[go: up one dir, main page]

JPS6262730A - Manufacture of thermally recoverable tube - Google Patents

Manufacture of thermally recoverable tube

Info

Publication number
JPS6262730A
JPS6262730A JP20169485A JP20169485A JPS6262730A JP S6262730 A JPS6262730 A JP S6262730A JP 20169485 A JP20169485 A JP 20169485A JP 20169485 A JP20169485 A JP 20169485A JP S6262730 A JPS6262730 A JP S6262730A
Authority
JP
Japan
Prior art keywords
tube
heat
string
cross
plastic tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20169485A
Other languages
Japanese (ja)
Inventor
Yusuke Mizuno
裕介 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP20169485A priority Critical patent/JPS6262730A/en
Publication of JPS6262730A publication Critical patent/JPS6262730A/en
Pending legal-status Critical Current

Links

Landscapes

  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

PURPOSE:To easily obtain a thermally recoverable tube with no axial contraction by a method wherein a crosslinked plastic tube, round the outer peripheral surface of which a string-shaped heat-shrinkable body is helically wound at a desired pitch, is heated in a state that a slight inner pressure is applied to it. CONSTITUTION:Firstly, a crosslinking plastic tube 1 under the state that the slight inner pressure is applied to it is helically wound with a string-shaped heat-shrinkable body. Secondly, the resultant tube 1 under the state that both ends of its are open is introduced in a heating oven 9 in order to heat up to a temperature exceeding the crystalline melting point of the tube. Thirdly, in a state that the tube 1 is softened, the string-shaped body 2 starts to shrink itself so as to deform the helical pattern of the tube in contact with the body radically in a large way in order to form a helically and radically diminished portion. At the same time, the portion corresponding to the crest is radially pulled so as to diminish the redius and, after that, cooled with water at a pre-cooling device 10. Fourthly, immediately after being pre-cooling, the resultant tube together with the string-shaped body is introduced in a cooling water tank 3 in order to be cooled and solidified. Fifthly, the solidified tube is continuously taken up and housed on a take-up reel 15. Finally, by removing the string-shaped body, a thermally recoverable tube formed in a helically wavy shape is obtained. The radial contraction of the tube at its heat recovery is very small.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、特に水道、ガス、化学工業プラント等の配管
に対する内面腐食防止及び補修、あるいは更生に用いて
好適な熱回復性チューブの製造方法に関するものである
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for manufacturing a heat-recoverable tube suitable for use in preventing and repairing internal corrosion of piping, particularly in water, gas, and chemical industrial plants, and for rehabilitation. It is related to.

(従来の技術) 従来、水道、ガス、化学工業プラント等に用いられてい
る既設配管が経年変化により管内面に錆等の付着物が堆
積し流量の減少を拓き、或いは配管全体の老朽化により
、水、ガス、化学薬品が漏れる等の事故が発生し時には
上記薬品の種類により大きな社会問題となっている。
(Conventional technology) Existing pipes used in water, gas, and chemical industry plants have deteriorated over time, causing deposits such as rust to accumulate on the inner surface of the pipes, leading to a decrease in flow rate, or due to aging of the pipes as a whole. Accidents such as leakage of water, gas, and chemicals sometimes occur, and depending on the type of chemicals mentioned above, they sometimes become major social problems.

上記水道、ガス配管にあっては道路を掘削し既設管を新
管と交換したり、或いは補修、更生を行うことが多いが
、近年の交通事情に制約されかかる掘削が難かしく、ま
た漢大な経費がかかる等の問題があり、埋設管をそのま
まの状態で補修、更庄スル必要性が高まっている。かか
る埋設管内面を防食被覆する方法としては一般には熱拡
大チューブを用いてこれを埋設管内に挿入拡大して管内
面に密着させる方法が提案されでいる。
In the case of water and gas pipes mentioned above, roads are often excavated and existing pipes replaced with new pipes, or repaired and rehabilitated, but such excavation is difficult due to recent traffic conditions, and Han University There are problems such as high costs, and there is an increasing need to repair and replace buried pipes in their original state. As a method for coating the inner surface of a buried pipe with anti-corrosion coating, a method has generally been proposed in which a thermal expansion tube is inserted into the buried pipe, expanded and brought into close contact with the inner surface of the pipe.

