JPS6259509A - Production of high-density carbon material - Google Patents
Production of high-density carbon materialInfo
- Publication number
- JPS6259509A JPS6259509A JP60198315A JP19831585A JPS6259509A JP S6259509 A JPS6259509 A JP S6259509A JP 60198315 A JP60198315 A JP 60198315A JP 19831585 A JP19831585 A JP 19831585A JP S6259509 A JPS6259509 A JP S6259509A
- Authority
- JP
- Japan
- Prior art keywords
- carbon material
- pressure
- producing
- density carbon
- resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003575 carbonaceous material Substances 0.000 title claims abstract description 42
- 238000004519 manufacturing process Methods 0.000 title claims description 21
- 239000007789 gas Substances 0.000 claims abstract description 39
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 21
- 239000010959 steel Substances 0.000 claims abstract description 21
- 229920005989 resin Polymers 0.000 claims abstract description 15
- 239000011347 resin Substances 0.000 claims abstract description 15
- 238000000465 moulding Methods 0.000 claims abstract description 8
- 239000011302 mesophase pitch Substances 0.000 claims abstract description 5
- 239000000203 mixture Substances 0.000 claims abstract description 5
- 239000007788 liquid Substances 0.000 claims abstract description 4
- 238000002156 mixing Methods 0.000 claims abstract description 4
- 230000002706 hydrostatic effect Effects 0.000 claims abstract 4
- 239000000463 material Substances 0.000 claims description 29
- 238000010304 firing Methods 0.000 claims description 24
- 229910052739 hydrogen Inorganic materials 0.000 claims description 24
- 239000001257 hydrogen Substances 0.000 claims description 24
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 21
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 20
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 13
- 239000004917 carbon fiber Substances 0.000 claims description 13
- 239000000126 substance Substances 0.000 claims description 8
- 239000011232 storage material Substances 0.000 claims description 7
- 238000005087 graphitization Methods 0.000 claims description 6
- 239000005416 organic matter Substances 0.000 claims description 4
- 239000011271 tar pitch Substances 0.000 claims description 4
- 239000004698 Polyethylene Substances 0.000 claims description 3
- 229920001568 phenolic resin Polymers 0.000 claims description 3
- 239000005011 phenolic resin Substances 0.000 claims description 3
- -1 polyethylene Polymers 0.000 claims description 3
- 229920000573 polyethylene Polymers 0.000 claims description 3
- 229920001187 thermosetting polymer Polymers 0.000 claims description 3
- 239000011261 inert gas Substances 0.000 claims description 2
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 claims 2
- 229920005992 thermoplastic resin Polymers 0.000 claims 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 14
- 239000011230 binding agent Substances 0.000 abstract description 14
- 239000000843 powder Substances 0.000 abstract description 7
- 229910002804 graphite Inorganic materials 0.000 abstract description 5
- 239000010439 graphite Substances 0.000 abstract description 5
- 239000000571 coke Substances 0.000 abstract description 4
- 239000011368 organic material Substances 0.000 abstract description 4
- 229910021382 natural graphite Inorganic materials 0.000 abstract description 3
- 239000011295 pitch Substances 0.000 abstract description 2
- 239000011269 tar Substances 0.000 abstract description 2
- 229910021383 artificial graphite Inorganic materials 0.000 abstract 2
- 238000010000 carbonizing Methods 0.000 abstract 2
- 238000007872 degassing Methods 0.000 abstract 1
- 238000000034 method Methods 0.000 description 15
- 229910052799 carbon Inorganic materials 0.000 description 9
- 239000002994 raw material Substances 0.000 description 9
- 238000003466 welding Methods 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 8
- 238000000354 decomposition reaction Methods 0.000 description 6
- 239000000047 product Substances 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000005979 thermal decomposition reaction Methods 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- 238000003754 machining Methods 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000001513 hot isostatic pressing Methods 0.000 description 2
- 238000009776 industrial production Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000004816 latex Substances 0.000 description 2
- 229920000126 latex Polymers 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000004663 powder metallurgy Methods 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000003566 sealing material Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000012611 container material Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000007770 graphite material Substances 0.000 description 1
- 238000000462 isostatic pressing Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 239000002006 petroleum coke Substances 0.000 description 1
- 239000011301 petroleum pitch Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B30—PRESSES
- B30B—PRESSES IN GENERAL
- B30B11/00—Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
- B30B11/001—Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a flexible element, e.g. diaphragm, urged by fluid pressure; Isostatic presses
- B30B11/002—Isostatic press chambers; Press stands therefor
Landscapes
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Ceramic Products (AREA)
Abstract
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は高密度炭素材料の製造方法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for producing a high-density carbon material.
炭素材料は不活性雰囲気中における優れた耐熱性、化学
薬品に対する化学的安定性、軽量性など、他の材料にな
い特性を具有していることから、近年、その利用分野は
拡大の一途を辿っている。Carbon materials have properties not found in other materials, such as excellent heat resistance in an inert atmosphere, chemical stability against chemicals, and light weight, so their field of use has continued to expand in recent years. ing.
なかでも、特に高強度、高弾性のカーボン繊維の出現に
よるカーボン繊維複合材料の普及には目覚ましいものが
ある。Among these, the spread of carbon fiber composite materials has been remarkable, especially due to the appearance of high-strength, high-elastic carbon fibers.
一方、また、炭素材料にはカーボン繊維の外、不定形炭
素や黒鉛など種々の形態のものがあ、す、各々が特異な
性質を有していることも他の材料には見られない特質で
ある。On the other hand, in addition to carbon fiber, carbon materials come in various forms such as amorphous carbon and graphite, and each has unique properties that are not found in other materials. It is.
このような特質をもつ炭素材料に対し、近年、更に高密
度化の要求が多く出されている。即ち、強度やガス不透
過性や機械加工による鏡面化仕上げ性の改善が望まれ、
そのための高密度化に対する要求が強くなりつつある。In recent years, there have been many demands for higher density carbon materials having such characteristics. In other words, improvements in strength, gas impermeability, and mirror finish properties through machining are desired.
For this purpose, the demand for higher density is becoming stronger.
本発明は、かかる要求に即応する高密度炭素材料の好適
な製造方法に関する。The present invention relates to a suitable method for producing a high-density carbon material that readily meets such demands.
