JPS6261558B2 - - Google Patents
Info
- Publication number
- JPS6261558B2 JPS6261558B2 JP57060128A JP6012882A JPS6261558B2 JP S6261558 B2 JPS6261558 B2 JP S6261558B2 JP 57060128 A JP57060128 A JP 57060128A JP 6012882 A JP6012882 A JP 6012882A JP S6261558 B2 JPS6261558 B2 JP S6261558B2
- Authority
- JP
- Japan
- Prior art keywords
- sintered body
- silicon nitride
- carbide
- silicon carbide
- metallizing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 26
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 26
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 25
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 25
- 239000010408 film Substances 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 14
- 229910052782 aluminium Inorganic materials 0.000 claims description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 10
- 239000010409 thin film Substances 0.000 claims description 7
- 238000001465 metallisation Methods 0.000 claims description 6
- 238000005240 physical vapour deposition Methods 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 239000002131 composite material Substances 0.000 claims description 4
- 238000007740 vapor deposition Methods 0.000 claims description 4
- 239000000463 material Substances 0.000 description 10
- 239000000758 substrate Substances 0.000 description 9
- 238000005219 brazing Methods 0.000 description 6
- 239000000919 ceramic Substances 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 238000001259 photo etching Methods 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 238000005476 soldering Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000007719 peel strength test Methods 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 229910052573 porcelain Inorganic materials 0.000 description 1
- UCSQEFMMEQPFMD-UHFFFAOYSA-N propan-2-one;1,1,1-trichloroethane Chemical compound CC(C)=O.CC(Cl)(Cl)Cl UCSQEFMMEQPFMD-UHFFFAOYSA-N 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Ceramic Products (AREA)
Description
珪素の窒化物、窒化珪素および同じく珪素の炭
化物、炭化珪素(以下、窒化珪素および炭化珪素
という)の焼結体は共に熱衝撃強度、高温時の機
械的強度等の耐熱諸特性に優れ、化学的にも高い
安定性を示し、しかも優れた耐摩耗性を具えてい
る処から高温用の機械部材、特に最近においては
格段と高い熱衝撃強度によつて内燃機関の各部材
として高アルミナ質セラミツクスに代つて注目さ
れるようになつたが、例えばロツカーアームの摺
動部のチツプとして用いる場合のように金属の如
き異種材料と強固に接合する金属化面の生成に難
があつた。
この理由は、窒化珪素焼結体および炭化珪素焼
結体いずれもが有する約4.5×10-6/℃以下の熱
膨張係数が、異種材料の熱膨張係数、例えば鋼材
の15×10-6/℃と大きく懸隔し、同じセラミツク
スである高アルミナ質磁器の約8.0×10-6/℃に
対しても略々1/2を呈し、この低い熱膨張係数が
上記の耐熱諸特性に大きく寄与する反面、これが
接合される異種材料との間に大きな熱膨張差をも
たらして接合強度を著しく低下させていた。
すなわち、従来の金属化法として般用されてい
たメタライズペーストを基盤の表面にスクリーン
印刷した後、非酸化性雰囲気中において加熱する
メタライズ(厚膜)法において基盤上に生成され
る金属化面は、高い剛性を有するMoあるいはW
を主体とする耐火性金属に限定されるので基盤上
の金属化面によつて上記の熱膨張差を吸収するこ
とができないだけでなく、その金属化面は15〜20
μの厚膜に生成されるのでこの金属化面が、むし
ろ基盤と金属化面との間の熱膨張差も接合強度を
低下させる一因とさえなつていた。
本発明は、特に異種材料との間に大きな接合強
度を呈する窒化珪素および炭化珪素の焼結体表面
の金属化法の確立に成功したもので、それら焼結
体の表面にアルミニウムの薄膜からなる金属化面
を物理蒸着法によつて生成することを特徴とした
ものである。
本発明において、上記の金属化面を生成する金
属としてAlを特定した理由は、該Alが基盤の窒
化珪素および炭化珪素と反応し易く、前者窒化珪
素とは遊離の窒素および酸素と反応し易く、後者
炭化物とは同じく遊離の炭素および酸素と反応し
易く、基盤と強固に結合する金属化面が得られる
ことおよびAlが大きな展延性を有するからであ
り、また金属化面の生成に物理蒸着法を採用した
理由は該金属化面の膜厚を自由に制御しうると共
に、処理温度が比較的低温のため上記反応層を蒸
着膜の基盤との境界部付近に限定して蒸着層の大
部分を上記の高い展延性を有するAl層とし、こ
の展延性によつてロー着をもつて接合される異種
材料との間の熱膨張差を吸収するためである。
実施例 1
常法によつて製作した純度98%、理論密度比98
%で30×10×5mmから板状の炭化珪素焼結体と、
同じく純度90%、理論密度比99%で同寸法の窒化
珪素焼結体をそれぞれ基盤とし、30×10mmの一方
の主表面に対して表面粗さ0.17〜0.48μRaの研磨
加工を施した後、中性洗剤および流水による洗浄
―アセトンによる水分置換―1.1.1トリクロルエ
タンおよびアセトン洗浄―乾燥の各工程によつて
清浄し、真空蒸着機(日本真空技術(株)EVB―
6DH)の真空槽内において10-6Torr台に減圧す
ると共に300℃に加熱し、上記の研磨加工を施し
た主表面に、Alを抵抗加熱によつて溶融、蒸着
して得た種々の厚さのAlの薄膜からなる金属化
面の各基盤に対する接合強度を調べるため、該金
属化面をフオトエツチングによつて巾1.6mm、長
さ5.0mmの長方形パターンとし、これに1mmφの