゛ (発明が解決しようとする問題点)一般にチューブ
に対してかかる熱拡大性を付与するには、架橋プラスチ
ックチューブを結晶融点近傍の温度で軸方向に延伸し、
他方径方向に縮購させることにより行われるが、この場
合該チューブ軸方向にかなり大きな変位を与えないと所
望の縮径が行われ難く、これは他方熱回復時には軸方向
への収縮が大きくなり寸法安定性が低下し管内面への密
着性に劣る等の欠点がある。
(Problem to be solved by the invention) Generally, in order to impart such thermal expandability to a tube, a cross-linked plastic tube is stretched in the axial direction at a temperature near the crystal melting point.
On the other hand, this is done by shrinking the tube in the radial direction, but in this case, it is difficult to achieve the desired diameter reduction unless a fairly large displacement is applied in the axial direction of the tube.On the other hand, the shrinkage in the axial direction becomes large during heat recovery. It has drawbacks such as reduced dimensional stability and poor adhesion to the inner surface of the tube.

又特に長尺品チューブを用いる作業にあっては、上記配
管内面とチューブ外面との大きな摩擦によりその引込み
作業性が低く外傷を受は易い。そしてかかるチューブは
上述の如く軸方向への収縮による径方向への拡大性を利
用しているため、軸方向への回復力をその自重と配管と
の摩擦力に対して充分に大きくとり更に予じめ設定した
収縮代を何らかの方法で強制的に配管路に押し込んでや
らないと管内面への充分な密着が期待できない等内面被
覆の均−性及び狭隘な場所での作業性等に多大の問題が
あった。
In addition, particularly when working with long tubes, the large friction between the inner surface of the pipe and the outer surface of the tube makes it difficult to draw the tube, and the tube is easily damaged. Since such a tube utilizes the ability to expand in the radial direction due to contraction in the axial direction as described above, the recovery force in the axial direction is sufficiently large compared to its own weight and the frictional force with the pipe, and furthermore, Unless the previously set shrinkage allowance is forced into the piping path by some method, sufficient adhesion to the inner surface of the pipe cannot be expected, and this will cause a great deal of damage to the uniformity of the inner surface coating and workability in narrow spaces. There was a problem.

(問題点を解決するための手段) 本発明者等は、かかる熱拡大性チューブの従来の欠点を
解消すべく鋭意検討を重ねた結果配管路内への挿入引込
みが著しく容易で熱拡大時に軸方向への収縮が少なく管
内面を極めて容易に密着被覆できる熱回復性チューブの
製造方法を見出したのであ秒、即ち本発明は架橋プラス
チックチューブの外周面に熱収縮性紐状体を所望のピッ
チで螺旋状に巻回し、これを該架橋プラスチックチュー
ブが加熱時にその形状を保持できる程度の僅かな内圧が
加えられた状態で加熱して前記熱収縮性紐状体を加熱収
縮させ、前記架橋プラスチックチューブに径方向に変位
した螺旋状縮径部を形成させ、ついで、前記熱収縮性紐
状体を除去することを特徴とする熱回復性チューブの製
造方法である。
(Means for Solving the Problem) The inventors of the present invention have made extensive studies to eliminate the conventional drawbacks of such heat-expandable tubes, and as a result, they have found that it is extremely easy to insert and draw them into a piping path, and that they can be easily inserted and pulled into a piping path, and that they can be easily We have discovered a method for manufacturing a heat-recoverable tube that has minimal shrinkage in the direction of the tube and can extremely easily cover the inner surface of the tube in close contact with the inner surface of the tube. The cross-linked plastic tube is heated under a slight internal pressure that allows the cross-linked plastic tube to maintain its shape when heated to heat-shrink the heat-shrinkable string, and the cross-linked plastic This method of manufacturing a heat-recoverable tube is characterized by forming a spiral diameter-reduced portion displaced in the radial direction in the tube, and then removing the heat-shrinkable string-like body.

本発明において、架橋プラスチックチューブを得るため
の架橋可能な結晶性ポリマーとしては、通常一般に用い
られるポリエチレン、ポリエチレン、エチレン−酢酸ビ
ニル共重合体、エチレン−エチレンアクリレート共重合
体等のポリオレフィン樹脂の1種、又はこれらの2種以
上の混和物が挙げられ、更にこの様な結晶性ポリマーと
非晶質熱可塑性樹脂若しくはゴムとの混和物も使用する
ことができる。
In the present invention, the crosslinkable crystalline polymer for obtaining the crosslinked plastic tube is one of commonly used polyolefin resins such as polyethylene, polyethylene, ethylene-vinyl acetate copolymer, and ethylene-ethylene acrylate copolymer. , or a mixture of two or more thereof, and a mixture of such a crystalline polymer and an amorphous thermoplastic resin or rubber can also be used.