そして、かかる高密度炭素材料の用途としては構造材の
外、燃料電池の隔壁板、半導体の拡散熱処理用のサセプ
ターなどが代表的なものとして挙げられる。In addition to structural materials, typical applications of such high-density carbon materials include partition plates for fuel cells, susceptors for diffusion heat treatment of semiconductors, and the like.
(従来の技術)
ところで、上述の如き炭素材料の原料は通常、昇温加熱
すると、炭化する、所謂、有機物であり、その代表的な
ものとして石油ピッチやタール2 コークス、樹脂など
が挙げられ、一般に炭素材料はこれらを原料として、場
合によっては黒鉛などと混合し成形して焼成することに
より製造されている。(Prior Art) By the way, raw materials for carbon materials such as those mentioned above are usually so-called organic substances that carbonize when heated to an elevated temperature. Typical examples thereof include petroleum pitch, tar 2 coke, resin, etc. Generally, carbon materials are manufactured by using these materials as raw materials, mixing them with graphite or the like in some cases, shaping the mixture, and firing the mixture.
しかし、この焼成、即ち、炭化は有機物原料が重合5縮
合を起こし、水素などを含む官能基が、もとの有機物分
子から離脱することを利用したものであり、ガス体とし
て離脱するこれらの官能基を基とするガス伏分子の通路
が気孔として残るため、通常、多孔性の焼成体しか得ら
れないという欠点を有していた。However, this calcination, or carbonization, takes advantage of the fact that organic raw materials undergo polymerization and condensation, and functional groups containing hydrogen etc. are separated from the original organic molecules. Since the passages of the gas-permeating molecules based on the group remain as pores, this method usually has the disadvantage that only porous fired products can be obtained.
又、急速に昇温加熱すると、前記官能基などの離脱(熱
分解)が急激に生じて焼成体にクラックが発生するため
、昇温速度を非常に低くしなければならず、その焼成に
は数日から数週間の長時間を要し、工業生産上の大きな
隘路であった。In addition, when heated rapidly, the functional groups etc. are rapidly removed (thermal decomposition) and cracks occur in the fired product. Therefore, the heating rate must be kept very low, and It took a long time, ranging from several days to several weeks, and was a major bottleneck in industrial production.
(発明が解決しようとする問題点)
本発明は叙上の如き事実に対処し、従来の炭素材料の製
造技術の改善を図るべく、特に焼成工程に圧力を加える
方法に着目して鋭意研究を重ね、その結果、到達するに
至ったものである。(Problems to be Solved by the Invention) The present invention deals with the above-mentioned facts, and in order to improve the conventional manufacturing technology of carbon materials, intensive research has been carried out, particularly focusing on the method of applying pressure during the firing process. As a result of repeated efforts, we have reached this goal.
即ち、高圧下にて、炭化性の有機物であるタール、ピッ
チや樹脂などの成形体を焼成した結果、高圧下では、大
気圧近傍での焼成の場合と比較して、前記官能基が基と
なって発生したガス体が低温度で、分子量の小さなメタ
ンや水素にまで分解し、かつメタンは大気圧近傍よりも
低い温度で、水素と炭素にまで分解することを見出した
。That is, as a result of firing molded bodies made of carbonizable organic materials such as tar, pitch, and resin under high pressure, the functional groups become more radical under high pressure than when fired near atmospheric pressure. They discovered that the gas produced by this process decomposes into methane and hydrogen with small molecular weights at low temperatures, and that methane decomposes into hydrogen and carbon at temperatures lower than near atmospheric pressure.
このことは第1図に示すように高圧下で焼成すると炭素
の収率が高くなることによって推定することができる。This can be inferred from the fact that the yield of carbon increases when fired under high pressure, as shown in FIG.
又、一方、別途水素を吸蔵もしくは、系外にi3過放出
するような容器中に密閉すると、この分解反応が促進さ
れていると考えられる現象を見出した。さらには緻密化
した炭素材料も高温下では、水素を透過し、この水素の
圧力よりも高いと考えられる圧力で加圧しておけば、ク
ラックを生じないと推定される現象を知見した。On the other hand, we have also discovered a phenomenon in which this decomposition reaction is thought to be accelerated when hydrogen is separately stored or sealed in a container that releases i3 in excess to the outside of the system. Furthermore, they discovered a phenomenon in which densified carbon materials also permeate hydrogen at high temperatures, and if they are pressurized at a pressure that is thought to be higher than the pressure of hydrogen, they will not develop cracks.
本発明は、これら研究の結果、得られた知見にもとづく
ものであり、焼成工程において、圧力を加えることによ
り前述の如き従来技術の欠点を解消することを目的とす
る。The present invention is based on the knowledge obtained as a result of these studies, and aims to eliminate the drawbacks of the prior art as described above by applying pressure in the firing process.
(問題点を解決するための手段)
しかして、上記目的に適合する本発明の共に封入すると
ころは、先ず、第1の発明としては粉末状の炭素材もし
くはチョップ状のカーボン繊維に炭化性有機物を混合し
、冷間もしくは温間にて加圧し、成形した後、鋼製の容
器中に気密に封入し、高圧ガス雰囲気下で加圧焼成する
ことであり、第2の発明は前記工程に引き続き、さらに
得られた焼成体を更に高温下に曝して黒鉛化することで
ある。(Means for Solving the Problems) Accordingly, the present invention that meets the above objective is firstly encapsulated with a carbonizable organic material in a powdered carbon material or chopped carbon fiber. The second invention is to mix, pressurize in cold or warm, shape, and then hermetically seal in a steel container and pressurize and sinter in a high-pressure gas atmosphere. Subsequently, the obtained fired body is further exposed to a high temperature to graphitize it.
ここで、本発明に使用する原料としては加熱焼成により
炭化するものであれば殆どのものが使用可能であるが、
後述するように鋼製の容器に密封した゛状態で“焼成す
るため鋼製の容器などに吸収されないようなガス成分を
発生する如き原料はそのガス成分の有する内圧力により
焼成体が割れることがあるので好ましくない。Here, as the raw material used in the present invention, most materials can be used as long as they can be carbonized by heating and firing.
As will be described later, raw materials that generate gas components that cannot be absorbed by the steel container because they are fired while sealed in a steel container may cause the fired product to crack due to the internal pressure of the gas components. I don't like it because it is.