Cu線長さ約50mmを端部より6mmの箇所で直角に
折り曲げ、この折り曲げた長さ6mmの部分を折り
曲げ箇所が1mm前記パターンの外側端からはずれ
るように固定した後、商品名アルソル45Dと呼ば
れる日本スペリアル社のアルミ用ハンダを用いて
ロー着した後、この銅線を垂直に引張り、Al膜
をひきはがすようにしてピールによる付着強さ試
験を行なつた。その結果を第1表に示す。
Silicon nitride, silicon nitride, silicon carbide, and sintered bodies of silicon carbide (hereinafter referred to as silicon nitride and silicon carbide) both have excellent heat-resistant properties such as thermal shock strength and mechanical strength at high temperatures, and have excellent chemical properties. High-alumina ceramics have been used in high-temperature mechanical parts because of their high mechanical stability and excellent wear resistance, and in particular, as internal combustion engine parts due to their significantly high thermal shock strength. However, it was difficult to create a metallized surface that could be firmly bonded to a different material such as metal, for example when used as a chip for the sliding part of a rocker arm. The reason for this is that the coefficient of thermal expansion of both silicon nitride sintered body and silicon carbide sintered body, which is approximately 4.5×10 -6 /℃ or less, is higher than that of a different material, such as 15×10 -6 /℃ of steel. ℃, and is approximately 1/2 that of the same ceramic, high alumina porcelain, which is approximately 8.0×10 -6 /℃, and this low coefficient of thermal expansion contributes greatly to the heat resistance properties mentioned above. On the other hand, this causes a large difference in thermal expansion between the dissimilar materials being joined, resulting in a significant reduction in joint strength. In other words, in the metallization (thick film) method, which is commonly used as a conventional metallization method, in which a metallization paste is screen printed on the surface of the substrate and then heated in a non-oxidizing atmosphere, the metallized surface generated on the substrate is , Mo or W with high rigidity
Not only is the metallized surface on the substrate unable to absorb the above thermal expansion difference, but the metallized surface is
Since the metallized surface is formed into a thick film of .mu., the difference in thermal expansion between the base and the metallized surface has even become a factor in reducing the bonding strength. The present invention has succeeded in establishing a method for metallizing the surfaces of sintered bodies of silicon nitride and silicon carbide, which exhibit particularly high bonding strength with dissimilar materials. The feature is that the metallized surface is produced by physical vapor deposition. In the present invention, the reason why Al was specified as the metal that generates the metallized surface is that Al easily reacts with the silicon nitride and silicon carbide of the base, and the former silicon nitride easily reacts with free nitrogen and oxygen. This is because the latter carbide easily reacts with free carbon and oxygen, provides a metallized surface that firmly bonds with the substrate, and because Al has great malleability. The reason why this method was adopted is that the film thickness of the metallized surface can be freely controlled, and since the processing temperature is relatively low, the reaction layer can be limited to the vicinity of the boundary between the deposited film and the base, and the size of the deposited layer can be increased. This is because the Al layer having the above-mentioned high malleability is used as the portion, and this malleability absorbs the difference in thermal expansion between the different materials to be joined by brazing. Example 1 Purity 98%, theoretical density ratio 98, manufactured by conventional method