そしこの様な架橋可能なポリマーからなるチューブ或い
はこれらのポリマーを絶縁外層とし同様の架橋可能ポリ
マーにカーボンブラック等の導電性物質を配合した導電
内層を一体化した二層のチューブを得、これをシラン架
橋、電子線架橋、或いは化学架橋の何れかの方法により
架橋し、架橋プラスチックチューブを得るようにしても
良い。
Then, a tube made of such a crosslinkable polymer or a two-layer tube in which these polymers are used as an insulating outer layer and a conductive inner layer made of a similar crosslinkable polymer mixed with a conductive substance such as carbon black is obtained, and this is A crosslinked plastic tube may be obtained by crosslinking by any one of silane crosslinking, electron beam crosslinking, or chemical crosslinking.

これらの場合その架橋度がゲル分率で10%から80%
が望ましい。
In these cases, the degree of crosslinking is 10% to 80% in terms of gel fraction.
is desirable.

次に熱収縮性紐状体は、前記架橋可能なポリマーと同様
なものから選択して使用し、これを紐状体に押出し、例
えば前記と同様に架橋した後結晶融点近傍の温度に加熱
し、長手方向に所望の延伸倍率で延伸しそのままの状態
で冷却固化して熱収縮性を付与してなるものである。こ
の熱収縮性紐状体の断面形状は、円形、楕円形、正方形
、矩形等何れの形状でもよく特に限定するものではない
Next, the heat-shrinkable string-like body is selected from the same materials as the crosslinkable polymer, extruded into a string-like body, cross-linked in the same manner as above, and then heated to a temperature near the crystal melting point. It is made by stretching in the longitudinal direction at a desired stretching ratio and then cooling and solidifying it in that state to impart heat shrinkability. The cross-sectional shape of this heat-shrinkable string-like body may be any shape, such as circular, oval, square, or rectangular, and is not particularly limited.

そして架橋度は加熱収縮時の収縮応力の面で上記架橋プ
ラスチックチューブと同じか、それ以上が望ましく、そ
して軸方向の収縮率は、架橋プラスチックチューブの加
熱成形の際、巻回された熱収縮性紐状体の螺旋巻回ピッ
チが大きい場合には、螺旋状波形の谷部への収縮により
山部への所望の縮径効果を得るため谷部の変位を大きく
する必要上核熱収縮性紐状体の収縮率を大きくする必要
がある。逆に螺旋巻回ピッチが小さい場合には螺旋状波
形の谷部への変位がそれ程大きくなくとも山部への所望
の縮径効果が得られることからその収縮率をそれ程大き
くする必要がない。特に好ましい熱収縮性紐状体の軸方
向の収縮率は20%から80%が適当である。
The degree of crosslinking is preferably the same as or higher than the above crosslinked plastic tube in terms of shrinkage stress during heat shrinkage, and the shrinkage rate in the axial direction is determined by When the spiral winding pitch of the string-like body is large, it is necessary to increase the displacement of the troughs in order to obtain the desired diameter reduction effect on the crests by shrinking the helical waveform into the troughs. It is necessary to increase the shrinkage rate of the shaped body. Conversely, when the helical winding pitch is small, the desired diameter reduction effect on the peaks can be obtained even if the displacement of the helical waveform toward the valleys is not so large, so there is no need to increase the shrinkage rate so much. A particularly preferable shrinkage rate of the heat-shrinkable string in the axial direction is 20% to 80%.

ここで架橋プラスチックチューブの外周面への熱収縮性
紐状体の螺旋状巻回は、別工程で予しめ巻回するか、又
は那熱成形時に同時1こ巻回しながら成形してもよく、
何れの方法をも採用できる。
Here, the spiral winding of the heat-shrinkable string around the outer circumferential surface of the cross-linked plastic tube may be done in advance in a separate process, or may be done while simultaneously being wrapped one time during heat forming.
Either method can be adopted.