そこで、高密度の黒鉛材料の製造を目的とする場合には
、黒鉛粉末もしくは1900℃以上の温度に加熱するこ
とにより黒鉛化するコークス粉末と、これに加圧焼成時
に成形体の収縮を生じ−させる特性を具有する炭化性有
機物をバインダー材として混合したものを用いる。Therefore, when the purpose is to produce a high-density graphite material, it is necessary to use graphite powder or coke powder that graphitizes by heating to a temperature of 1,900°C or higher, which causes shrinkage of the compact during pressure firing. A binder material containing a carbonizable organic material having the property of
又、高密度の炭素繊維/炭素複合材の製造を目的とする
場合には、PAN系またはタール・ピッチ系のカーボン
繊維のチョップ材に、上記特性を有する炭化性有機物バ
インダー材を混合する。Further, when the purpose is to manufacture a high-density carbon fiber/carbon composite material, a carbonizable organic binder material having the above-mentioned characteristics is mixed with a chopped material of PAN-based or tar-pitch-based carbon fiber.
バインダー材としては、液状のタール・ピッチ。Liquid tar pitch is used as a binder material.
樹脂や粉末状のメソフェーズピッチ、樹脂が挙げられる
。樹脂としては、ポリエチレンなど熱可塑性のもののほ
か、熱硬化性のフェノール樹脂なども使用可能である。Examples include resin, powdered mesophase pitch, and resin. As the resin, in addition to thermoplastics such as polyethylene, thermosetting phenolic resins and the like can be used.
そして、上記原料を次にボールミル、らいかい機、ニー
ダなどにより十分に混合した後、冷間もしくは250℃
程度までの温間にて、金型もしくは静水圧プレス成形を
して成形体さする。Then, the above raw materials are thoroughly mixed using a ball mill, a sieve machine, a kneader, etc., and then cooled or heated at 250°C.
The molded product is molded using a mold or isostatic press at a certain temperature.
等方性の高密度炭素材を製造する場合には、静水圧プレ
ス成形を行うのが効果的である。When manufacturing an isotropic high-density carbon material, it is effective to perform isostatic press molding.
得られた成形体はこれを鋼製の容器中に気密に封入し、
高圧ガス雰囲気下において加圧成形する。The obtained molded body is hermetically sealed in a steel container.
Pressure molding is performed under a high pressure gas atmosphere.
容器は後述の高圧ガス雰囲気下での焼成の際の圧媒ガス
の侵入を防ぐため圧媒ガスに対して気密な構造とする必
要があり、容器と蓋部分との接合は、通常、溶接による
ことが好ましい。The container must have an airtight structure to prevent pressure gas from entering during firing in a high-pressure gas atmosphere, which will be described later.The container and lid are usually joined by welding. It is preferable.
この場合、溶接時の熱により成形体が加熱されバインダ
ー材が熱分解を生じ、焼成後の不均質や熱分解により生
じたガスによる溶接不良を生じることがあるので成形体
挿入後の蓋溶接部分は成形体から離した構造としたり、
溶接時に容器部分を水などにより冷却することが好まし
い。In this case, the molded body is heated by the heat during welding, causing thermal decomposition of the binder material, which may result in non-uniformity after firing and poor welding due to gas generated by thermal decomposition. has a structure separated from the molded body,
It is preferable to cool the container portion with water or the like during welding.
なお、密封は容器内部を脱気しつつ行うことが好ましく
、最も通常の構成としては容器に脱気用の管を設ける。Note that the sealing is preferably performed while deaerating the inside of the container, and the most common configuration is to provide the container with a deaeration pipe.
成形体を封入した容器は、その後、加圧焼成に供される
が、この場合の設備としては、近年、粉末冶金分野で粉
末の加圧焼結に使用されている熱間静水圧加圧(HIP
)装置が発生できる圧力が1000〜2000 kg/
dと高いことや、直径50■の大型設備まで技術が確立
されていることから工業上有利である。The container containing the compact is then subjected to pressure sintering, and the equipment used in this case is hot isostatic pressing (hot isostatic pressing), which has been used in recent years for pressure sintering of powder in the powder metallurgy field. HIP
) The pressure that the device can generate is 1000 to 2000 kg/
It is industrially advantageous because it has a high diameter of 50 cm and the technology has been established for large-scale equipment with a diameter of 50 cm.
そして、この加圧焼成にあたっては炭化性有機物の分解
により生じるガス成分の圧力が容器を膨らませて容器を
破損するのを防止する関係から昇圧を先行させることが
肝要である。In this pressurized firing, it is important to increase the pressure in advance in order to prevent the pressure of the gas component generated by the decomposition of the carbonizable organic matter from inflating the container and damaging the container.
又、容器内の発生ガスは一般に炭素と水素に分解される
が、容器の鋼中の水素が飽和状態に達すると鋼中の水素
は容器から圧媒ガス中に放出される。Further, the generated gas in the container is generally decomposed into carbon and hydrogen, but when the hydrogen in the steel of the container reaches a saturated state, the hydrogen in the steel is released from the container into the pressure gas.
そこで、圧媒ガス中の水素の増加を抑制するためあるい
は鋼の主成分である鉄が発生メタンガスの分解を促進す
るためには容器内部に水素吸蔵性の大きな金属、例えば
チタン、鋼を配置しておくことが効果的である。Therefore, in order to suppress the increase in hydrogen in the pressurized gas or to promote the decomposition of methane gas generated by iron, which is the main component of steel, a metal with a large hydrogen storage capacity, such as titanium or steel, is placed inside the container. It is effective to keep it.
更に、処理後、容器から焼成体を取り出すのを容易にす
ると共に水素吸蔵材と焼成体、容器との反応を防止する
上から容器と成形体の隙間に離型材を介在することも有
効である。Furthermore, it is also effective to interpose a mold release material in the gap between the container and the molded body to facilitate the removal of the fired body from the container after treatment and to prevent reactions between the hydrogen storage material, the fired body, and the container. .
離型材としては処理中に緻密化しないセラミックス粉末
、例えば、アルミナやBNもしくは可撓性黒鉛シートな
どが適当である。As the mold release material, ceramic powders that do not become densified during processing, such as alumina, BN, or flexible graphite sheets, are suitable.