% of a plate-shaped silicon carbide sintered body from 30 x 10 x 5 mm,
Using silicon nitride sintered bodies of the same size with the same purity of 90% and theoretical density ratio of 99% as a base, one main surface of 30 x 10 mm was polished to a surface roughness of 0.17 to 0.48 μRa, and then Cleaning with neutral detergent and running water - Moisture replacement with acetone - 1.1.1 Trichloroethane and acetone washing - Drying, and vacuum evaporation machine (Nippon Vacuum Technology Co., Ltd. EVB)
Various thicknesses were obtained by melting and vapor depositing Al by resistance heating on the main surface which had undergone the polishing process described above. In order to examine the bonding strength of the metallized surface made of a thin Al film to each substrate, the metallized surface was made into a rectangular pattern with a width of 1.6 mm and a length of 5.0 mm by photoetching, and a rectangular pattern of 1 mmφ was formed on this metallized surface by photoetching.
A length of about 50 mm of Cu wire is bent at a right angle at a point 6 mm from the end, and the 6 mm long part is fixed so that the bent point is 1 mm away from the outer edge of the pattern, and then the product is called Arsol 45D. After brazing using aluminum solder from Nihon Superior Co., Ltd., the copper wire was pulled vertically and the Al film was peeled off to perform a peel strength test. The results are shown in Table 1.
【表】
第1表から、基盤が炭化珪素焼結体、窒化珪素
焼結体いずれの場合においても基盤の材質として
の大差はなく、両者共それらの表面に蒸着によつ
て生成されたAlの金属化面の膜厚が1000Åでは
付着強さによつて表わされる基盤との接合強度が
不充分で実用性に乏しく、2000Åから急上昇して
実用性を生じ、10000Å(1.0μ)に達するとロー
着部から剥離する程の強度を示しそれ以上は飽和
する傾向のあることが確められたので量産性の面
からその膜厚は10000Å〜20000Åの範囲内、特に
10000Å程度が好ましい。
実施例 2
前に述べた通り、炭化珪素と窒化珪素の緻密な
焼結体は高温用の機械部材として共に優れた特性
を示し、熱膨張係数も10-6の単位で前者炭化珪素
が約4.4、窒化珪素が約3.2と極めて近似し、これ
ら炭化珪素と窒化珪素の複合焼結体を作成するこ
とができるので、前と同様で30×10×5mmの複合
焼結体が板を製作し、前と同様の試験を行なつた
結果を第2表に示す。但し、基盤の表面に生成し
たAlの蒸着による金属化面は10000Åに固定し
た。[Table] From Table 1, there is no major difference in the material of the substrate whether the substrate is a silicon carbide sintered body or a silicon nitride sintered body; If the film thickness of the metallized surface is 1000 Å, the bonding strength with the base as expressed by adhesion strength is insufficient and practical, but it becomes practical when it rapidly increases from 2000 Å, and when it reaches 10000 Å (1.0 μ), it becomes low. It has been confirmed that the film has a strength that is strong enough to peel off from the bonded part, and that it tends to be saturated beyond that point. Therefore, from the viewpoint of mass production, the film thickness should be within the range of 10,000 Å to 20,000 Å, especially
Approximately 10,000 Å is preferable. Example 2 As mentioned earlier, the dense sintered bodies of silicon carbide and silicon nitride both exhibit excellent properties as mechanical parts for high-temperature use, and the coefficient of thermal expansion is also in the unit of 10 -6 , with the former silicon carbide being approximately 4.4. , silicon nitride is very similar to about 3.2, and it is possible to create a composite sintered body of silicon carbide and silicon nitride.As before, a composite sintered body of 30 x 10 x 5 mm is made into a plate, Table 2 shows the results of the same test as before. However, the metallized surface formed on the surface of the substrate by Al vapor deposition was fixed at 10,000 Å.