そしてその巻回時のピッチは、架橋プラスチックチュー
ブの外径の20%以上、70%以下の長さが望ましいが
、螺旋状波形に縮径可能な様に軸方向の収縮率との関連
から適宜選択するのが望ましいO 第1図は本発明方法の一実施態様の説明図である。予し
め雀かに内圧を加えた状態の架橋プラスチックチューブ
(1)に熱収縮性紐状体(2)を螺旋状に巻回したもの
(第2図)を長尺巻回収納したサプライリール(6)を
用い、該架橋プラスチックチューブ(1)の両端は内部
を大気圧と同じ(するため開放した状態でガイドロール
(7)を経て該チューブを引出す。この場合送り出し装
置(81と引取袋M (II7の速度を同期させ、一定
の速度で加熱炉(9)内に該チューブを導入し、これが
所望の結晶融点以上の温度に加熱されるようにする。架
橋プラスチックチューブ(1)は軟化した状態で上記熱
収縮性紐状体(2)が収縮を開始し、これと接触してい
るチューブの螺旋状部分が大きく径方向に変位して螺旋
状縮径部を形成する。同時に山部に該当する部分が谷部
の大きな変位により径方向に引きずられて縮径しながら
引取装置(11)で変形しない程度に予備冷却装置(圃
で水冷され、直ちに冷却水槽(11に入り冷却媒体(国
に接触し冷却固化される。次にガイトロール(In(1
2’ )を経てテークアツプリール(囚に連続的に巻取
収納される。第3図にはこのようにして上記収縮した紐
状体(2)により縮径された螺旋状縮径部を有するチュ
ーブ(3)を示し、そして上記紐状体を除去すれば第4
図の如く本発明による螺旋状波形に成形熱回復性チュー
ブが得られる。この場合上記架橋プラスチックチューブ
(1)の外径は内面被覆の対重となる配管の内径と同一
か又は僅に大きくし、縮径後は螺旋状波形の山部の外径
が該配管内径より若干小さくなるように熱収縮性紐状体
の収縮率及び巻回ピッチを適宜設定するのが好ましい。
The pitch at the time of winding is preferably 20% or more and 70% or less of the outer diameter of the cross-linked plastic tube, but it should be adjusted appropriately in relation to the shrinkage rate in the axial direction so that the diameter can be reduced into a spiral waveform. It is preferable to select O. FIG. 1 is an explanatory diagram of one embodiment of the method of the present invention. A supply reel (Fig. 2) containing a long winding of a heat-shrinkable string (2) spirally wound around a cross-linked plastic tube (1) to which internal pressure has been applied in advance (Fig. 2). 6), and both ends of the cross-linked plastic tube (1) are kept open so that the inside pressure is equal to the atmospheric pressure, and the tube is pulled out through the guide roll (7). (The speed of II7 is synchronized and the tube is introduced into the heating furnace (9) at a constant speed so that it is heated to a temperature above the desired crystal melting point. The cross-linked plastic tube (1) is softened. In this state, the heat-shrinkable string-like body (2) starts to contract, and the spiral portion of the tube that is in contact with it is largely displaced in the radial direction to form a spiral diameter-reduced portion. The corresponding part is dragged in the radial direction due to the large displacement of the trough and is reduced in diameter. is cooled and solidified.Next, Gytrol (In(1)
2'), and is continuously wound up and stored in a take-up reel (reel). Fig. 3 shows a helical diameter-reduced portion whose diameter is reduced by the above-mentioned contracted string-like body (2). If the tube (3) is shown and the string-like body is removed, the fourth
As shown in the figure, a helically corrugated heat-recoverable tube according to the present invention is obtained. In this case, the outer diameter of the cross-linked plastic tube (1) is the same as or slightly larger than the inner diameter of the pipe that is the opposite of the inner coating, and after diameter reduction, the outer diameter of the crest of the spiral waveform is larger than the inner diameter of the pipe. It is preferable to appropriately set the shrinkage rate and winding pitch of the heat-shrinkable string so that the heat-shrinkable string becomes slightly smaller.

(作 用) 本発明においては、僅かに内圧を加えた状態の架橋プラ
スチックチューブの外周面に熱収縮性紐状体を所望のピ
ッチで螺旋状に巻回し、これを加熱して前記熱収縮性紐
状体を加熱収縮させるので、特に架橋プラスチックチュ
ーブにはその軸方向に大きな収縮が生じない。
(Function) In the present invention, a heat-shrinkable string is spirally wound at a desired pitch around the outer peripheral surface of a cross-linked plastic tube to which a slight internal pressure is applied, and this is heated to form the heat-shrinkable string. Since the string-like body is heat-shrinked, the cross-linked plastic tube does not undergo any significant shrinkage in its axial direction.