かくして上述の工程によって、成形体は緻密な高密度炭
素の焼成体となるが、更にこの焼成体に対し必要に応じ
黒鉛化処理を行うことがある。Through the above-described steps, the molded body becomes a dense fired body of high-density carbon, but this fired body may be further subjected to graphitization treatment if necessary.
これは同処理を行うことにより2000℃以上の高温下
で使用する構造材やヒータの素材として使用が可能とな
る。By performing the same treatment, it can be used as a material for structural materials and heaters that are used at high temperatures of 2000°C or higher.
また、機械加工をより容易にすることが可能となる。Additionally, machining can be made easier.
この黒鉛化処理は、通常、HIP装置を用いて1000
〜2000kg/cn(の高圧下で行うと大気圧下より
低い2000℃前後で達成される。This graphitization treatment is usually performed using a HIP device for 1000
When carried out under a high pressure of ~2000 kg/cn, it is achieved at around 2000°C, which is lower than atmospheric pressure.
(実施例)
以下、更に上記本発明方法の具体的な実施態様を添付図
面にもとづき詳述する。(Example) Hereinafter, specific embodiments of the method of the present invention will be described in detail based on the accompanying drawings.
第2図は本発明方法により製造する焼成体原料の炭素材
料の成形体(A)、即ち、粉末状の炭素材もしくはチョ
ップ状のカーボン繊維にバインダー材である炭化性有機
物を混合し、冷間もしくは温間で金型もしくは液圧等に
よる静水圧加圧成形悼より成形した成形体(A)を鋼製
の容器中に気密に封入した状態を示し、容器は後述の高
圧−ガス雰囲気下での焼成の際の圧媒ガスの侵入を防ぐ
ため、圧媒ガスに対して気密な構造とする必要があり、
容器本体(11と底部分(2)、蓋部分(3)とを溶接
により接合して構成している。FIG. 2 shows a molded body (A) of a carbon material as a raw material for a fired body produced by the method of the present invention, that is, a powdered carbon material or chopped carbon fiber is mixed with a carbonizable organic substance as a binder material, and then cold-processed. Alternatively, the molded body (A) formed by warm isostatic pressing using a mold or hydraulic pressure is hermetically sealed in a steel container, and the container is heated under a high pressure gas atmosphere as described below. In order to prevent pressure gas from entering during firing, the structure must be airtight against pressure gas.
It is constructed by joining the container body (11), the bottom part (2), and the lid part (3) by welding.
勿論、容器本体(1)は底部分(2)は一体とすること
も可能であり、又、上記の場合において、溶接時の熱に
より成形体(A)が加熱され、バインダー材が熱分解を
生じ、焼成後の不均質化や熱分解により生じたガスによ
る溶接不良を生じることがあるため、第3図の如く成形
体挿入後の溶接部分(5)を成形体(A)から離した構
造としたり、溶接後に容器部分を水などにより冷却する
ことが好ましい。Of course, the bottom part (2) of the container body (1) can be made integral, and in the above case, the molded body (A) is heated by the heat during welding, and the binder material is thermally decomposed. This can lead to non-uniformity after firing and welding defects due to gas generated by thermal decomposition, so we recommend a structure in which the welded part (5) after inserting the compact is separated from the compact (A) as shown in Figure 3. Alternatively, it is preferable to cool the container portion with water or the like after welding.
なお、第2図における容器では蓋部分(3)の肉厚を他
の部分よりも薄(しており、これは爾後の加圧焼成工程
の終わりにおける減圧降温時に容器の内部の残圧による
容器の割れがこの部分で選択的に生じるよう意図されて
いる。In addition, in the container shown in Fig. 2, the thickness of the lid part (3) is thinner than other parts. It is intended that cracking will occur selectively in this area.
そして、密封は容器内部を脱気しつつ行うことが好まし
く、そのため第2図の如く容器に脱気用の管(4)が設
けられる。It is preferable to seal the container while deaerating the inside of the container, and for this purpose, the container is provided with a deaeration pipe (4) as shown in FIG.
しかして、本発明方法にあっては、先ず、前述した粉末
状の炭素材もしくはチョップ状のカーボン繊維にバイン
ダー材として炭化性を機物を混合し、ボールミル、らい
かい機、ニーダなどで十分に混合した後、冷間もしくは
温間で加圧成形を行ない、成形体とした後、前記の容器
中に気密に封入する。Therefore, in the method of the present invention, first, a carbonizable material is mixed as a binder material into the powdered carbon material or chopped carbon fibers described above, and then the powdered carbon material or the chopped carbon fiber is mixed with a carbonizable material as a binder material, and then the powdered carbon material or the chopped carbon fiber is mixed with a carbonizable material as a binder material. After mixing, cold or warm pressure molding is performed to obtain a molded product, which is then hermetically sealed in the container.
そして、この成形体を封入した容器はその後、次いで加
圧焼成工程に付す。Then, the container containing this molded body is then subjected to a pressure firing process.
加圧焼成の設備としては、前述の如<HIP装置が工業
的にを利であり使用される。As equipment for pressurized firing, the HIP apparatus described above is industrially advantageous and used.
第4図はかかるHIP装置を使用した場合の焼成工程を
示す。FIG. 4 shows the firing process when such a HIP apparatus is used.
ここで、HIP装置本体は近年、粉末冶金分野で粉末の
加圧焼結に使用されている装置であり、その構成は基本
的に第7図にその詳細を示す如く耐圧円筒(11)と、
その上下開口を閉塞する上M(12)と下1i(13)
とによって区画形成され、各々の嵌合部は夫々シール材
(14) (15)によって気密に保持されており、蓋
部(12) (13)に作用する圧力はプレス枠体(2
4)によって支持されている。Here, the HIP device main body is a device that has been used for pressure sintering of powder in the powder metallurgy field in recent years, and its configuration is basically a pressure-resistant cylinder (11), as shown in detail in FIG.
Upper M (12) and lower 1i (13) that close the upper and lower openings
The fitting portions are held airtight by sealing materials (14) and (15), respectively, and the pressure acting on the lid portions (12) and (13) is absorbed by the press frame (2).
4) is supported.