【表】
第2表から、炭化珪素と窒化珪素の焼結体を基
盤とした場合も、炭化珪素および窒化珪素のそれ
ぞれ焼結体と略々同等の成果が得られることが明
らかにされた。
実施例 3
前の各実施例は、いずれもAlの蒸着による金
属化面に直接ロー着を施して基盤との接合強度に
ついて試験した関係からアルミニウム用のロー剤
を用いる他なかつたが、上記Alからなる金属化
面にCu、Ni、Ag等を真空槽の真空を破ることな
くAlの上へ蒸着することによつて半田ロー着を
行なうことができる。この方法によつてAlの蒸
着による金属化面の膜厚を、前の各実施例におい
て実用性の面から好ましいとされた10000Åより
も薄くすることができ、例えばAl金属化面の膜
厚が5000Åの第1表のNo.5の試料にCuを20000Å
蒸着した場合、その接合強度はハンダロー着の強
度限界以上の付着強さをもつ、すなわち5.0Kg/
1.6mm巾以上の付着強さを示した。
以上の通り、珪素の窒化物および炭化物焼結体
または両者の複合焼結体の表面にアルミニウムの
薄膜からなる金属化面を、物理的蒸着法によつて
生成することを特徴とした本発明の金属化法は、
異種材料との熱膨張差を展延性の高いアルミニウ
ムの薄膜によつて吸収するので高い接合強度を呈
するだけでなく、生成された金属化面は基盤との
境界部のみにおいて反応し、表面はロー着可能の
金属状態を示す等の優れた効果がある。
なお、ロー着によつて接合しうる相手方の材料
は金属材に限らず、酸化物あるいは他の窒化物、
炭化物等他のセラミツク焼結体の表面に金属化面
を設けたものでもよく、大型の窒化珪素および炭
化珪素焼結体を得るためにこれら同質の材料を2
体もしくはそれ以上に分割して接合することもで
きるが、熱膨張係数の異なる異種材料とのロー着
に対して特に有効である。[Table] From Table 2, it was revealed that results almost equivalent to those of the sintered bodies of silicon carbide and silicon nitride can be obtained even when the sintered body of silicon carbide and silicon nitride is used as the base. Example 3 In each of the previous examples, a brazing agent for aluminum was used because the bonding strength with the substrate was tested by directly brazing the metallized surface by vapor deposition of Al. Soldering can be performed by vapor-depositing Cu, Ni, Ag, etc. onto the metallized surface of Al without breaking the vacuum of the vacuum chamber. By this method, the film thickness of the metallized surface by Al vapor deposition can be made thinner than 10,000 Å, which was considered preferable from the viewpoint of practicality in each of the previous examples. Add 20000Å of Cu to the sample No. 5 in Table 1 of 5000Å.
