients occur when there is a non-uniform distribution of temperature in a medium.

熱伝導率、熱拡散率の大きさに従って、系全体が平衡、
状態に近づくように熱が移動する。熱平衡状態にある媒
質中に半径aの円筒状導体(細線)が置かれているとき
、ある時刻1=0から、ある種の動作により、細線の温
度をΔTだけステップ状に上昇させた場合、細線の表面
から単位長さぁたり次式で示される熱流Q (t)が媒
質中に流出する。
Depending on the magnitude of thermal conductivity and thermal diffusivity, the entire system is in equilibrium.
Heat moves closer to the state. When a cylindrical conductor (thin wire) with radius a is placed in a medium in a state of thermal equilibrium, and the temperature of the thin wire is increased stepwise by ΔT from a certain time 1 = 0 by some kind of operation, A heat flow Q (t) expressed by the following equation flows out into the medium per unit length from the surface of the thin wire.

ただし、σ=er(r=0.5772・・・、 オイラ
ー数) r  ””” 4に/a2σ2.λ、にはそれ
ぞれ熱定数のうちの熱伝導率、熱拡散率である。係数A
” I BnrCoは方程式を厳密に解くことで求める
ことができるが、測定に必要な範囲で表1に示す。
However, σ=er (r=0.5772..., Euler's number) r """ 4/a2σ2.λ are the thermal conductivity and thermal diffusivity of the thermal constants, respectively.Coefficient A
” I BnrCo can be determined by strictly solving the equation, but Table 1 shows the range necessary for measurement.

表  1 AnBoC。Table 1 AnBoC.

2 −0.5772157  1  03 −1.31
17561 0.84556867−54 0.252
0158−7.39856242−25.227843
45 3.9969267−14.73301048−
13.64260106 5.0637282−7.4
4478 343.8177  −6.9278195
    以下省略    以下省略8  −36.38
34740 9  −46.9795573 10   78.1068987 11  464.675 上記原理に基づいて、熱定数を求める方法の具体例を図
1に従って述べる。
2 -0.5772157 1 03 -1.31
17561 0.84556867-54 0.252
0158-7.39856242-25.227843
45 3.9969267-14.73301048-
13.64260106 5.0637282-7.4
4478 343.8177 -6.9278195
The following omitted The following omitted 8 -36.38
34740 9 -46.9795573 10 78.1068987 11 464.675 Based on the above principle, a specific example of the method for determining the thermal constant will be described with reference to FIG.

図1は抵抗R1,R2,R3,Rs、 RL  からな
るホーイストンブリッジの出力電圧をサーボ増幅器に導
入し、その出力電圧をブリッジの電源として帰還してい
る状態を示している。Rs、Rt、は前述した細線によ
って作られた電気抵抗で、添字S、  Lは細線の短、
長を示しており、細線内を軸方向に伝わる熱流の影響を
打消す目的で2個の補線抵抗を利用する。R+ 、 R
2、R3は初期状態でブリッジを平衡させるために使用
する。
FIG. 1 shows a state in which the output voltage of a Wheatstone bridge consisting of resistors R1, R2, R3, Rs, and RL is introduced into a servo amplifier, and the output voltage is fed back as a power source for the bridge. Rs and Rt are the electrical resistances created by the thin wires mentioned above, and the subscripts S and L are the shortness of the thin wires,
Two complementary wire resistors are used to cancel the effect of heat flow that travels in the axial direction within the thin wire. R+, R
2. R3 is used to balance the bridge in the initial state.

一般に電気伝導体の抵抗率は温度に依存するので、R3
,RLの抵抗値は温度の関数となる。初期状態でRs 
、 RLで発生するジュール熱が無視しえるようにして
ブリッジの平衡を達成し、ある瞬間からr R+ + 
R2+ R3のいずれかの抵抗を微小量変化させると、
ブリッジの出力が再び零となるようにサーボ系が動作す
る。
Generally, the resistivity of electrical conductors depends on temperature, so R3
, RL is a function of temperature. Rs in initial state
, achieve bridge equilibrium by making the Joule heat generated in RL negligible, and from a certain moment r R+ +
When the resistance of either R2+R3 is changed by a minute amount,
The servo system operates so that the bridge output becomes zero again.

ブリッジが再び釣合の状態になったときは、抵抗R5,
RLは温度差ΔTだけ上昇して初期状態と異なった値に
なっている。このとき+  Rs + Rt、で発生す
るジュール熱は+Rs+Rt、に流れる電流値。
When the bridge is in equilibrium again, resistor R5,
RL increases by the temperature difference ΔT and has a value different from the initial state. At this time, the Joule heat generated at + Rs + Rt is the current value flowing at + Rs + Rt.

その抵抗値から容易に算出できる。このジュール熱は、
媒質中に流出するので、細線の有効な長さを測定するこ
とにより、単位長さあたりの熱流流出量を求めることが
できる。このようにして2時間の関数として求めたQ(
[)とΔTの関係により、熱定数が測定可能となる。
It can be easily calculated from the resistance value. This Joule heat is
Since the heat flows out into the medium, the amount of heat flow per unit length can be determined by measuring the effective length of the thin wire. Q(
The thermal constant can be measured by the relationship between [) and ΔT.