そして、上記によって区画形成される高圧容器内部には
被処理体、即ち容器入り成形体(10)を載置する試料
台(9)を包囲して、該被処理体(10)を加熱昇温す
るため支持部材(18)によって支持された電気加熱抵
抗線よりなる発熱体(18)およびこれら発熱体く18
)からの熱により耐圧円筒(11)や上M (12)
。The interior of the high-pressure container partitioned as described above surrounds the sample stage (9) on which the object to be processed, that is, the molded object (10) in the container is placed, and the object to be processed (10) is heated and heated. A heating element (18) made of an electrically heated resistance wire supported by a support member (18) to
) The pressure cylinder (11) and upper M (12)
.
下1(13)−5の散逸を抑制する断熱層(17)が組
み込まれて炉室(16)を画成する。そして、高圧容器
には水冷ジャケソI−(25)が併設されると共に圧媒
ガスを導入孔(22)より供給するため窒素ガス、アル
ゴンガス等の不活性ガス集合装置(26)、圧縮i (
28)及び減圧調整器(27)ならびに塞止弁(■、)
〜(■8)を含む圧媒ガス4人配管系が付設される外、
発熱体への加熱電源(32)、制御装置(33)を含む
電気供給回路が設けられており、一方、真空ポンプ(3
0)。A heat insulating layer (17) is incorporated to suppress dissipation of the bottom 1 (13)-5 to define a furnace chamber (16). A water-cooled jacket I-(25) is attached to the high-pressure vessel, and in order to supply pressure medium gas from the introduction hole (22), an inert gas collection device (26) such as nitrogen gas or argon gas, and a compressor i (
28) and pressure reducing regulator (27) and blocking valve (■,)
In addition to being equipped with a 4-person piping system for pressurized gas containing ~(■8),
An electric supply circuit including a heating power source (32) to the heating element and a control device (33) is provided, while a vacuum pump (3
0).
塞止弁(31)を含む圧媒ガス排出配管系が付設されて
いる。A pressure medium gas discharge piping system including a blocking valve (31) is provided.
以下、かかるH I P装置を使用した場合について焼
成工程を説明する。Hereinafter, the firing process will be explained in the case where such an HIP apparatus is used.
先ず、第4図に示すように成形体(A)を封入した容器
即ち被処理体(10)を試料台(9)上に配置した後、
真空ポンプ(30)を運転することによりHIP装置内
を真空引きし、装置内の空気を排気する。First, as shown in FIG. 4, after placing the container containing the molded object (A), that is, the object to be processed (10) on the sample stage (9),
By operating the vacuum pump (30), the inside of the HIP device is evacuated and the air inside the device is exhausted.
さらに圧媒ガス例えばアルゴンを圧媒ガス導入配管系を
通じ導入することにより置換を行った後、圧媒ガスを5
0〜300kg/cd充填する。Further, after performing substitution by introducing a pressure medium gas, such as argon, through the pressure medium gas introduction piping system, the pressure medium gas is
Fill from 0 to 300 kg/cd.
充填後、成形体(A)中の炭化性有機物が炭化する温度
まで昇温する。この場合、昇温を先行させると、炭化性
有機物の分解により生じたガス成分の圧力が容器を膨ら
ませて容器を破損するため所期の目的が達せられない。After filling, the temperature is raised to a temperature at which the carbonizable organic matter in the compact (A) is carbonized. In this case, if the temperature is raised in advance, the pressure of the gas component generated by the decomposition of the carbonizable organic matter will inflate the container and damage the container, making it impossible to achieve the intended purpose.
このため、この内圧力より高い圧力を容器外面に作用さ
せておくことが必要である。容器外面の圧力の方が高い
場合には、昇温途中の100〜500℃で炭化性有機物
が軟化した時に、成形体が圧縮され、より緻密となる。Therefore, it is necessary to apply a pressure higher than this internal pressure to the outer surface of the container. When the pressure on the outer surface of the container is higher, when the carbonizable organic substance softens at 100 to 500° C. during heating, the molded body is compressed and becomes more dense.
容器内の発生ガスは、温度が低い時には、その圧力も低
く、プロパン、プロピレン、エタン、などが多いが、温
度が上昇するにつれて、これらがアセチレン、メタンな
ど、より低分子のガス成分となり、ついには炭素と水素
にまで分解する。When the temperature is low, the gas generated in the container is low in pressure, and contains propane, propylene, ethane, etc., but as the temperature rises, these become lower molecular gas components such as acetylene and methane, and finally decomposes into carbon and hydrogen.
この傾向は前述の如く、高圧の方がより低い温度で生じ
るものと考えられる。また、容器の材料である鋼の主成
分である鉄はメタンの分解を促進する触媒の効果を果た
していると推測される。As mentioned above, this tendency is thought to occur at higher pressures and lower temperatures. It is also assumed that iron, which is the main component of the steel used to make the container, acts as a catalyst to promote the decomposition of methane.
一方、水素は容器材料の綱に吸収され、この分解反応の
継続進行を促進する。Hydrogen, on the other hand, is absorbed by the line of the container material, facilitating the continuation of this decomposition reaction.
そして、容器の網中の水素が飽和状態に達すると、鋼中
の水素は容器から圧媒ガス中に放出される。そこで圧媒
ガス中の水素の増加を抑制するためには容器内部に水素
吸蔵性の大きな金属、例えばチタン、スポンジ様チタン
、鋼を配置しておくことが効果的である。When the hydrogen in the network of the vessel reaches a saturated state, the hydrogen in the steel is released from the vessel into the pressure medium gas. Therefore, in order to suppress the increase in hydrogen in the pressure medium gas, it is effective to place a metal with a large hydrogen storage capacity, such as titanium, sponge-like titanium, or steel, inside the container.
第5図はかかる配置の1例として容器上部内面に介装し
た雛型材(6)中に上記水素吸蔵材(7)が埋設されて
いる。FIG. 5 shows an example of such an arrangement in which the hydrogen storage material (7) is embedded in a template (6) interposed on the inner surface of the upper part of the container.