When vapor-deposited, the bond strength exceeds the strength limit of solder soldering, that is, 5.0 kg/
It showed adhesion strength of 1.6mm or more. As described above, the present invention is characterized in that a metallized surface consisting of a thin film of aluminum is formed on the surface of a silicon nitride and carbide sintered body or a composite sintered body of both by physical vapor deposition. The metallization method is
The difference in thermal expansion between dissimilar materials is absorbed by the highly malleable aluminum thin film, which not only provides high bonding strength, but the metallized surface that is generated reacts only at the interface with the base, leaving the surface with a low It has excellent effects such as showing a metal state that can be attached. The materials that can be joined by brazing are not limited to metals, but also include oxides, other nitrides,
It is also possible to provide a metallized surface on the surface of other ceramic sintered bodies such as carbide, and to obtain large-sized silicon nitride and silicon carbide sintered bodies, two of these homogeneous materials can be used.
Although it is possible to divide it into two parts or more and join them together, this is particularly effective for brazing with dissimilar materials having different coefficients of thermal expansion.
Claims (1)
属化面を、物理蒸着法によつて生成することを特
徴とする珪素の窒化物および炭化物焼結体表面の
金属化法。 2 珪素の窒化物が窒化珪素であり、珪素の炭化
物が炭化珪素であることを特徴とする特許請求の
範囲第1項記載の焼結体表面の金属化法。 3 焼結体表面のアルミニウムの薄膜からなる金
属化面の膜厚が2000Å以上であることを特徴とす
る特許請求の範囲第1または第2項記載の珪素の
窒化物および炭化物焼結体表面の金属化法。 4 焼結体表面にアルミニウムの薄膜からなる金
属化面を、物理蒸着法によつて生成することを特
徴とする珪素の窒化物と珪素の炭化物からなる複
合焼結体表面の金属化法。 5 珪素の窒化物が窒化珪素であり、珪素の炭化
物が炭化珪素であることを特徴とする特許請求の
範囲第4項記載の焼結体表面の金属化法。 6 焼結体表面のアルミニウムの薄膜からなる金
属化面の膜厚が2000Å以上であることを特徴とす
る特許請求の範囲第4または第5項記載の珪素の
窒化物および炭化物焼結体表面の金属化法。 7 焼結体表面に物理的蒸着法によつて生成した
アルミニウムの薄膜上に、半田ローと濡れ性の高
い金属の薄膜を同一真空内にて続いて蒸着するこ
とによつて被着したことを特徴とする窒化珪素お
よび炭化珪素またはそれら両者の複合した焼結体
表面の金属化法。 8 焼結体表面に物理的蒸着法によつて生成する
アルミニウムの薄膜の膜厚が2000Å以上であるこ
とを特徴とした特許請求の範囲第7項記載の窒化
珪素および炭化珪素またはそれら両者の固溶した
焼結体表面の金属化法。[Scope of Claims] 1. A method for metallizing the surface of a silicon nitride and carbide sintered body, characterized in that a metallized surface consisting of a thin film of aluminum is produced on the surface of the sintered body by physical vapor deposition. 2. The method for metallizing the surface of a sintered body according to claim 1, wherein the silicon nitride is silicon nitride and the silicon carbide is silicon carbide. 3. The silicon nitride and carbide sintered body surface according to claim 1 or 2, wherein the metallized surface made of a thin aluminum film on the sintered body surface has a film thickness of 2000 Å or more. Metallization method. 4. A method for metallizing the surface of a composite sintered body made of silicon nitride and silicon carbide, characterized in that a metallized surface made of a thin film of aluminum is produced on the surface of the sintered body by physical vapor deposition. 5. The method for metallizing the surface of a sintered body according to claim 4, wherein the silicon nitride is silicon nitride and the silicon carbide is silicon carbide. 6. The silicon nitride and carbide sintered body surface according to claim 4 or 5, wherein the metallized surface made of a thin aluminum film on the sintered body surface has a film thickness of 2000 Å or more. Metallization method. 