したがって該チューブの熱回復時の軸方向への収縮が著
しく小さい。
Therefore, the shrinkage of the tube in the axial direction during heat recovery is extremely small.

(実施例) 以下実施例により本発明を更に具体的に説明する。(Example) The present invention will be explained in more detail with reference to Examples below.

実施例1 シラン変性低密度ポリエチレンを用い外径53順、肉厚
2.0mmのチューブを押出成形したものを常法により
温水処理を行いゲル分率75%の架橋ポリエチレンチュ
ーブを得た。次に同一材料で断面楕円形の紐状体を押出
し前記と同様に架橋処理を行い軸方向に延伸(倍率:1
.7)l、、外径3X4IW1の断面楕円形の熱収縮性
紐状体を得た。この熱収縮性紐状体を前記架橋チューブ
の外周面にピッチ25mで螺旋状に予しめ巻回し、該架
橋チューブに0・05kg/、fflの内圧を加えた状
態で150℃の加熱炉で連続的に加熱しながら成形し、
直ちに水冷固化して螺旋状波形に縮径されたチューブを
碍た。次に熱収縮した紐状体を除去することにより螺旋
ピッチ25醜、螺旋状波形の谷部の外形約33鴫、山部
の外形約49隅に全長にわたり均等に変位縮径した熱回
復性チューブを得な。この熱回復性チューブを長さ50
0snに切断し150℃で20分間加熱したところ、外
径が53關、長さが500胴に熱回復し軸方向に収縮の
ない架橋チューブが碍られた。
Example 1 A tube with an outer diameter of 53 mm and a wall thickness of 2.0 mm was extruded from silane-modified low-density polyethylene and treated with hot water in a conventional manner to obtain a cross-linked polyethylene tube with a gel fraction of 75%. Next, a string-like body with an oval cross section is extruded from the same material, cross-linked in the same manner as above, and stretched in the axial direction (magnification: 1
.. 7) A heat-shrinkable string-like body with an oval cross section and an outer diameter of 3×4IW1 was obtained. This heat-shrinkable string-like body was pre-wound spirally at a pitch of 25 m around the outer circumferential surface of the cross-linked tube, and the cross-linked tube was continuously heated in a heating furnace at 150°C with an internal pressure of 0.05 kg/ffl applied. Shape while heating,
The tube was immediately solidified by water cooling and reduced in diameter into a spiral waveform. Next, by removing the heat-shrinked string-like body, a heat-recoverable tube with a helical pitch of 25 ugliness, an outer diameter of about 33 ridges at the troughs, and an outer diameter of about 49 corners at the peaks are uniformly displaced and reduced in diameter over the entire length. Don't get it. This heat-recoverable tube has a length of 50 mm.
When the tube was cut into pieces of 0 sn and heated at 150° C. for 20 minutes, the crosslinked tube had an outer diameter of 53 mm and a length of 500 mm, resulting in a crosslinked tube that did not shrink in the axial direction.

実施例2 実施例1と同一材質で1.5m厚の絶縁外層及び、同材
料の導電性カーボンブラックを配合(15重量%)し導
電性を付与した0、5mm厚の導電内層とからなる肉厚
2.0胴、外径53mmのチューブを押出し、同様に架
橋処理してゲル分率75%の架橋チューブを得た。この
架橋チューブの外周に実施例1と同じ熱収縮性紐状体を
ピッチ20mmで螺旋状に巻回しながら同様な加熱条件
で連続的に成形し、水冷固化して螺旋状波形に熱収縮さ
れたチューブを得た。上記紐状体を除去して螺旋状縮径
部ピッチ20m1螺旋状波形の谷部の外径約32間、山
部の外径約48間に均等に変位縮径した熱回復性チュー
ブを得た。この熱回復性チューブを長さ50(1mに切
断し、同様に加熱処理したところ、軸方向に収縮のない
完全に熱回復した架橋チューブを得た。
Example 2 A 1.5 m thick insulating outer layer made of the same material as in Example 1, and a 0.5 mm thick conductive inner layer blended with conductive carbon black (15% by weight) of the same material to impart conductivity. A tube with a thickness of 2.0 mm and an outer diameter of 53 mm was extruded and subjected to the same crosslinking treatment to obtain a crosslinked tube with a gel fraction of 75%. The same heat-shrinkable string material as in Example 1 was wound around the outer periphery of this cross-linked tube in a spiral shape at a pitch of 20 mm, and was continuously molded under the same heating conditions, solidified by water cooling, and heat-shrinked into a spiral wave shape. Got the tube. The string-like body was removed to obtain a heat-recoverable tube whose diameter was reduced evenly between the outer diameter of the troughs of the helical waveform of about 32 and the outer diameter of the peaks of about 48. . This heat-recoverable tube was cut into lengths of 50 (1 m) and heat-treated in the same manner to obtain a completely heat-recovered crosslinked tube with no shrinkage in the axial direction.