補足的に言えば、ブリッジはホーイストンブリッジだけ
でなく、他の名称で呼ばれるブリッジも同様使用可能で
ある。
As a supplement, the bridge is not limited to the Wheatstone Bridge, but bridges called by other names can be used as well.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による測定原理の一例を示すもので、 
R1,R2,R3,R3,RLはブリッジを形成する抵
抗である。 指定代理人
FIG. 1 shows an example of the measurement principle according to the present invention.
R1, R2, R3, R3, and RL are resistors forming a bridge. designated agent

Claims (1)

【特許請求の範囲】[Claims] 熱的に平衡状態で媒質中に円筒状熱伝導体を配置し、あ
る時刻から円筒状熱伝導体を瞬時的に一定温度量ΔTだ
けステップ状に変化させて熱平衡を破り、円筒状熱伝導
体から媒質中に熱流を流出させ、円筒状熱伝導体の温度
を以後、一定値に維持するように熱量を補償し、このと
きの補償熱量Q(t)を時間tの関数として測定し、温
度上昇量ΔTとQ(t)を既知の時間tに関する関数に
回帰し、回帰係数より媒質の熱定数を求めることを特徴
とする温度ステップ細線加熱による熱定数の測定方法。
A cylindrical heat conductor is placed in a medium in a state of thermal equilibrium, and from a certain time the temperature of the cylindrical heat conductor is instantaneously changed stepwise by a constant temperature amount ΔT to break the thermal equilibrium. A heat flow is caused to flow into the medium from then on, and the amount of heat is compensated so as to maintain the temperature of the cylindrical heat conductor at a constant value from then on.The amount of compensated heat Q(t) at this time is measured as a function of time t, and the temperature A method for measuring a thermal constant by temperature step thin wire heating, characterized in that the amount of increase ΔT and Q(t) is regressed to a function related to a known time t, and the thermal constant of the medium is determined from the regression coefficient.
JP20747085A 1985-09-19 1985-09-19 Measuring method for heat constant by temperature step thin wire heating Granted JPS6266147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20747085A JPS6266147A (en) 1985-09-19 1985-09-19 Measuring method for heat constant by temperature step thin wire heating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20747085A JPS6266147A (en) 1985-09-19 1985-09-19 Measuring method for heat constant by temperature step thin wire heating

Publications (2)

Publication Number Publication Date
JPS6266147A true JPS6266147A (en) 1987-03-25
JPH0465972B2 JPH0465972B2 (en) 1992-10-21

Family

ID=16540293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20747085A Granted JPS6266147A (en) 1985-09-19 1985-09-19 Measuring method for heat constant by temperature step thin wire heating

Country Status (1)

Country Link
JP (1) JPS6266147A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104251872A (en) * 2013-06-27 2014-12-31 富士电机株式会社 Thermal resistance measuring method and thermal resistance measuring device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5327952A (en) * 1976-08-25 1978-03-15 Toyoda Autom Loom Works Ltd Safety device for container spreader
JPS5523477A (en) * 1978-08-09 1980-02-19 Mitsubishi Electric Corp Measuring instrument for thermal resistance
JPS5984145A (en) * 1982-10-01 1984-05-15 サラソタ・オ−トメイシヨン・リミテツド Method and device for measuring reynolds number of fluid

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5327952A (en) * 1976-08-25 1978-03-15 Toyoda Autom Loom Works Ltd Safety device for container spreader
JPS5523477A (en) * 1978-08-09 1980-02-19 Mitsubishi Electric Corp Measuring instrument for thermal resistance
JPS5984145A (en) * 1982-10-01 1984-05-15 サラソタ・オ−トメイシヨン・リミテツド Method and device for measuring reynolds number of fluid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104251872A (en) * 2013-06-27 2014-12-31 富士电机株式会社 Thermal resistance measuring method and thermal resistance measuring device
CN104251872B (en) * 2013-06-27 2018-06-15 富士电机株式会社 Thermal resistance measurement method and thermal resistance measurement device

Also Published As

Publication number Publication date
JPH0465972B2 (en) 1992-10-21

Similar Documents

Publication Publication Date Title
US2947938A (en) Electrothermal measuring apparatus and method for the calibration thereof
US4548075A (en) Fast responsive flowmeter transducer
US4283944A (en) Apparatus for measuring the mass of a fluid medium
US2509889A (en) Differential altimeter
JPH08201327A (en) Thermal conductivity meter
JPS6122889B2 (en)
JPH01150817A (en) Mass flow meter
GB2040471A (en) Device for measuring the mass flow of a flowing medium
US4845984A (en) Temperature compensation for a thermal mass flow meter
GB1252304A (en)
US4596140A (en) Constant overheat anemometer with sensor lead wire impedance compensation
JPS6266147A (en) Measuring method for heat constant by temperature step thin wire heating
US3007333A (en) Gas analyzer apparatus
JPS5716343A (en) Thermal conductivity detector
JP3114137B2 (en) Thermal conductivity gas concentration analyzer
US4112734A (en) Differential scanning microcalorimeter
JPH0472523A (en) Flow sensor
JPS6053814A (en) Airflow-rate measuring device
JPH0422268Y2 (en)
FR1451423A (en) Improvements in mass flow measurement devices
JP2879256B2 (en) Thermal flow meter
SU1108331A1 (en) Thermal flowmeter
KR100244902B1 (en) Air flow speed sensor element and its measurement circuit
SU1165998A1 (en) Method of measuring velocity and temperature of liquid flow or gas flow
JPH0674804A (en) Heat sensing flow rate sensor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term