7. On the thin film of aluminum produced by physical vapor deposition on the surface of the sintered body, a thin film of metal with high wettability is deposited by successive vapor deposition in the same vacuum. A method for metallizing the surface of a sintered body of silicon nitride, silicon carbide, or a combination of both. 8. The hardening of silicon nitride and silicon carbide, or both of them, according to claim 7, characterized in that the thin film of aluminum produced on the surface of the sintered body by physical vapor deposition has a thickness of 2000 Å or more. A method of metallizing the surface of a molten sintered body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6012882A JPS58176189A (en) | 1982-04-09 | 1982-04-09 | Metallization of silicon nitride and carbide sintered body surface |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6012882A JPS58176189A (en) | 1982-04-09 | 1982-04-09 | Metallization of silicon nitride and carbide sintered body surface |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58176189A JPS58176189A (en) | 1983-10-15 |
JPS6261558B2 true JPS6261558B2 (en) | 1987-12-22 |
Family
ID=13133181
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6012882A Granted JPS58176189A (en) | 1982-04-09 | 1982-04-09 | Metallization of silicon nitride and carbide sintered body surface |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58176189A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6464453A (en) * | 1987-09-03 | 1989-03-10 | Canon Kk | Telephone set |
JPH05502779A (en) * | 1990-07-26 | 1993-05-13 | モトローラ・インコーポレイテッド | Cellular telephone controller with synthetic voice feedback for directory number verification and call status |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3861032D1 (en) * | 1987-03-13 | 1990-12-20 | Toshiba Kawasaki Kk | METHOD FOR METALLIZING A NITRIDE CERAMIC OBJECT. |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55116686A (en) * | 1979-02-22 | 1980-09-08 | Degussa | Method of forming solderable metal layer on ceramic |
JPS58125673A (en) * | 1982-01-12 | 1983-07-26 | 新明和工業株式会社 | Diffusion joining method |
-
1982
- 1982-04-09 JP JP6012882A patent/JPS58176189A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55116686A (en) * | 1979-02-22 | 1980-09-08 | Degussa | Method of forming solderable metal layer on ceramic |
JPS58125673A (en) * | 1982-01-12 | 1983-07-26 | 新明和工業株式会社 | Diffusion joining method |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6464453A (en) * | 1987-09-03 | 1989-03-10 | Canon Kk | Telephone set |
JPH05502779A (en) * | 1990-07-26 | 1993-05-13 | モトローラ・インコーポレイテッド | Cellular telephone controller with synthetic voice feedback for directory number verification and call status |
Also Published As
Publication number | Publication date |
---|---|
JPS58176189A (en) | 1983-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4077888B2 (en) | Ceramic circuit board | |
JPS61158876A (en) | Direct liquid phase bonding for ceramic to metal | |
JPH0216273B2 (en) | ||
US3793705A (en) | Process for brazing a magnetic ceramic member to a metal member | |
US6884511B1 (en) | Method for brazing ceramic-containing bodies, and articles made thereby | |
JP3834351B2 (en) | Ceramic circuit board | |
JPS6261558B2 (en) | ||
JP2772273B2 (en) | Silicon nitride circuit board | |
Intrater | Review of some processes for ceramic‐to‐metal joining | |
JPS61132580A (en) | Metallization method for nitride ceramic bodies | |
JPS58140381A (en) | Metallization of silicon nitride sintered body surface | |
JP2563809B2 (en) | Aluminum nitride substrate for semiconductors | |
JP3977875B2 (en) | Brazing alloy and joined body for joining of alumina-based ceramics-aluminum alloy | |
JPH0248515B2 (en) | ||
JPH059396B2 (en) | ||
JP2751473B2 (en) | High thermal conductive insulating substrate and method of manufacturing the same | |
JPS6337077B2 (en) | ||
JPS59223280A (en) | Method of bonding ceramic and metal | |
JP3505212B2 (en) | Joint and method of manufacturing joint | |
JPH04235246A (en) | Alloy for metalizing for ceramics and metalizing method | |
KR0180485B1 (en) | Method for producing silicon nitride sintered body and metal joined body | |
JPH0369866B2 (en) | ||
JPS62179893A (en) | Brazing filler metal for joining metal and ceramics | |
JPS63318759A (en) | Ceramic circuit substrate | |
JPS59164679A (en) | Ceramic metal bonded body |