なお、離型材(6)は成形体(A)を鋼製の容器に封入
する際に、容器本体(11,1!部分(3)、底部分(
2)との隙間に介装したものであり、処理後、容器から
焼成した成形体即ち焼成体を取り出すのを容易にすると
同時に水素吸蔵材(7)と焼成体、容器との反応を防止
する役目を果たす。従ってこの離型材(6)としては処
理中に緻密化しないセラミックス粉末、例えばアルミナ
やBNもしくは可撓性黒鉛シートなどが適している。In addition, when the molded body (A) is sealed in a steel container, the mold release material (6) is used in the container body (11, 1! part (3), bottom part (
2) is inserted in the gap between the hydrogen storage material (7) and the fired body to facilitate taking out the fired molded body, that is, the fired body from the container after processing, and at the same time to prevent the reaction between the hydrogen storage material (7), the fired body, and the container. fulfill one's role. Therefore, as the mold release material (6), a ceramic powder that does not become densified during processing, such as alumina, BN, or a flexible graphite sheet, is suitable.
畝上のような工程手順で加圧焼成を行い、成形体(A)
は緻密な高炭素の焼成体となる。Pressure firing is performed in a ridge-like process procedure to form a molded object (A).
becomes a dense, high-carbon fired body.
この焼成体は、このままでも十分、所期の使用に堪える
が、更に必要に応じ黒鉛化処理を行うことが可能である
。This fired body is sufficient for the intended use as it is, but it can be further subjected to graphitization treatment if necessary.
この黒鉛化処理は前記の如きHIP装置を用い、前記得
られた焼成体を更に高温下に曝すことによって行われる
が、HIP装置を用いて1000〜2000kg/−の
高圧下で行うと大気圧下より低い2000℃前後で達成
することができる。This graphitization treatment is carried out by exposing the obtained fired body to a higher temperature using the HIP apparatus as described above. It can be achieved at a lower temperature of around 2000°C.
この黒鉛化処理は、これを行うことにより2000℃以
上の高温下で使用する構造材やヒータの素材として使用
が可能となり、又、機械加工をより容易にすることが可
能となって、利用分野を拡大する。By performing this graphitization treatment, it can be used as a material for structural materials and heaters that are used at high temperatures of 2000 degrees Celsius or higher, and machining can be made easier, making it possible to use it in various fields. Expand.
以下、具体的実施例を示す。Specific examples will be shown below.
実施例1
石油コークス80重量部に、高粘度ピンチ20重量部を
加え、ボールミルにて4時間乾式混合した。得られた原
料を、ラテックス製の袋に入れ、2000 kg/cI
IIの圧力にて、静水圧プレス成形した。そして、この
得た成形体を旋削して円柱状に整形し、第3図に示した
容器中に脱気封入した。Example 1 20 parts by weight of high viscosity pinch was added to 80 parts by weight of petroleum coke and dry mixed for 4 hours in a ball mill. The obtained raw material was put into a latex bag and 2000 kg/cI
Isostatic press molding was carried out at a pressure of II. Then, the obtained molded body was turned into a cylindrical shape and sealed in a deaerated container shown in FIG. 3.
この容器をHIP装置に入れ、第6図に示した温度、圧
カバターンにより加圧焼成した。処理後、容器から焼成
体を取り出し、密度を測定したところ、1.73g/c
Jで、焼成割れ等も認められなかった。This container was placed in a HIP device and baked under pressure at the temperature shown in FIG. 6 using a pressure cover turn. After the treatment, the fired body was taken out of the container and its density was measured, and it was found to be 1.73 g/c.
J, no firing cracks were observed.
比較例1
実施例1と同じ原料、成形体を第7図に示すHIP装置
にて焼成した。Comparative Example 1 The same raw materials and molded body as in Example 1 were fired in the HIP apparatus shown in FIG.
同装置は図示のようにさきに説明した基本構成に加え容
器底部に通気管(19)が取り付けられており、この管
(19)が継手(21)を介して下M(13)に設けら
れれた容器内圧力調整孔(20)に連通ずる如く着脱自
在かつ炉室(16)内の圧媒ガスとはシール材により気
密を保つように接続されていると共に、上蓋(12)に
炉室(16)内に連通ずる通孔(22) (23)が設
けられている。As shown in the figure, in addition to the basic configuration described earlier, the device is equipped with a ventilation pipe (19) attached to the bottom of the container, and this pipe (19) is connected to the lower M (13) via a joint (21). It is removably connected to the pressure adjustment hole (20) in the container and connected to the pressure medium gas in the furnace chamber (16) so as to maintain airtightness by means of a sealing material. 16) are provided with through holes (22) and (23) that communicate with each other.
そこで、北記装置の容器内部は大気と連通しており、大
気圧状態とした。そして、焼成の温度圧カバターンは第
6図とほぼ同じとした。取り出した焼成体は、寸法は収
縮しているものの、マイクロクラックが多数発生してお
り、健全な焼成体とは言えない状態であった。寸法と重
量から求めた密度は1..65g/c++!であった。Therefore, the inside of the container of the Kitagi device was in communication with the atmosphere, and was kept at atmospheric pressure. The temperature and pressure cover pattern for firing was almost the same as that shown in FIG. Although the fired body that was taken out had shrunk in size, it had many microcracks and could not be called a healthy fired body. The density determined from the dimensions and weight is 1. .. 65g/c++! Met.
実施例2
直径約5μm、長さ0.7mmのPAN系カーボン繊維
25重量部と、メソフェーズピッチ粉末75重量部を混
合し、ラテックス容器に充填して、20 Q Okg/
crAの圧力にて静水圧プレス成形した。Example 2 25 parts by weight of PAN-based carbon fibers with a diameter of about 5 μm and a length of 0.7 mm and 75 parts by weight of mesophase pitch powder were mixed and filled into a latex container to produce 20 Q Okg/
Isostatic press molding was performed at a pressure of crA.
得られた成形体を第3図に示した容器に密封して実施例
1と同様の方法で、加圧焼成した。The obtained molded body was sealed in a container shown in FIG. 3, and pressure-fired in the same manner as in Example 1.
得られた焼成体の密度は約1.6g/cJであった。The density of the obtained fired body was about 1.6 g/cJ.
実施例3
実施例1で得られた焼成体を、石英ガラス製カプセルに
真空封入し、2000℃、1500kg/dで1時間H
IP処理を行った。得られた焼成体の密度は、2.11
g/cfflで、天然黒鉛の真密度の93.4%に対し
非常に高密度化されていた。Example 3 The fired body obtained in Example 1 was vacuum sealed in a quartz glass capsule and heated at 2000°C and 1500 kg/d for 1 hour.