(発明の効果) 以上の如く本発明は、架橋プラスチックチューブの外周
面に熱収縮性紐状体を所望のピッチで螺旋状に巻回し、
これを該架橋プラスチックチューブ内に僅かに内圧を加
えた状態でこれを加熱して前記熱収縮性紐状体を加熱収
縮させ、前記架橋プラスチックチューブに径方向に変位
した螺旋状縮径部を形成させるものであり、上記紐状体
の加熱収縮応力でチューブの径方向のみの変位縮径によ
る熱拡大性が付与された軸方向収縮のない熱回復性チュ
ーブが極めて容易に得られる効果がある。
(Effects of the Invention) As described above, the present invention provides a method of spirally winding a heat-shrinkable string at a desired pitch around the outer peripheral surface of a crosslinked plastic tube.
This is heated with a slight internal pressure applied inside the cross-linked plastic tube to heat-shrink the heat-shrinkable string-like body, thereby forming a spiral diameter-reduced portion displaced in the radial direction in the cross-linked plastic tube. This has the effect that it is very easy to obtain a heat-recoverable tube without axial shrinkage, which is given thermal expandability by displacement and diameter contraction in only the radial direction of the tube due to the heat-shrinkage stress of the string-like body.

そして該チューブの表面は螺旋状波形をなし管内面との
摩擦抵抗が著しく減少し、狭隘な場所での長尺品引込み
作業を容易にし、更に熱回復時の配管内面への被覆性が
著しく向上する等その工業的利用効果は極めて大きい。
The surface of the tube has a spiral waveform, which significantly reduces the frictional resistance with the inner surface of the tube, making it easier to pull long products into narrow spaces, and significantly improving the coverage of the inner surface of the pipe during heat recovery. The effects of its industrial use are extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明熱回復性チューブの製造工程の説明図、
第2図は熱収縮性紐状体を螺旋状に巻回した架橋プラス
チックチューブの説明図、第3図は螺旋状波形に成形し
たチューブの説明図、第4図は最終の熱回復性チューブ
の説明図である。 1・・架橋プラスチックチューブ、2・・・熱収縮性紐
状体、3・・・螺旋状波形チューブ。
FIG. 1 is an explanatory diagram of the manufacturing process of the heat-recoverable tube of the present invention;
Figure 2 is an explanatory diagram of a cross-linked plastic tube made of a heat-shrinkable string wound spirally, Figure 3 is an explanatory diagram of a tube formed into a spiral waveform, and Figure 4 is an illustration of the final heat-recoverable tube. It is an explanatory diagram. 1...Crosslinked plastic tube, 2...Heat-shrinkable string-like body, 3...Spiral corrugated tube.

Claims (3)