IP processing was performed. The density of the obtained fired body is 2.11
g/cffl, which was extremely densified compared to 93.4% of the true density of natural graphite.
(発明の効果)
以上の如く、本発明方法によれば、従来法では不可能で
あった高密度の炭素材料の製造が可能であり、また、従
来法より極めて短い時間の焼成でもクランクを発生する
ことがなく、工業生産上の経済性など、図りしれないメ
リットを存し、現下の炭素材料の高密度化に対する要求
に応え、その用途の拡大に著しい効果が期待される。(Effects of the Invention) As described above, according to the method of the present invention, it is possible to produce a high-density carbon material that was impossible with the conventional method, and it is also possible to generate cranks even during firing for an extremely short time compared to the conventional method. It has immeasurable advantages such as economic efficiency in industrial production, and is expected to meet the current demand for higher density carbon materials and have a significant effect on expanding its uses.
第1図は圧力と炭素収率との関係を示す図表、第2図及
び第3図は容器への成形体挿入態様の各側を示す断面図
、第4図は本発明における焼成工程を実施する装置の1
例を示す概要図、第5図は容器への成形体挿入態様の他
の実施例を示す断面図、第6図は実施例における温度・
圧カバターンを示す図表、第7図は比較例で用いたHI
PW置の概要を示す断面図である。
(1)・・・容器本体、(2)・・・底部分。
(3)・・・蓋部分、(4)・・・脱気管。
(5)・・・溶接部分、(6)・・・離型材。
(7)・・・水素吸蔵材。
特許出願人 株式会社 神戸製鋼所
代理人 弁理士 宮 木 泰 −炭素の収率(
%)Fig. 1 is a chart showing the relationship between pressure and carbon yield, Figs. 2 and 3 are cross-sectional views showing each side of the molded body inserted into the container, and Fig. 4 shows the firing process of the present invention. 1 of the devices
A schematic diagram showing an example, FIG. 5 is a sectional view showing another example of how the molded body is inserted into a container, and FIG. 6 is a diagram showing the temperature and
A diagram showing the pressure cover turn, Figure 7 is the HI used in the comparative example.
It is a sectional view showing an outline of PW placement. (1)...Container body, (2)...Bottom part. (3)... Lid part, (4)... Deaeration pipe. (5)...Welding part, (6)...Release material. (7)...Hydrogen storage material. Patent applicant: Kobe Steel, Ltd. Representative Patent attorney: Yasushi Miyagi - Carbon yield (
%)
Claims (1)
らなる炭素材料に、炭化性有機物を混合し加圧して成形
した後、鋼製の容器中に気密に封入し、高圧ガス雰囲気
下で加圧焼成することを特徴する高密度炭素材料の製造
方法。 2、炭化性有機物が液状のタール・ピッチ又は樹脂、粉
末状のメソフェーズピッチ又は樹脂である特許請求の範
囲第1項記載の高密度炭素材料の製造方法。 3、樹脂がポリエチレンなどの熱可塑性樹脂又はフェノ
ール樹脂の如き熱硬化性樹脂である特許請求の範囲第2
項記載の高密度炭素材料の製造方法。 4、加圧成形手段が液圧による冷間もしくは温間静水圧
成形である特許請求の範囲第1項、第2項又は第3項記
載の高密度炭素材料の製造方法。 5、成形体を鋼製の容器に気密に封入する際に、隙間に
離型材を介在させる特許請求の範囲第1〜4項の何れか
の項に記載の高密度炭素材料の製造方法。 6、成形体を鋼製の容器に封入する際に水素吸蔵材料を
共に封入する特許請求の範囲第1〜5項の何れかの項に
記載の高密度炭素材料の製造方法。 7、高圧ガス雰囲気下で加圧焼成するに際し、ガス圧力
による加圧を昇温より先行させる特許請求の範囲第1〜
6項の何れかの項に記載の高密度炭素材料の製造方法。 8、粉末状の炭素材もしくはチョップ状のカーボン繊維
からなる炭素材料に、該炭素材料加圧焼成時に成形体の
収縮を生じさせる特性を有する炭化性有機物を混合し、
冷間もしくは温間にて加圧成形した後、鋼製の容器中に
気密に封入して高圧ガス雰囲気下で加圧焼成し、得られ
た焼成体を更に高温下に曝して黒鉛化することを特徴と
する高密度炭素材料の製造方法。 9、炭化性有機物が液状のタール・ピッチ又は樹脂、粉
末状のメソフェーズピッチ又は樹脂である特許請求の範
囲第8項記載の高密度炭素材料の製造方法。 10 樹脂がポリエチレンなどの熱可塑性樹脂又はフェ
ノール樹脂の如き熱硬化性樹脂である特許請求の範囲第
9項記載の高密度炭素材料の製造方法。 11 加圧成形手段が液圧による静水圧成形である特許
請求の範囲第8項、第9項又は第10項記載の高密度炭
素材料の製造方法。 12 成形体を鋼製の容器に気密に封入する際に、隙間
に離型材を介在させる特許請求の範囲第8〜11項の何
れかの項に記載の高密度炭素材料の製造方法。 13 成形体を鋼製の容器に封入する際に水素吸蔵材料
を共に封入する特許請求の範囲第8〜12項の何れかの
項に記載の高密度炭素材料の製造方法。 14 高圧ガス雰囲気下で加圧焼成するに際し、ガス圧
力による加圧を昇温より先行させる特許請求の範囲第8
〜13項の何れかの項に記載の高密度炭素材料の製造方
法。 15 黒鉛化処理を高圧の不活性ガス雰囲気中で行なう
特許請求の範囲第8〜14項の何れかの項に記載の高密
度炭素材料の製造方法。[Scope of Claims] 1. Carbonizable organic matter is mixed with a carbon material consisting of powdered carbon material or chopped carbon fiber, and the mixture is pressurized and molded, then hermetically sealed in a steel container and exposed to high pressure gas. A method for producing a high-density carbon material, characterized by pressurized firing in an atmosphere. 2. The method for producing a high-density carbon material according to claim 1, wherein the carbonizable organic substance is liquid tar pitch or resin, or powdered mesophase pitch or resin. 3. Claim 2 in which the resin is a thermoplastic resin such as polyethylene or a thermosetting resin such as a phenolic resin.
A method for producing a high-density carbon material as described in Section 1. 4. The method for producing a high-density carbon material according to claim 1, 2 or 3, wherein the pressure forming means is cold or warm isostatic forming using hydraulic pressure. 5. The method for producing a high-density carbon material according to any one of claims 1 to 4, wherein a mold release material is interposed in the gap when the molded body is hermetically sealed in a steel container. 6. The method for producing a high-density carbon material according to any one of claims 1 to 5, wherein a hydrogen storage material is also enclosed when the molded body is enclosed in a steel container. 7. Claims 1 to 7, in which pressurization by gas pressure precedes temperature increase when pressurized firing in a high-pressure gas atmosphere.
A method for producing a high-density carbon material according to any one of Item 6. 8. Mixing a carbonizable organic substance having a property of causing shrinkage of a molded body during pressure firing of the carbon material into a carbon material consisting of a powdered carbon material or chopped carbon fiber,
After cold or warm pressure forming, the product is hermetically sealed in a steel container and fired under pressure in a high-pressure gas atmosphere, and the resulting fired product is further exposed to high temperatures to graphitize it. A method for producing a high-density carbon material characterized by: 9. The method for producing a high-density carbon material according to claim 8, wherein the carbonizable organic substance is liquid tar pitch or resin, or powdered mesophase pitch or resin. 10. The method for producing a high-density carbon material according to claim 9, wherein the resin is a thermoplastic resin such as polyethylene or a thermosetting resin such as a phenolic resin. 11. The method for producing a high-density carbon material according to claim 8, 9, or 10, wherein the pressure molding means is hydrostatic molding using hydraulic pressure. 12. The method for producing a high-density carbon material according to any one of claims 8 to 11, wherein a mold release material is interposed in the gap when the molded body is hermetically sealed in a steel container. 13. The method for producing a high-density carbon material according to any one of claims 8 to 12, wherein a hydrogen storage material is also enclosed when the molded body is enclosed in a steel container. 14 Claim No. 8 in which pressurization by gas pressure precedes temperature rise when performing pressurized firing in a high-pressure gas atmosphere.
A method for producing a high-density carbon material according to any one of items 1 to 13. 15. The method for producing a high-density carbon material according to any one of claims 8 to 14, wherein the graphitization treatment is performed in a high-pressure inert gas atmosphere.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60198315A JPS6259509A (en) | 1985-09-06 | 1985-09-06 | Production of high-density carbon material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60198315A JPS6259509A (en) | 1985-09-06 | 1985-09-06 | Production of high-density carbon material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6259509A true JPS6259509A (en) | 1987-03-16 |
JPH0458428B2 JPH0458428B2 (en) | 1992-09-17 |
Family
ID=16389079
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60198315A Granted JPS6259509A (en) | 1985-09-06 | 1985-09-06 | Production of high-density carbon material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6259509A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6369755A (en) * | 1986-09-10 | 1988-03-29 | ユナイテッド・テクノロジーズ・コーポレイション | Manufacture of carbon-carbon composite material |
US7148602B2 (en) * | 2003-11-07 | 2006-12-12 | Totankako Co., Ltd. | Commutator |
CN112083029A (en) * | 2020-08-13 | 2020-12-15 | 四川士达特种炭材有限公司 | Device and method for evaluating comprehensive performance of filler |
-
1985
- 1985-09-06 JP JP60198315A patent/JPS6259509A/en active Granted
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6369755A (en) * | 1986-09-10 | 1988-03-29 | ユナイテッド・テクノロジーズ・コーポレイション | Manufacture of carbon-carbon composite material |
JP2540343B2 (en) * | 1986-09-10 | 1996-10-02 | ユナイテッド・テクノロジーズ・コーポレイション | Method for producing carbon-carbon composite material |
US7148602B2 (en) * | 2003-11-07 | 2006-12-12 | Totankako Co., Ltd. | Commutator |
CN112083029A (en) * | 2020-08-13 | 2020-12-15 | 四川士达特种炭材有限公司 | Device and method for evaluating comprehensive performance of filler |
CN112083029B (en) * | 2020-08-13 | 2022-11-25 | 四川士达特种炭材有限公司 | Filler comprehensive performance evaluation device and method |
Also Published As
Publication number | Publication date |
---|---|
JPH0458428B2 (en) | 1992-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6797251B1 (en) | Method of making carbon foam at low pressure | |
JP4359502B2 (en) | Method for producing porous graphite and article made therefrom | |
US4448747A (en) | High density sintering method for powder molded products | |
CN102149633B (en) | Method for manufacturing carbonaceous film, and graphite film obtained thereby | |
US6833012B2 (en) | Petroleum pitch-based carbon foam | |
US4226900A (en) | Manufacture of high density, high strength isotropic graphite | |
JP2505880B2 (en) | Method for producing high-density carbon and graphite products | |
US5571848A (en) | Method for producing a microcellular foam | |
JPS63176361A (en) | Method of manufacturing self-supporting ceramic composites | |
US5348694A (en) | Method for electroconsolidation of a preformed particulate workpiece | |
JPH0218359A (en) | Method and equipment for impregnation and carbonization | |
CN101381085A (en) | Rapid preparation method of LaB6 polycrystalline bulk cathode material | |
GB2223507A (en) | Tubular ceramic articles,methods and apparatus for their manufacture | |
US5294382A (en) | Method for control of resistivity in electroconsolidation of a preformed particulate workpiece | |
US4822538A (en) | Process for producing a carbonaceous thin plate | |
JPS6259509A (en) | Production of high-density carbon material | |
US5294264A (en) | Method of nitriding refractory metal articles | |
CN117342540A (en) | A kind of carbon aerogel-pyrolytic carbon composite material and preparation method thereof | |
CA2005002C (en) | Improved method for electroconsolidation of a preformed particulate workpiece | |
US4776995A (en) | Method of making a structure | |
JPS6345172A (en) | Manufacture of high density carbon material | |
JPH0696441B2 (en) | High-density carbon material manufacturing equipment | |
JPS62138361A (en) | Manufacture of high density formed body from carbon material | |
RU2281928C1 (en) | Method of manufacture of blanks for friction articles | |
JPS63295476A (en) | Production of carbon fiber reinforced carbonaceous material |