【特許請求の範囲】[Claims] (1)架橋プラスチックチューブの外周面に熱収縮性紐
状体を所望のピッチで螺旋状に巻回し、これを該架橋プ
ラスチックチューブに僅かに内圧を加えた状態にて加熱
して前記熱収縮性紐状体を加熱収縮させ、前記架橋プラ
スチックチューブに径方向に変位した螺旋状縮径部を形
成させついで前記熱収縮性紐状体を除去することを特徴
とする熱回復性チューブの製造方法。
(1) A heat-shrinkable string is spirally wound around the outer peripheral surface of a cross-linked plastic tube at a desired pitch, and heated while applying a slight internal pressure to the cross-linked plastic tube. 1. A method for manufacturing a heat-recoverable tube, comprising heating and shrinking a string-like body to form a radially displaced spiral diameter-reduced portion in the crosslinked plastic tube, and then removing the heat-shrinkable string-like body.
(2)前記熱収縮性紐状体が架橋プラスチックからなり
、そのゲル分率が10%以上、収縮率が20%以上であ
ることを特徴とする特許請求の範囲第1項記載の熱回復
性チューブの製造方法。
(2) Heat recovery properties as set forth in claim 1, wherein the heat-shrinkable string-like body is made of cross-linked plastic, and has a gel fraction of 10% or more and a shrinkage rate of 20% or more. Method of manufacturing tubes.
(3)前記架橋プラスチックチューブの外周面に前記熱
収縮性紐状体を螺旋状に巻回する際、その巻回ピッチを
前記架橋プラスチックチューブの外径の20%以上、7
0%以下の長さとすることを特徴とする特許請求の範囲
第1項記載の熱回復性チューブの製造方法。
(3) When winding the heat-shrinkable string body spirally around the outer circumferential surface of the cross-linked plastic tube, the winding pitch is set to 20% or more of the outer diameter of the cross-linked plastic tube;
2. The method of manufacturing a heat-recoverable tube according to claim 1, wherein the length is 0% or less.
JP20169485A 1985-09-13 1985-09-13 Manufacture of thermally recoverable tube Pending JPS6262730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20169485A JPS6262730A (en) 1985-09-13 1985-09-13 Manufacture of thermally recoverable tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20169485A JPS6262730A (en) 1985-09-13 1985-09-13 Manufacture of thermally recoverable tube

Publications (1)

Publication Number Publication Date
JPS6262730A true JPS6262730A (en) 1987-03-19

Family

ID=16445359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20169485A Pending JPS6262730A (en) 1985-09-13 1985-09-13 Manufacture of thermally recoverable tube

Country Status (1)

Country Link
JP (1) JPS6262730A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6177640B1 (en) 1998-03-25 2001-01-23 Sanwa Denshi Co., Ltd. Composite switch
WO2017169190A1 (en) * 2016-03-29 2017-10-05 トヨタ車体株式会社 Resin component and method for manufacturing resin component
US11554526B2 (en) 2016-03-29 2023-01-17 Toyota Shatai Kabushiki Kaisha Resin parts and manufacturing method of resin parts

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6177640B1 (en) 1998-03-25 2001-01-23 Sanwa Denshi Co., Ltd. Composite switch
WO2017169190A1 (en) * 2016-03-29 2017-10-05 トヨタ車体株式会社 Resin component and method for manufacturing resin component
US11554526B2 (en) 2016-03-29 2023-01-17 Toyota Shatai Kabushiki Kaisha Resin parts and manufacturing method of resin parts

Similar Documents

Publication Publication Date Title
US4788089A (en) Heat-recoverable article
US3988399A (en) Heat recoverable articles and methods therefor
US3847721A (en) Heat recoverable articles and methods therefor
CA1260375A (en) Composite pipes and process for manufacturing the same
EP0160528B1 (en) Recoverable article and method
US3539411A (en) Process for protectively covering substrate articles
WO1993000548A1 (en) Material for relining underground pipelines
EP0042262B1 (en) Pleated recoverable material
US4514241A (en) Reinsulation of pipe joints
JPS6262730A (en) Manufacture of thermally recoverable tube
JPS5887015A (en) Method for forming protective coating layer on joints of coated steel pipes
JPS6227134A (en) Thermorestoring tube for covering inside of pipe
SE469015B (en) PLASTIC SHRUFF MUG FOR TWO ROOM END
JPS5854009B2 (en) Manufacturing method for resin pipes that shrink in stages
JP2619348B2 (en) Heat shrink tube manufacturing method
KR950031452A (en) Plastic pipe manufacturing method and apparatus and plastic pipe
CA1321699C (en) Heat recoverable article
US4990379A (en) Heat recoverable article
JPS5922972Y2 (en) Heat shrinking jig for heat shrinkable tubes with different diameters
JPH0670480B2 (en) Thermal expansion tube
JP2020029880A (en) Composite tube
US3651197A (en) Method for fabricating elbow gores
CA1170685A (en) Flexible tee collar
KR100711211B1 (en) 3-layer tape coated steel pipe, manufacturing method and apparatus
KR20040042409A (en) Connecting pipe embeded with heating coil for plastic pipes